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Abstract: Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious
challenges act with consequent activation of the inflammatory cascade that plays a critical function
in various acute and chronic diseases, behaving as amplification and chronicization factors of the
inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on
glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4
receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro
by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-
glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS,
which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies.
Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a
MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented
the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and
corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normal-
ized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in
the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin
or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the
formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE
STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent
anti-inflammatory activity. Being unique because of its potency and stability, as compared to other
similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs
directed against the cytokine storm and the chronization of inflammation.

Int. J. Mol. Sci. 2021, 22, 1491. https://doi.org/10.3390/ijms22031491 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9813-5955
https://orcid.org/0000-0003-4480-8370
https://orcid.org/0000-0001-9243-1307
https://orcid.org/0000-0003-4431-0871
https://orcid.org/0000-0002-6439-7575
https://orcid.org/0000-0002-6899-0595
https://orcid.org/0000-0002-1490-3070
https://doi.org/10.3390/ijms22031491
https://doi.org/10.3390/ijms22031491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22031491
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/3/1491?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 1491 2 of 22

Keywords: N-palmitoyl-D-glucosamine; LPS; TLR4; cytokines; peripheral neuropathy; inflammation;
mouse

1. Introduction

Chronic diseases, including neuropathic pain of various origins, are still scarcely man-
aged in the clinic. Additionally, the mechanisms at the basis of neuropsychiatric symptoms
associated with chronic pain are still poorly understood. Extensive evidence highlighted
the role of inflammatory or immune system pathways in chronic pathologies including
neuropathic pain [1,2]. Indeed, a critical role for proinflammatory mediators, as cytokines
and chemokines from neurons and non-neuronal cells, together with a possible peripheral
immune cells interaction, has been suggested in neuropathic pain pathophysiology [3,4].

As a key player of the innate immune response at the peripheral and central nervous
system levels, the toll-like receptor 4 (TLR4) represents a target of alert for the inflammatory
cells of an infectious or allostatic environment. TLR4 is able to bind the molecular patterns
associated with pathogens (PAMPs), and thus recognizes lipopolysaccharide (LPS) derived
from gram-negative bacteria (including those of the gut microbiota), as well as molecules
of endogenous origin produced by cellular damage (DAMPs) [5].

TLR4 and other TLRs are therefore key sensors on which infectious and non-infectious
challenges act with the consequent activation of the inflammatory cascade that has a role in
acute and chronic diseases [6]. TLR4 is expressed by both peripheral and central nervous
system cells including microglia and astrocytes [7,8]. TLR4 signaling is involved in the
induction of tactile allodynia, which represents the main symptom associated with periph-
eral and central neuropathic pain [9,10]. Mice lacking TLR4 show significant reduction of
both tactile allodynia and thermal hyperalgesia in the chronic constriction injury model of
neuropathic pain [11]. However, in addition to driving inflammatory damage, a physio-
logical tone of such receptors with protective function has recently been demonstrated in
microglia [12].

N-palmitoyl-D-glucosamine (PGA) is a natural molecule that is structurally related to
the lipid A component of LPS. It is produced by certain classes of bacteria such as Rizhobium
leguminosarum [13]. Interestingly, bacteria of the Rizhobia genus are found in the mammalian
gut microbiota, where they serve as xenobiotic metabolizers [14]. Previous studies have
suggested the anti-inflammatory properties of PGA in animal model of inflammation
and osteoarthritis pain [15,16], although the related mechanism of action has not been
elucidated.

Due to the structural similarity of PGA with the lipid A component of LPS, we hypothe-
sized that this molecule may modulate TLR4 activity, thereby exerting anti-
inflammatory effects.

This hypothesis was confirmed by results obtained in the present study, where we
investigated, through computational molecular docking and molecular dynamics simula-
tions, the binding of PGA to the MD2 domain of TLR4, and its anti-inflammatory activity
in LPS-stimulated murine macrophage-like RAW 264.7 cells and LPS-induced keratitis and
corneal pro-inflammatory cytokine production. We have also studied the effects of PGA in
various models of neuropathic pain, including LPS-induced decrease in pain threshold in
the tail flick test and formalin- or oxaliplatin- or spared sciatic nerve injury (SNI)-induced
allodynia in mice. Finally, PGA was tested against myelinoaxonal degeneration in these
models of peripheral neuropathy as assessed by electron microscopy.

