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The dysbiosis of human microbiome has been proven to be associated with the development of many human diseases. Metagenome
sequencing emerges as a powerful tool to investigate the effects of microbiome on diseases. Identification of human gut microbiome
markers associated with abnormal phenotypes may facilitate feature selection for multiclass classification. Compared with binary
classifiers, multiclass classification models deploy more complex discriminative patterns. Here, we developed a pipeline to address
the challenging characterization of multilabel samples. In this study, a total of 300 biomarkers were selected from the microbiome of
806 Chinese individuals (383 controls, 170 with type 2 diabetes, 130 with rheumatoid arthritis, and 123 with liver cirrhosis), and then
logistic regression prediction algorithm was applied to those markers as the model intrinsic features. The estimated model produced
an F, score of 0.9142, which was better than other popular classification methods, and an average receiver operating characteristic
(ROC) of 0.9475 showed a significant correlation between these selected biomarkers from microbiome and corresponding
phenotypes. The results from this study indicate that machine learning is a vital tool in data mining from microbiome in order to
identify disease-related biomarkers, which may contribute to the application of microbiome-based precision medicine in the future.

1. Introduction

The human microbiome plays an important role in energy
harvesting, metabolism of dietary components, immunity,
inflammatory bowel disease, cancer therapy, and the progres-
sion of cancers [1-4]. Recently, lots of studies have shown that
multiple factors, such as living environment, eating habits,
age, gender, and the state of health, are associated with the
homeostasis of human microbiome [5, 6]. For example, in the
early age, most people share common functionality of the gut
microbiome, but age-associated changes in vitamin biosyn-
thesis and metabolism were identified from 326 individuals
[7, 8]. High-throughput sequencing technologies have paved

the way to investigate the human microbiome in a compre-
hensive manner. Individual microbiome may enhance the
utility of precision medicine, personalized diagnostics, and
treatment modalities [9-11].

Machine learning algorithms have been widely intro-
duced to tackle problems in both genomics and bioinfor-
matics, for instance, the identification and annotation of
genomic regulatory elements like promoters, transcription
start sites, enhancers, splice sites, and the classification of
various phenotypes [12]. Some researchers have established
large-scale microbiome datasets for type 2 diabetes, liver
cirrhosis, rheumatoid arthritis, and colorectal carcinoma [13-
17]. Metagenome-wide association studies (MWAS) based
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on binary classification methods have been proven to be a
powerful tool to analyze the correlation between diseases and
microbiome [18, 19]. To assess the risk of developing certain
diseases throughout one’s life, microbiome-based multiclass
biomarkers may provide a promising noninvasive diagnostic
tool in large-scale population. It was also reported that many
factors, such as gender, age, and body mass index (BMI), will
influence the diversity of human microbiome [5, 7]. Thus,
these factors were also involved in this study.

Here, we performed multiclass classification analysis
on the microbiome of 806 Chinese individuals, together
with phenotype information, including gender, age, and
BMI. Feature-associated gene markers were identified after
addressing the imbalanced datasets between classes, which
could be used to establish models to predict the type of dis-
ease. The human microbiome-based knowledge that asso-
ciated with the abnormal phenotypes provides cues to the
future application of precision medicine [11].

2. Materials and Methods

2.1. Sample Information. We process 806 shotgun metage-
nomic samples from three studies, 170 type 2 diabetes (T2D),
130 liver cirrhosis, 123 rheumatoid arthritis (RA), and 383
normal controls, to identify microbiome-based biomarkers.
All these normal controls are with normal values on recent
screen for physical examination and other clinical testing [15-
17]. Those samples were filtered according to the following
criteria for further analysis: (1) the sample provides complete
clinical information (including age, gender, and BMI); (2) the
sequencing data have been previously published and avail-
able; and (3) the clinical information matches the sequencing
data.

