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Abstract
E3 ubiquitin ligases that direct substrate proteins to the ubiquitin–proteasome system are promising, though
largely unexplored drug targets both because of their function and their remarkable specificity. CRLs [Cullin–
RING (really interesting new gene) ligases] are the largest group of E3 ligases and function as modular
multisubunit complexes constructed around a Cullin-family scaffold protein. The Cul3-based CRLs uniquely
assemble with BTB (broad complex/tramtrack/bric-à-brac) proteins that also homodimerize and perform
the role of both the Cullin adapter and the substrate-recognition component of the E3. The most prominent
member is the BTB–BACK (BTB and C-terminal Kelch)–Kelch protein KEAP1 (Kelch-like ECH-associated protein
1), a master regulator of the oxidative stress response and a potential drug target for common conditions such
as diabetes, Alzheimer’s disease and Parkinson’s disease. Structural characterization of BTB–Cul3 complexes
has revealed a number of critical assembly mechanisms, including the binding of an N-terminal Cullin
extension to a bihelical ‘3-box’ at the C-terminus of the BTB domain. Improved understanding of the
structure of these complexes should contribute significantly to the effort to develop novel therapeutics
targeted to CRL3-regulated pathways.

Cullin–RING ligases
Specific patterns of mono- or poly-ubiquitylation are used
by the cell to control protein function or stability. These
common post-translational modifications involve a three-
enzyme cascade that directs the covalent linkage of the small
protein ubiquitin on to a target protein lysine residue. An
E1 ubiquitin-activating enzyme uses ATP to activate the
ubiquitin for linkage to an E2 ubiquitin-conjugating enzyme.
The E2–ubiquitin associates with an E3 ubiquitin ligase,
which immobilizes and orients a specific substrate ready for
ubiquitin conjugation [1]. E3 ligases are best known for their
recruitment of substrates for degradation by the ubiquitin–
proteasome system. They possess extraordinary specificity
for a vast array of substrates and, as such, are considered
promising, if challenging, targets for drug discovery [2].
E3 ligases may be divided into two major classes, HECT
(homologous with E6-associated protein C-terminus) or
RING (really interesting new gene) type, depending on
whether they contain a HECT or a RING domain [3].
Ubiquitylation by HECT class E3s proceeds via an E3–
ubiquitin intermediate, whereas RING class E3s conjugate
ubiquitin directly to the substrate.
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The multisubunit CRLs (Cullin–RING ligases) represent
the largest class of E3 ligase. CRLs are constructed around
a Cullin family protein (Cul1–Cul5 or Cul7) that forms an
extended scaffold for protein interaction [4]. Specific sub-
strate receptor proteins assemble with the Cullin N-terminal
domain, typically via an adapter protein, whereas the globular
C-terminal domain binds a RING box protein (Rbx1 or
Rbx2). The RING domain recruits the activated E2–ubiquitin
conjugate in advance of ubiquitin transfer. Structural data
have been invaluable in detailing many aspects of CRL
function. The structure of the Cul1-based SCF (Skp1–Cul1–
F-box) complex defined the prototypical CRL architecture
[5]. In this example, Skp1 serves as the adapter protein and
Skp2 as the F-box-containing substrate receptor. Crystal
structures have also defined how Cullin NEDDylation
enhances the association of the E2–ubiquitin and substrate [6]
and how this ubiquitylation is inhibited by CAND1 (Cullin-
associated and NEDDylation-dissociated 1) [7].

Cullin-3-based CRLs employ BTB domain
proteins as substrate-specific adapters
Cullin-3-based CRLs recruit BTB (broad complex/
tramtrack/bric-à-brac) domain proteins as their substrate-
specific adapters. The BTB domain, or POZ (pox virus
and zinc finger) domain is a protein–protein interaction
domain that was first characterized by the crystal structure
of the PLZF (promyelocytic leukaemia zinc finger protein)
[8] and shares a conserved fold with both Skp1 and the
Cul2/5 adapter Elongin C. Unusually, BTB proteins also
contain an additional protein–protein interaction domain,

Biochem. Soc. Trans. (2014) 42, 103–107; doi:10.1042/BST20130215 C©The Authors Journal compilation C©2014 Biochemical SocietyB
io

ch
em

ic
al

 S
o

ci
et

y 
T

ra
n

sa
ct

io
n

s 
   

 w
w

w
.b

io
ch

em
so

ct
ra

n
s.

o
rg

© 2013 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/)
which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.