2. Methods
2.1. Computational Methods

Starting ligand geometry was built with UCSF Chimera 1.10.1 [17] and energy mini-
mized with AMBER force field. The complexes underwent EM and then MD simulations
with Amber16 pmemd.cuda module [18], using the ff14SB version of AMBER force field
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for the protein and lipid14 and glycam06 parameters for the ligand. To perform MD
simulations in a solvent, the complexes were confined in TIP3P water periodic truncated
octahedron boxes exhibiting a minimum distance between solute atoms and box surfaces
of 10 Å, using the tleap module of the AmberTools16 package [18]. The full molecular
dynamics protocol has been published elsewhere [19]. Production runs of MD simulations
were carried out at constant temperature (300 K) and pressure (1atm) for 100 ns, with a
time-step of 2 fs. Bonds involving hydrogens were constrained using the SHAKE algo-
rithm [20]. The Cpptraj module of AmberTools16 and program UCSF Chimera 1.10.1 were
used to perform MD analysis and to draw the figures, respectively.

2.2. Cell Culture and Luciferase Assay

RAW 264.7 (ATCC® TIB-71™) cells were propagated in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 50 U/mL penicillin
plus 50 µg/mL streptomycin, and 1% L-glutamine (Invitrogen, Milan, Italy), in a humidified
atmosphere of 95% air/5% CO2 at 37 ◦C. HEK293 (Human Embryonic Kidney-293; ATCC
Number: CRL-1573™) cells were propagated in Minimum Essential Media (MEM, cat.
no. 31095-029 Invitrogen, Milan, IT) supplemented with 10% fetal bovine serum (FBS), 50
U/mL penicillin plus 50 µg/mL streptomycin, and 1% L-glutamine (Invitrogen, Milan, IT),
in a humidified atmosphere of 95% air/5% CO2 at 37 ◦C. For cell transfection, RAW264.7
and/or HEK293 cells were seeded onto 24-well plastic plates at 2 × 103 cells/cm2 density.
After plating, the cells were transfected on the next day with: (a) pGL4.32[luc2P/NF-κB-
RE/Hygro] Vector (Promega, IT; cat. no. E8491) and (b) a plasmid encoding for Renilla
control vector (Promega, IT; cat. no. Cat. E2231) was used to normalize the signals
and as positive control vector for monitoring transfection efficiency. The combination
of plasmids was transfected into the cells by use of Lipofectamine LTX (Life Technology,
MI IT) following the manufacture’s instruction. After 24 h, the cells were harvested to
detect the luciferase gene reporter activity by the use of the Dual-Luciferase Reporter Assay
System (Promega cat. E1910) and detected using the GloMax Luminometer (Promega).

2.3. RNA Extraction and Quantitative PCR (qPCR)

Total RNA isolation, purification, and cDNA synthesis from RAW264.7 and/or
HEK293 cells were performed following published procedures [21]. Quantitative PCR
(qPCR) was carried out in a real-time PCR system CFX384 (Bio-Rad) using the SsoAd-
vanced SYBR Green supermix (cat. n. 1725274, Bio-Rad Milan Italy) detection technique
and specific primers. Quantitative PCR was performed on independent biological samples
(N = 4). Also, each sample was amplified simultaneously in quadruplicate in a one-assay
run with a non-template control blank for each primer pair to control for contamination or
primer-dimer formation, and the cycle threshold (Ct) value for each experimental group
was determined. A housekeeping gene (the ribosomal protein S16) was used to normalize
the Ct values, using the 2ˆ−∆Ct formula; differences in mRNA content between groups were
expressed as 2ˆ−∆∆Ct, as previously described [21]. The primer sequences used: human
TLR4 forward: GATAGCGAGCCACGCATTCA; human TLR4 reverse: TGGATTTCA-
CACCTCCACGC; murine TLR4 forward: ATGGCATGGCTTACACCACC; murine TLR4
reverse: GAGGCCAATTTTGTCTTCCACA.