2.2. Data Analysis and Microbiome Profiling. Sequence Read
Archive (SRA) datasets or compressed files of raw reads were
downloaded from NCBI or EBI. As described in Figure 1
(Figure 1), the workflow of microbiome profiling includes
the following three procedures: (1) Prepare raw sequencing
reads. Paired reads were extracted from SRA files using SRA
Toolkit (v2.3.2-5) with the parameters “fastq-dump -split-
3 -0.” (2) Filter the raw sequences from human genome.
The host human genome sequences would be excluded by
aligning them to the human reference (hgl9) using Burrows-
Wheeler Aligner (BWA) “MEM” module with default param-
eters [20]. (3) Construct the relative abundance matrix.
To calculate the relative abundance of each sequence, the
remaining reads were aligned to the integrated gene catalog
(IGC) reference, which consists of 9.8 million genes with
BWA [9]. Finally, the relative abundance was calculated
according to the following formula [15], using an in-house
script:

o= i )
LNl (

Here g; is the relative abundance of gene i, x; is the number
of reads that were aligned to gene i of IGC reference, L; is the
length of gene i, and j is the total number of genes.
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2.3. Feature Selection. One key problem that we are trying to
solve in this study is to identify disease-associated biomarkers
in human microbiome and to build a classifier with the
selected biomarkers that can classify a single sample with
accurate diagnostic disease status. In this study, there are
three challenges in biomarkers selection. The first one is that
the selected feature list is susceptible to the training data and
is sensitive to different methods due to a small sample size
in high-dimensional features. The second challenge is that
the process of feature selection will be performed on multi-
class datasets, which is much more difficult than on binary
datasets. The last challenge is the complexity of computation.
Some methods have been reported, such as Max-Relevance
and Min-Redundancy (mRMR) and iterative sure indepen-
dence screening (ISIS), which are robust algorithms in feature
selection and have been applied in T2D biomarker discovery
[21]. Considering the limited computational resource and the
capability of multiclass classification on higher-dimensional
data, we thus introduced mRMR to be the feature selection
method here. mRMR utilizes two criteria to select features.
The maximum relevance means to screen out those features
that characterize the labels of samples optimally, and sequen-
tially the minimum redundancy is introduced to choose
features that are maximally dissimilar to the already known
ones. Top 500 features in the mRMR feature list were analyzed
in the subsequent classification in this study.

2.4. Imbalanced Datasets between Classes. Referring to bioin-
formatics and genomics, a common problem in the appli-
cation of classification algorithms is the imbalanced sample
size of classes, because machine learning algorithms naturally
work well on quite equal number of samples in each class.
At present, datasets with skewed labels are becoming more
and more frequent, and unbalanced samples have been
reported to generate wrong prediction models. One approach
to address this plight is to resample the dataset to offset
this imbalance to generate a more robust and fair decision
boundary. Random resampling of the data is a common way
to solve those problems as seen in other studies [12]. While
the random sampling methods have several drawbacks such
as biased results and being laborious and time-consuming,
some optimized methods have been developed with better
performance [13, 22]. Undersampling the majority classes
and oversampling the minority classes are two categories of
resampling techniques.

In this study, NearMiss (version 3) and SMOTEENN were
applied to solve unbalanced datasets. NearMiss uses the K-
nearest neighbor (KNN) classifier to achieve undersampling.
It selects a given number of the closest majority samples
for each minority sample to guarantee that every minority
sample is surrounded by some majority samples. On the other
hand, SMOTEENN, the method of oversampling, tends to
remove examples from both classes by filtering the misclas-
sified example’s three nearest neighbors from the training
dataset. Thus, SMOTEENN shows an improved performance
on datasets with a small number of positive samples [13].