104 Biochemical Society Transactions (2014) Volume 42, part 1

Figure 1 Regulation of Nrf2

Under basal conditions, Nrf2 is polyubiquitylated by the KEAP1–Cul3 E3 ligase and subsequently degraded by the proteasome.

Under conditions of oxidative stress, the KEAP1–Nrf2 interaction is destabilized. Nrf2 accumulates and binds to AREs, promoting

transcription of cellular defence genes. Ub, ubiquitin.

such as a MATH [meprin and TRAF (tumour-necrosis-
factor-receptor-associated factor) homology], ZnF (zinc
finger) or Kelch domain, to function as both the adapter
and substrate receptor module [9]. Furthermore, the BTB
domain typically folds as a homodimer, leading to CRL
dimerization.

The KLHL (Kelch-like) family of proteins represent
the largest group of BTB-containing substrate receptors.
These are characterized by an N-terminal BTB domain, a C-
terminal Kelch domain and an intervening BACK (BTB and
C-terminal Kelch) domain [9]. There are over 40 members of
the KLHL family, each representing a unique CRL substrate
receptor. KLHL complexes have been shown to ubiquitylate
a number of mitotic protein kinases. KLHL9/13 and
KLHL21 non-redundantly ubiquitylate Aurora B [10,11],
whereas KLHL18 and KLHL22 target Aurora A [12] and
PLK1 (Polo-like kinase 1) [13] respectively. KLHL function
is also linked to several human cancers. KLHL20 degrades
PML (promyelocytic leukaemia protein) and advances
prostate cancer progression [14]. Mutations in KLHL37 are
associated with brain tumours [15], whereas mutations in
KLHL6 are linked to chronic lymphocytic leukaemia [16].
In addition, KLHL12 regulates Wnt signalling by inducing
the degradation of dishevelled [17] and also ubiquitylates the
COPII (coatomer protein II) component SEC31 [18] as well
as the dopamine D4 receptor [19].

KLHL proteins have also been implicated in other
human diseases. KLHL3 ubiquitylates WNK (with-no-
lysine) kinases to regulate ion transport and is mutated in
Gordon’s hypertension syndrome [20–22]. Mutations are also
identified in KLHL7 in retinitis pigmentosa [23], KLHL9 in
distal myopathy [24], gigaxonin (KLHL16) in giant axonal
neuropathy [25] and KLHL40 in nemaline myopathy [26].

The best characterized Kelch-like family member
is KEAP1 (Kelch-like ECH-associated protein 1) (KLHL19).
KEAP1 regulates the oxidative stress response by controlling
the levels of the transcription factor Nrf2 (nuclear factor

erythroid 2-related factor 2). Under normal conditions,
KEAP1 targets Nrf2 for proteasomal degradation [27,28].
Upon cellular stress, KEAP1 oxidation allows Nrf2 release
and the subsequent activation of cellular defence genes
carrying an ARE (antioxidant-response element) in their
promoter [29] (Figure 1).

Structure of the CRL3s
The typically dimeric BTB domain mediates assembly with
two Cul3 subunits leading to a dimeric CRL3 complex.
Structural studies on the MATH–BTB protein SPOP
(speckle-type POZ protein) identified a further two-helix
extension of the BTB C-terminus that was critical for high-
affinity Cul3 interaction. Since this motif has a role analogous
to that of the F-box and SOCS (suppressor of cytokine
signalling) box of other Cullin adaptors, it was termed the ‘3-
box’ and appears to be conserved in all BTB adaptor proteins
[30]. Subsequent structural characterization of the KLHL
family revealed that the 3-box comprises the first two helices
of the exclusively helical BACK domain [31,32]. In KEAP1,
the connected Kelch domain forms the substrate-binding
surface for Nrf2. The Kelch domain is characterized by six
Kelch repeat motifs, which form the ‘blades’ of a variable
β-propeller domain.