2.4. 3-(4,5-Dimethylthiazol-2-yl)-2,5- Diphenyltetrazolium Bromide (MTT) Assay

Cell viability was assessed by the MTT assay. The ability of cells to induce the
reduction of MTT salts to formazan indicated the mitochondrial integrity and activity and
has been interpreted as a measure of cell viability. Absorbance was read at 620 nm on a
GENius- Pro 96/384 Multifunction Microplate Reader (GENios-Pro, Tecan, Milan, Italy).
All compounds were dissolved in DMSO. Optical density values from vehicle-treated cells
were defined as 100% of MTT-reducing activity and the treatment effects were measured as
a percentage of the inhibition of control measurement [21].
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2.5. TRPA1-HEK293 Cells and Calcium Assay

Stably transfected HEK293 cells with TRPA1 were generated, propagated and used
for the calcium assay following published procedures [22].

2.6. Animals

Male CD1 (ENVIGO, Italy) weighing 25 g were housed three per cage under con-
trolled illumination (12 h light/dark cycle; light on 6:00 a.m.) and standard environmental
conditions (ambient temperature 20–22 ◦C, humidity 55–60%) for at least 1 week before the
commencement of experiments. Mice chow and tap water were available ad libitum. The
experimental procedures were approved by the Animal Ethics Committee of University
of Campania “L. Vanvitelli,” Naples. Animal care was in compliance with Italian (D.L.
116/92) and European Commission (O.J. of E.C. L358/1 18/12/86) regulations on the
protection of laboratory animals. All efforts were made to reduce both animal numbers
and suffering during the experiment.

2.7. Induction of Keratitis

Intrastromal injection of 2 µg of Lipopolysaccharide (LPS, Sigma) from Pseudomonas
aeruginosa, dissolved in 2 µL of phosphate-buffered saline (PBS, Sigma), was performed
in both the eyes of male CD-1 mice under direct microscopic observation, according to
previous studies [23–25]. Briefly, CD-1 mice were anaesthetized by pentobarbital (45 mg/kg
in saline, i.p.) and tetracaine (1%) was topically applied on the ocular surface as a local
anesthetic. To induce dilatation of pupils, tropicamide (5%) was instilled in each eye before
the use of a 1/2-inch 30-gauge needle to make a nick into the corneal epithelium and
anterior stroma. Then, a 10-µL gas-tight syringe with a 1/2-inch 33-gauge needle was
introduced into the corneal stroma and advanced 1.5 mm to the corneal center to inject
2 µL of LPS solution or PBS alone.

2.7.1. Treatments

CD-1 mice were randomized in the following experimental group (N = 5 each):

a. mice receiving an intrastromal injection of PBS and oral vehicle administration (2 µL)
(Saline/Veh group);

b. mice receiving an intrastromal injection of LPS and oral vehicle administration
(2 µg/2 µL PBS) (LPS/Veh group);

c. mice administered per os with PGA (5 mg/kg) 30 min before receiving an intrastromal
injection of LPS (2 µg/2 µL PBS) (PGA + LPS group);

d. mice receiving an intrastromal injection of LPS (2 µg/2 µL PBS) and after 30 min
administered per os with PGA 5 mg/kg for three days (LPS + PGA group);

e. mice receiving an intrastromal injection of PBS (2 µL) and after 30 min administered
per os with PGA 5 mg/kg for three days (Saline/PGA group).

At the end of the experiment, the keratitis clinical score was evaluated. Then, eyes
were enucleated and corneas were removed as described by [26]. For each experimental
group, N = 5 dissected central corneas were placed in cooled PBS, isolated from other
ocular tissues, immediately frozen in liquid nitrogen and stored at −80 ◦C for subsequent
biochemical analysis.

2.7.2. Clinical Score Evaluation

An investigator unaware of the treatments evaluated the development of keratitis by
using a biomicroscope. As previously described [24,27], keratitis was scored as follows:
0 = normal, clear cornea, no inflammatory reaction; 1 = mild corneal haze with visible iris;
2 = moderate corneal flare with moderate corneal haze and superficial punctate keratitis;
3 = significant corneal opacity, infiltration of cells in the stroma; and 4 = damage and loss
of corneal tissue. Positive keratitis was scored as >1.
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2.8. Cornea Immunohistochemistry