2.5. Accuracy Assessment. More than one measurement can
be used to assess the performance of machine learning
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FIGURE 1: The pipeline of data mining procedures. The whole pipeline of this study consists of preprocessing data (SRA to FASTQ, clinical
information available, and discarding samples without complete clinical information), aligning to IGC and constructing the abundance
matrix, feature selection and training algorithm, and biological interpretation.

algorithms, such as F1 score and the receiver operating char-
acteristic curve (ROC) [23]. The F1 score can be interpreted
as a weighted average of precision and recall. Correspond-
ingly, the F1 score reaches its best value at 1 and worst value
at 0. The relative contributions of precision and recall to the
F1 score are equal. The formula for the F1 score is

(precision = recall)

Fl=2=x (2)

(precision + recall)’

In the multiclass and multilabel case, the weighted aver-

age of the F1 score of each class is computed. To evaluate the

precision of the algorithm, the AUC was also calculated for
comparison with that in previous work.

2.6. Accuracy Estimation of Selected Biomarkers. The predic-
tion performance of the selected biomarkers should be mea-
sured by training a classifier on the data that are restricted to
the selected biomarkers. Seven popular classifiers, k-nearest
neighbors (KNN), logistic regression (LR), random forest
(RF), support vector machine (SVM), gradient boosting
decision tree (GBDT), stochastic gradient descent (SGD), and
adaptive boosting (ADA), were performed on the selected
features. Based on the F1 score, the best algorithm of
classification on this dataset was selected in this analysis.

The classification of multiclasses can be implemented as
known one-versus-all strategy [24]. This strategy consists of
fitting one classifier per class, with the samples of that class
as positives and other samples as negatives. Then these basic
classifiers are used to predict a single sample by aggregating
their decisions.

Scikit-learn method is a simple but efficient tool for
data mining and subsequent data analysis. It brings machine

learning to nonspecialists with a general-purpose high-level
language, where the API of seven algorithms was provided
[25].

2.7. Cross-Validation Method. We utilized the 5-fold cross-
validation approach to evaluate the performance of pre-
diction models. Following this method, the dataset was
randomly divided into five equal-sized partitions. Each time
we fitted a model on four partitions as the training data and
test it on the remaining partition. The process was repeated
five times and the average result was used to generate the
estimation.

2.8. Biological Interpretation. The integrated gene catalog
that has been annotated is a comprehensive resource for
metagenomics analyses [9]. To understand these distinct
feature-related biomarker genes, we annotated these genes
with an in-house script and picked out the items from the
profile dataset of genes, genus, KEGG, and eggNOG, which
can be downloaded from the following website: http://meta
.genomics.cn/meta/dataTools. Finally, we interpreted the
biomarkers with details in multiple levels, such as Phylum,
genus, KEGG, and eggNOG.

To address the problem whether these biomarkers are
specifically associated with a particular phenotype, Venn dia-
gram was plotted with the online program (http://genevenn
.sourceforge.net/).

3. Results and Discussions

3.1 Sample Information. In this study, 806 samples with
different phenotypes were analyzed. Those samples were from
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TABLE 1: Statistics on sample information.
Characteristic Phenotype

Normal (n = 383) Abnormal (n = 423)

Age, mean (SD), years 50.99 (14.36) 51.35 (12.00)
Sex
Male (1) 183 215
Female (0) 200 208
BMI, mean (SD), kg/m2 23.81(3.78) 23.30 (3.26)
Disease
Type 2 diabetes 170 (1)
Rheumatoid arthritis 383 (0) 130 (2)
Liver cirrhosis 123 (3)

Note. The number in the parenthesis indicates the label of phenotype (normal
=0, type 2 diabetes = 1, rheumatoid arthritis = 2, and liver cirrhosis = 3).