The Cul3 N-terminal domain forms an extended stalk-
like structure consisting of three Cullin repeats. In the first
repeat, helices 2 and 5 bind the BTB domain similarly to
the assemblies of Cul1 and Cul5 with Skp1 and Elongin C
respectively [31,32]. A further nine residues at the N-terminus
of Cul3 were found to be critical for high-affinity Cul3
assembly and were located in the KLHL11–Cul3 structure
in a hydrophobic groove formed by the 3-box [31]. The
crystal structure of the C-terminal domain of Cul3 is yet
to be determined.

The dimeric assembly of the KEAP1 CRL3 complex is
essential for the regulation of Nrf2, which contains two
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Figure 2 Model of the KEAP1 CRL3 structure and potential sites for small-molecule inhibitors

The KEAP1–Nrf2 crystal structure (PDB code 2FLU) [45] is shown alongside an early inhibitor of this interaction [46]. The

BTB–BACK domains of KEAP1 are modelled from the structure of KLHL11 (PDB code 3I3N) [31], highlighting the cysteine

residues known to be covalently modified by the small molecule displayed [39]. The 3-box groove is also modelled from

the KLHL11–Cul3 structure (PDB code 4AP2) [31] showing the Cul3 interface as a potentially druggable site.

degrons, a high-affinity [ETGE (Glu-Thr-Gly-Glu)] motif
and a low-affinity [DTG (Asp-Thr-Gly)] motif, separated
by a central lysine-rich α-helix [33–36]. Crystal structure
and EM reconstruction data indicate that the dimeric CRL3
complex would assemble such that the two substrate-binding
Kelch domains are separated by 80–95 Å (1 Å = 0.1 nm),
an appropriate distance to engage both degrons either side
of the central helix [31,34]. This supports the posited ‘two-
site binding’ mechanism of the KEAP1–Nrf2 interaction
and would potentially leave the central helix exposed to
ubiquitylation by two activated E2 enzymes [31] (Figure 2).
Geometric comparisons between the Cul3 complexes of
KLHL3, KLHL11 and SPOP suggest that the precise spacing
between the E2s and the bound substrate may vary in each
complex [37]. Additionally, SPOP CRL3 complexes have
been shown to form higher-order oligomers that enhance the
ubiquitylation activity of the E3 [32].

CRL3s as drug targets
The ubiquitin system is widely considered to contain a raft of
potential new drug targets. Although a challenging prospect,

there are early examples of success, such as the proteasome
inhibitor bortezomib, now marketed as Velcade® for the
treatment of multiple myeloma, and several E3 ligase inhibit-
ors have entered clinical trials, including inhibitors of Mdm2
(murine double minute 2) [2]. KEAP1 is a notable target
of interest, as induction of Nrf2 and the antioxidant/anti-
toxification response would make an potentially attractive
therapeutic strategy in neurodegenerative, cardiovascular,
metabolic and inflammatory diseases [38]. The most advanced
small molecules covalently modify the reactive cysteine
residues within KEAP1 to destabilize its interactions with
Cul3 and Nrf2 [39,40] (Figure 2). However, the Phase III
clinical trial of bardoxolone methyl was recently abandoned,
indicating that this therapeutic strategy is non-trivial [38].

Next-generation small-molecule inhibitors are now being
developed to target the Kelch domain of KEAP1 [41–43].
These inhibitors occupy the binding pocket to block directly
the interaction with Nrf2 (Figure 2). Ubiquitylation is
thereby blocked, allowing cellular Nrf2 levels to accumulate.
As proof-of-concept, peptide inhibitors targeted to the same
interface have achieved high potency [44]. A further strategy
yet to be explored is to target the KEAP1-binding interface
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with Cul3. For example, molecules could be designed to block
the hydrophobic groove of the 3-box, a region known to be
important for high-affinity Cul3 interaction [31] (Figure 2).
Another possibility is the targeting of the E2–E3 interaction,
although a weak binding affinity makes structural study of
this interface challenging [2].

The identification of druggable sites has been a major
bottleneck for drug discovery in the ubiquitin–proteasome
system where many protein–protein interfaces are large and
flat. By understanding the structural biology of the CRL3s
(and other E3 ligases), it is hoped that possible novel sites and
modes of action may be discovered. Additionally, lessons
from the KEAP1 pathway may be applied to other Cul3
substrate adapters as our understanding of their functional
targets and disease links deepens.
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