Corneas were paraffin-embedded and cut in 5µm serial sections [28], then the paraffin
was removed by a xylene substitute (Hemo-De; Thermo-Fisher Scientific, Darmstadt, Ger-
many). The immunohistochemistry procedure was performed as previously described [24]
by BenchMark Automated IHC/ISH slide staining system (BenchMarkVentana, Tucson,
AZ, USA). Sections were incubated with specific anti-ki67 (Rabbit polyclonal anti-Ki67
antibody; concentration 5 µg/mL; ab155807 Abcam) and anti-VEGF (Mouse monoclonal
anti-VEGF antibody; 1:100; sc-57496, Santa Cruz) antibodies. After washes with PBE, the
section was incubated with biotin-conjugated secondary antibodies and avidin-biotin-
peroxidase complex (DBA, Milan, Italy). Specific antigens in each section were located with
3,3′diaminoenzidine (DAB) reaction, then slides were counterstained with hematoxylin.
An expert pathologist analyzed the immunostaining (intraobserver variability 5%). Ki67
and VEGF antigenic expression was measured and calculated by Leica IM500 and statis-
tics program Leica QWIN (Leica, Wetzlar, Germany). Four distinct preparations for each
corneal sample were done and 18 fields of view were analyzed in each preparation for a
total area of 1.35631e ± 0.003 µm2.

2.9. miRNA qRT-PCR

miRNA isolation from corneal homogenates was performed by using miRNeasy Mini
Kit (Qiagen; Cat. No. 217004), according to ‘Purification of Total RNA, including Small
RNAs, from AnimalCells’ protocol. In order to monitor the miRNA recovery efficiency and
to normalize miRNA expression in the real-time PCR analysis, 5 µL of Syn-cel-miRNA-39
miScript miRNA Mimic 5 nmol/L (Qiagen; Cat. No. MSY0000010) was spiked into each
sample, before miRNA isolation, in order to monitor the efficiency of miRNA recovery
and to normalize miRNA expression in the subsequent real-time PCR (q-PCR) setting.
Total RNA concentration was determined by NanoDrop 2000c Spectrophotometer (Thermo
Fisher Scientific). miScript II RT(Qiagen; Cat. No. 218161) was used for the conversion of
mature miRNAs to cDNA during the reverse transcription (RT) step. Mmu-miR-20a-5p,
mmu-miR-106a-5p, mmu-miR-27a-3p, mmu-miR-206-3p, mmu-miR-381-3p levels were
monitored by using SYBR Green PCR Kit (Qiagen; Cat. No. 218073) and specific miS-
cript Primer Assays (Qiagen; Cat. No. MS00001309for mmu-miR-20a-5p; MS00011039
formmu-miR-106a-5p; MS00001351 for mmu-miR-27a-3p; MS00001869 for mmu-miR-206-
3p; MS00032802for mmu-miR-381-3p and MS00019789 for Syn-cel-miR-39). In order to
express miRNA levels as 2ˆ−∆∆Ct, ∆Ct value was calculated as Ct miR target—Ct miR-
39; then 2ˆ−∆∆Ct was obtained as 2ˆ−∆Ct of the treatment group/2ˆ−∆Ct of the control
group [29].

2.10. ELISA Assay

Cytokines levels were assessed in corneal homogenates by using Mouse Cytokine Anti-
body Array, Panel A (ARY006, R&D System) according to the manufacturer’s instructions.

2.11. In Vivo Electrophysiological Recordings of Nociceptive Spinal Neurons (NS) in Combination
with the Tail-Flick Test

On the day of electrophysiological recordings, mice were initially anaesthetized with
Propofol (200 mg/kg i.p.) [30]. After laminectomy, spinal cord segments L4–L6 were
exposed, and animals were fixed prone between the ear bars in a stereotaxic apparatus
(David Kopf Instruments, Tujunga, CA, USA) and attached to the vertebral processes
through clamps. The spinal cord was covered with mineral oil, to prevent the tissue
from drying out. The single-unit extracellular activity of dorsal horn NS neurons was
performed by using a glass-insulated tungsten filament electrode (3–5 MΩ) (FHC Inc,
Bowdoinham, ME, USA) near the dorsal root entry zone, up to a depth of 1 mm [31]. Spinal
neurons were defined as NS neurons when they were responding only to high intensity
(noxious) stimulation [32]. In particular, to confirm NS response patterns, each neuron was
characterized by applying mechanical stimulation to the ipsilateral hind paw using a von
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Frey filament with 97.8 mN bending force (noxious stimulation) for 2 s until it buckled
slightly [33,34]. Only neurons that specifically responded to noxious hind paw stimulation
were considered for recordings. The signal was amplified, filtered and displayed on a
window discriminator; whose output was processed by an interface CED 1401 (Cambridge
Electronic Design Ltd., UK) connected to iOS 5 PC.