three large available metagenome-wide association studies
at present, which focused on type 2 diabetes (T2D), liver
cirrhosis, and rheumatoid arthritis (RA) (Table S1) [7, 14—
17]. Of these 806 samples, 383 were with normal phenotypes
while 423 with different disease status were defined as abnor-
mal ones and were labeled with different tags (normal status
was labeled as class 0, type 2 diabetes as class 1, rheumatoid
arthritis as class 2, and liver cirrhosis as class 3) as shown in
Table 1. To investigate the impact of age and BMI, we used the
one-sample Kolmogorov-Smirnov test to test the normality of
the age and BMI distribution. And then one-way analysis of
variance (ANOVA) from “scipy.stats” package was adopted
to perform significance test. In previous studies, aging was
found to have a global impact on the physiology of human
digestion system, and the process of aging can affect the com-
position of the human gut microbiome [8, 26]. In this study,
age is associated with phenotype (ANOVA test, P = 1.11e™%)
among these four groups. However, in line with previous
findings, the body mass index (BMI) shows no significantly
direct correlation with phenotype (ANOVA test, P = 0.0178)
[27], and BMI is used as a screening tool to estimate the
health status instead of as a diagnostic tool for disease risk.
To concern these related factors on phenotype, age, gender,
and BMI were included. The number of samples labeled as 0 is
more than other classes, so imbalanced datasets would be one
special case for classification problem in this study (Table 1).

3.2. Data Alignment and Matrix Construction. A total of 383
samples with normal phenotype were sequenced to generate
an average of 9.30 (+4.02) Gb data, and 92% of these were
aligned to the IGC reference. In addition, 423 samples with
abnormal phenotype generated a total of 11.27 (+6.95) Gb
data also with an average mapping rate of 92% (Table S2).
The strategy of mapping to the IGC reference was adopted.
The catalog of IGC may reach saturated coverage of core
gene content and the pipeline of assembly and annotation
would cost more time and computing resource [9]. Finally, an
806 x 9,879,896 relative abundance matrix was constructed
by calculating the number of reads that aligned to the IGC
catalog and was normalized with the length of gene.
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FIGURE 2: The ROC plot of 5-fold cross-validations. For repeated
cross-validation, multiple curves were plotted with green color,
where each class was repeated five times, and the mean curve was
plotted with blue color. The confidence interval was fulfilled with
grey color.

3.3. Feature Selection and Accuracy of the Algorithm. The
relative matrix was preprocessed at the initial stage of data
analysis, and the frequency of gene less than 90% in popula-
tion scale was removed, and then 13,990 genes remained in
the next stage. Following this, we applied mRMR methods
to features selection. The top 500 features in the mRMR
feature list were selected as candidate biomarkers. After
two criteria of mRMR process, we iteratively repeated the
procedure of prediction with seven algorithms to increase the
number of biomarkers, which initiated with 100 features and
finally increased by 20 features (Table S3). The performance
of SOMTEENN was overall better than NearMiss3 on all
these seven algorithms, especially the logistic regression and
support vector machine. The largest f1 value of optimized
combination achieved 0.9142 on 300 features with the logistic
regression (Table 2). In the cross-validation, the average f1
value was 0.92 (£0.01), supporting the fact that this model is
stable and accurate (Figure 2).

Compared with previous studies, we plotted the ROC
and calculated the area under the ROC curve (AUC). The
AUC that we obtained with optimized features and algorithm
was 0.85 in normal samples, 0.99 in type 2 diabetes, 0.96 in
rheumatoid arthritis, and 0.99 in liver cirrhosis, respectively
(Figure 3). The AUC value of the control group was lower
than the other groups and may be attributed to the diversity
of the human microbiome in healthy people. The AUC of
Chinese T2D metagenome from previous study was 0.81,
which was calculated based on the species and metagenomics
clusters (MGC). The AUCs of rheumatoid arthritis and liver
cirrhosis were published as 0.94 and 0.83, respectively. The
better performance of our biomarkers can be explained by
the relatively complete reference, more features than previous
studies, and integrated clinical information [15-17].

The predictive power of these microbiome biomarkers is
promising to be applied to disease diagnostics, especially dis-
ease screening within large-scale population. The multiclass
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TABLE 2: The evaluation of algorithms based on F1 score.
KNN LR RF SVM GBDT SGD ADA
NearMiss3* 0.6628 0.7510 0.7888 0.7184 0.8282 0.7696 0.7956
SMOTEENN® 0.8602 0.9142 0.8341 0.9138 0.8741 0.8360 0.8959
# of Markers 280 300 220 320 160 220 220

KNN, K-nearest neighbor; LR, logistic regression; RE, random forest; SVM, supporting vector machine; GBDT, gradient boosting decision tree; SGD, stochastic

gradient descent; ADA, adaptive boosting. *NearMiss3 is one method using the K-nearest neighbor (KNN) classifier to achieve undersampling; "SMOTEENN
is one method by removing three nearest neighbors from training set to achieve oversampling. Bold font stands for the best result.
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rheumatoid arthritis = red, and liver cirrhosis = aqua-blue); the
numbers in parenthesis were values of AUC.

classifier is a potential tool in the personalized medicine in a
wide spectrum of phenotypes.

3.4. Biological Interpretability. ANOVA was performed to
investigate the difference among these four groups, and
these biomarkers showed significant difference (Table S4).
These biomarkers were annotated as 67 Bacteroidetes, 207
Firmicutes, 3 Proteobacteria, and 21 biomarkers that were not
classified into phylum. The highest proportion of biomarkers
was Firmicutes, which was correlated with the fat storage and
energy harvest [28].

It is well accepted that many factors synergistically shape
the diversity of human microbiome, so phenotype-specific
biomarkers are important in the evaluation of health status.
The top biomarker in the ranking list according to the P value
from ANOVA is DOF003_GL0053139, which is a gene from
the phylum of Firmicutes and the genus of Clostridium. The
relative abundance of this biomarker in RA is higher than that
of others, which is consistent with the previous report [29].
The biomarker 469590.BSCG_05503 is overexpressed in liver

cirrhosis, which belongs to Bacteroides with its function being
well studied [30].

To comprehensively investigate the phenotype-related
microbiome, we performed pairwise comparison of the rel-
ative abundance of one phenotype against other phenotypes.
A total of 117 biomarkers were significantly correlated with
T2D disease, 257 biomarkers with rheumatoid arthritis, and
220 biomarkers with liver cirrhosis, respectively (Table S5).

In the T2D group, 48 biomarkers were enriched and 81%
of them were Bacteroides involved in the process of protein
and carbohydrate breakdown. However, 69 of 117 biomarkers
were significantly reduced in T2D disease and 78% of them
were Firmicutes known to enhance the absorption of fat. All
these results support the previous finding that the ratio of
Bacteroides/Firmicutes was altered in T2D patients [31].

In the early stage of RA, Gram-positive bacteria were
enriched and Gram-negative bacteria were depleted in the
microbiome of RA patients [17]. However, two biomarkers
of Veillonella, one biomarker of Haemophilus, and 74% of
73 depleted biomarkers of Bacteroides are Gram-negative
bacteria in this study. Besides, we also identified 184 RA-
enriched biomarkers including 16 Clostridium, 16 Faecalibac-
terium, and 10 Blautia as well as Coprococcus, Enterococcus,
Eubacterium, and Roseburia. The component of biomarkers
found in RA patients was also consistently reported from
previous results.

In the liver cirrhosis group, 66 biomarkers were found to
be enriched in liver cirrhosis, including 8 Streptococcus and 2
Veillonella, in line with previous work. It indicated that these
two genera should play important roles in the development of
liver cirrhosis. Interestingly, another important genus, Faecal-
ibacterium, an anti-inflammatory commensal bacterium, was
also found [16, 32].

In this study, 154 biomarkers were depleted in the micro-
biome of liver cirrhosis patients, which is similar to the RA
enriched biomarkers, including 12 with Clostridium, 13 with
Faecalibacterium, and 10 with Blautia as well as Coprococcus,
Enterococcus, Eubacterium, Roseburia, and Ruminococcus.
The phenomenon may be attributed to interindividual vari-
ation in the human microbiome.