Quantification of the neuronal activity was made off-line with Spike2 software (CED,
version 5. The spontaneous and noxious-evoked neuronal activity was expressed as
spikes/sec (Hz) and the effect of drugs was analyzed as firing rate, frequency, and duration
of excitation. After recording a stable basal activity (15 min), intraperitoneal administration
of vehicle or LPS (5 mg/kg, i.p.) was performed, and each recording was monitored until
240 min post-injection.

In particular, groups of animals were divided as following: 1) Naïve mice + Veh
[100 µL of normal saline, 0.9% (w/v) NaCl] and 2) Naïve mice + LPS (5 mg/kg, i.p.). At the
end of the experiment, each animal was killed with a lethal dose of urethane.

The tail-flick test was performed as described by [35] to assess behavioral responses to
thermal noxious stimulus (radiant heat source) in mice. Briefly, using a tail-flick apparatus
with an automated timer (Ugo Basile, Italy), the pain sensitivity was measured by tail-flick
latency, which is defined as the time from the onset of radiant heat to tail withdrawal. A
cut-off time of 10 s was set to prevent thermal injury.

2.12. Pain Models

Formalin model. Animals received formalin (1.25% in saline, 30 µL) in the dorsal surface
of one side of the hind paw. Each mouse, randomly assigned to one of the experimental
groups (N = 7–8), was placed in a plexiglass cage and allowed to move freely for 15−20 min.
A mirror was placed at a 45◦ angle under the cage to allow full view of the hind paws.
Lifting, favoring, licking, shaking, and flinching of the injected paw was recorded as
nocifensive behavior [36]. The total time of the nociceptive response was measured every
5 min for 1 h and expressed in minutes (mean ± S.E.M.). After the acute evaluation, mice
were tested in the long-term formalin-mediated pain behavior (see the section below) [37].

Chemotherapy-induced peripheral neuropathy (CIPN). Oxaliplatin 2.4 mg/kg (Sequoia
Research Products, Pangbourne, UK) was dissolved in 5% glucose solution and admin-
istered intraperitoneally (i.p.) for 3 or 5 consecutive days every week for 3 weeks (13 i.p.
injections). Control animals were treated with an equivalent volume of 5% glucose i.p.
(vehicle). The dosage used mimics the clinical cumulative oxaliplatin dose causing chronic
neuropathy [38–40].

Spared nerve injury (SNI). The spared nerve injury. Mononeuropathy was induced
according to the method of Decosterd and Woolf [33,41,42]. Mice were anaesthetized by
intraperitoneal injection of ketamine xylazine (60 mg/kg + 10 mg/kg). The sciatic nerve
was exposed at the level of its trifurcation into sural, tibial, and common peroneal nerves.
The tibial and common peroneal nerves were ligated tightly with 7.0 silk threads and
then transected just distal to the ligation, leaving the sural nerve intact. Sham mice were
anaesthetized, and the sciatic nerve was exposed at the same level, but it was not transected.

2.12.1. Pain Measurement

Von Frey Test. Tactile allodynia was evaluated at a series of calibrated nylon Von Frey
monofilaments (Semmes-Weinstein monofilaments, 2 Biological Instruments, Italy). Mice
were allowed in the compartment of the enclosure positioned on the metal mesh surface
and the test started after the mice were adapted to the testing environment for 30 min before
any measurement was taken. The monofilaments, starting from the 0.008 g monofilament,
was applied perpendicularly to the plantar surface of each hindpaw in a series of ascending
forces (0.008, 0.02, 0.04, 0.07, 0.16, 0.40, 0.60, 1.0, 1.4 and 2.0,). Each stimulus was applied
for approximately 1s with an interstimulus interval of 5 s. Withdrawal responses evoked
by each monofilament was obtained from five consecutive trials. Voluntary movement,
associated with the locomotion, was not counted as a withdrawal response. Tactile allody-
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nia was defined as a significant decrease in the withdrawal threshold to the von Frey hair
application. Each mouse served as its control, the responses being measured both before
and after surgical procedures [37,43].

Cold plate test. The animals were placed in a stainless box (12 cm × 20 cm × 10 cm)
with a cold plate as floor. The temperature of the cold plate was kept constant at 4 ± 1 ◦C.
Pain-related behaviors (i.e., lifting and licking of the hind paw) were observed and the time
(s) of the first sign was recorded. The cut-off time of the latency of paw lifting or licking
was set at 60 s. [44].

2.12.2. Treatments

Therapeutic effects of PGA treatment were evaluated in the different pain models.
Mice received 5% pluronic acid (vehicle) or PGA at the doses of 2.5 5, 10 and 20 mg/kg
(o.s.). Repeated treatments were performed ones a day and all the evaluations have been
carried out before each injection. In the formalin model, animals were pretreated with
PGA 30 min before subcutaneous formalin injection, and then one a day for one week. In
the CIPN and SNI models, mice were preventive treated for 5 days before pain induction
and then therapeutically treated for all the duration of the observation. PGA was kindly
provided by Epitech group SpA (Saccolongo, Italy).

2.13. Electron Microscopy
Healthy and formalin-, oxaliplatinum- or SNI-induced neuropathic mice treated with

vehicle or PGA (N = 3 per group) were deeply anesthetized, perfused transcardially with
PBS (Phosphate-buffered saline, pH 7.4) and fixed with 3% paraformaldehyde/0.5–1%
glutaraldehyde (vol/vol) in 0.1 M phosphate buffer (pH 7.4). Sciatic nerve sections (100-µm-
thick) were treated with 0.5% OsO4 in PB for 30 min at 4 ◦C, dehydrated in an ascending
series of ethanol and propylene oxide and embedded in TAAB 812 resin (TAAB). Ultrathin
sections (50-nm thick) of the sciatic nerves were prepared and collected on Formovar-coated,
single- or multiple-slot (50-mesh) grids and stained with 0.65% lead citrate. Morphometric
analysis of sciatic nerves was performed at a magnification of 16500X by TEM microscope
(FEI Tecnai G2 Spirit TWIN) in randomly selected fields of the nerve sections. After images
acquisition, the myelinated profiles evaluable in the analyzed space were counted by two
independent blinded observers and the histograms of quantitative distribution of normal vs.
damaged/degenerated axon-myelinated profiles were generated according to the criteria
previously described by Wozniak et al., 2018 [45]. Briefly, non-overlapping photographs
were taken from the coronal nerve sections and an average of N = 50 microscopic fields
per mouse (N = 3 mice per group) were analyzed to cover the entire cross-section through
2 mm length of the sciatic nerve at 5 mm from the proximal stump. MetaMorph software
(Leica©) was used for quantitative ultrastructural analysis of the normal vs. damaged
myelino-axonal profiles/micron2 of coronal section of the sciatic nerve.

3. Statistical Analysis
For cellular and biochemical analysis, the results of each experiment were reported

as the mean ± S.D. or S.EM. To assess statistical significance among the groups, one-
way ANOVA followed by Tukey Multiple Comparison test was used. Behavioral and
electrophysiological data were expressed as mean ± S.E.M. Two-way ANOVA for repeated
measures followed by Tukey’s post hoc test was used for comparison between groups.
For the TEM analysis, the measure was expressed as means ± SEM of the number of
myelin-axonal degenerated fibers/3micron2. One-way ANOVA followed Kruskal-Wallis
test plus Dunn’s multiple comparison test was applied. The computer program GraphPad
Prism version 6.0 (GraphPad Software Inc., San Diego, CA, USA) was used in all statistical
analyses. A probability of p < 0.05 was considered sufficient to reject the null hypothesis.