To address the problem of whether these biomarkers
are specific to a specific phenotype, Venn diagram shows
that no biomarker was shared by three phenotypes. T2D
shared 78 biomarkers with RA and 39 biomarkers with liver
cirrhosis. RA shared 179 biomarkers with liver cirrhosis.
No biomarker was specific to T2D and RA. It is notewor-
thy that two biomarkers were specific to liver cirrhosis.
These two biomarkers are 1000570. HMPREF9966_1928 and
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FIGURE 4: The Venn diagram of phenotype-specific biomarkers.
Each circle stands for one phenotype and the number stands for
biomarkers.

1000570.HMPREF9966_1926, which belong to Streptococcus
(Figure 4). Previous study has reported that Streptococcus is
associated with liver disease [33].

To characterize the functional role of microbiome in
phenotype, we annotated each biomarker by the KEGG
database. The pathways that include more than 10 biomarkers
are related to membrane transport, genetic information
processing, translation, and cellular processes and signaling
(Table S4). Particularly, the membrane transporters were
found to be enriched in type 2 diabetes [14, 15]. We also
found that some biomarkers were enriched in the pathways of
carbohydrate metabolism, lipid metabolism, and amino acid
metabolism, which are crucial fundamental physiological
processes for living life.

4. Discussions and Conclusions

In this study, we improved the performance of classifica-
tion considering the problem of multiclass and imbalanced
datasets by using the technology of machine learning. A
total of 300 biomarkers were selected from 13,990 features
including clinical information and the matrix of relative
gene abundance from 806 human microbiomes through
using logistic regression classifier. The phenotype-specific
biomarkers were interpreted comprehensively.

Our study pinpoints the potential role of human micro-
biome which may lead to the research and development of
microbiome knowledge-based personalized precision medi-
cine by monitoring and modulating the diversity of micro-
biome [11]. While in this manuscript we selected biomark-
ers from Chinese individuals, all these selected biomarkers
should be validated on other populations and then can be
exploited in the future personal medicine.

This study uncovered some interesting phenomena. First,
the ratio of Bacteroides/Firmicutes was altered in T2D
patients, which is in line with previous study. Second, these
biomarkers related to RA were found to be depleted in Gram-
negative bacteria and enriched in Gram-positive bacteria.
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Third, Streptococcus and Veillonella were found to be enriched
in liver cirrhosis and, particularly, another bacterium named
Faecalibacterium was also found. Finally, some bacteria were
enriched in one phenotype; however, they were depleted in
anther phenotype. All these findings suggest the complexity
of microbiome and give us cues to treat microbiome accord-
ing to the status of one person.

Disease-specific biomarkers were analyzed in this study
and two liver cirrhosis specific biomarkers that belong to the
genus of Streptococcus were found. Other biomarkers were
shared by two types of disease. Many intriguing biomarkers
play important role in the core metabolism process, such
as 02.UC32-1.GL0019091 that belongs to K03088, which is
thought to play a role in enhancing transcriptional specificity
in low-G+C Gram-positive bacteria [34].

Incorporated with clinical information and the profiling
of human microbiome, the healthy status of one individ-
ual can be predicted. However, those previously published
microbiome-based biomarkers were almost specific to the
population studies; it means that all these biomarkers should
be demonstrated in other independent study cohorts. Other
pitfalls and challenges such as the diversity of dietary, stan-
dardization in sample collection and the treatment, and dif-
ferent microbiome analytic tools play a vital, important role in
the utility of microbiome. Thus, comprehensive information
of human and standardization in the pipeline of treatment
will be the promise, which will ensure the machine learning
to tap its full potential.

Finally, this study reveals that gut microbiome biomarkers
are able to distinguish abnormal cases from controls with
a higher level of specificity than previous results [7, 12, 14,
16, 17]. Our method can also be extended from the features
to the type of abnormal phenotype, which will score the
possibility of the specific disorder and make the mode of
monitoring gut health become a reality. The technology of
machine learning will accelerate the speed of the application
of human microbiome.
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