4. Results
4.1. Theoretical Complex of MD-2 Protein with PGA

The activation of TLR4 by LPS is a complex and multistep process that require the
binding of LPS monomers to LPS-binding protein (LBP), then to the cluster of differentiation
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14 (CD14) and, ultimately, to the myeloid differentiation factor 2 (MD-2), which forms a
complex with TLR4 on the cell membrane. The binding of LPS to MD-2 stabilizes the
homodimeric complex (TLR4/MD-2/LPS)2, triggering the TLR4 signaling cascade. Thus, the
binding to MD-2 is crucial for TLR4 responsiveness to LPS [46]. MD-2 features two β sheets
arranged in a β cup fold, giving rise to a hydrophobic, open pocket, able to accommodate
multiple LPS acyl chains, while the external rim of the pocket is lined by positive charged
residues interacting with LPS negatively charged phosphate groups [47]. Due to its role in LPS
recognition and binding, MD-2 represents the preferential target for hydrophobic ligands of
TLR4 [48,49]. In this view, we decided to investigate the potential ability of PGA to bind this
protein by a combined approach of molecular docking and molecular dynamics simulation.
The solved x-ray structures of human MD-2 in complex with the antagonist lipid IVa (PDB
id:2E59) and myristic acid (MA) (PDB id:2E56) shows that the alkyl chains of MA adopt the
same conformation as the acyl chains of lipid IVa (Supplementary Figure S1), suggestive
of the occurrence of a preferred packing arrangement of the saturated alkyl chains in the
hydrophobic pocket. Thus, rather than perform an automatic docking, we used the three
C-14 chains of MA as a guide to manually dock the corresponding PGA molecules within
the hydrophobic pocket and assessed the structural stability of the resulting MD-2/(PGA)3
complex by 100 ns of molecular dynamics (MD) simulations. For comparison purpose,
we also simulated MD-2 in complex with two PGA ligands. A rmsd fluctuation analysis
(Figure 1A–D) shows that both the whole ligands (Panels A, C) and the alkyl chains (Panels
B, D) are by far more structurally stable in the MD-2/(PGA)3 than in the MD-2/(PGA)2
complex. Overall, the analysis of MD trajectory points out that PGA is able to stably bind
MD-2 and that the preferred stoichiometry of the complex requires three ligands. This result
is in agreement with the recent report showing that palmitic acid, a TLR4 agonist sharing the
same saturated 16-carbon chain with PGA, binds MD-2 in the same protein/ligand ratio [50]
of MA. As shown in Figure 1B, the alkyl chains are very stable during the simulated period
and well fit on the alkyl chains of MA (Figure 1E), whereas the polar sugar units are endowed
by higher mobility (Figure 1A–D). However, this is not surprising because the polar heads are
exposed to the solvent, even though they engage stable polar interactions among each other
and with residues lining the external rim of the pocket. In particular, H-bond interactions
with an occurrence >10% over the whole MD trajectory are formed with Glu92 sidechain
(>60%), the backbone of Val93 (>50%) and Ser120 (>50%) (Figure 1F).

Figure 1. Root mean square deviation (rmsd) plot of PGA ligands during 100 ns of MD after protein backbone best-fit for
whole ligand in MD-2/(PGA)3 (A), ligand alkyl chain only in MD-2/(PGA)3 (B), whole ligand in MD-2/(PGA)2 (C) and ligand
alkyl chain only in MD-2/(PGA)2 (D) complexes. (E) best fit at level of protein backbone between x-ray structure of MD-2 in
complex with myristic acid (PDB id: 2E56), colored in sky blue, and the representative MD frame of MD-2/(PGA)3 theoretical
complex, colored in light green. (F) representative MD frame of MD-2/(PGA)3 theoretical complex. Protein is colored in light
gray while PGA molecules in dark gray. Oxygen, nitrogen, sulfur and polar hydrogen atoms are colored in red, blue, yellow
and white, respectively. PGA molecules and residues within 5 Å from the ligands are shown in stick representation. H-bonds
are shown as green springs. (G) Luciferase activity measured in relative light units (RLU) normalized to the vehicle group was
measured in NF-kB transfected RAW264 cells stimulated with LPS in the presence or not of the indicated concentrations of
GPA. Values are mean ± SEM; N = 4; * p < 0.05; one-way ANOVA with Tukey’s test was used to assess significance.
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4.2. PGA Prevents NF-kB Activation in LPS Stimulated RAW264.7 Cells

Following the computational study, we conducted a functional assay designed to
assess nuclear factor (NF)-kappaB activation following the stimulation with LPS in murine
macrophage-like RAW264.7 cells. In particular, RAW264.7 cells were transiently transfected
with a plasmid (pGL4.32) carrying NF-κB response elements that once activated drive the
transcription of the upstream luciferase reporter gene. Twenty-four hours after transfection,
cells were pre-treated with various concentrations (up to 20 µg/mL) of PGA for 10 min
and then stimulated with 100 ng/mL of LPS (+/− PGA) for 5 h (Figure 1G). As a control,
we employed HEK293 cells that, in agreement with other studies [51], we found do not
express TLR4 (Supplementary Figure S2). Furthermore, the range of concentrations of PGA
to use was determined in both RAW264.7 and HEK293 cells using the MTT cell viability
assay (Supplementary Figure S3).

Similar to previous studies [52], we found that LPS caused a robust increase in NF-κB
activity in transfected RAW264 cells. Notably, the effect of LPS was prevented in the
presence of the highest concentrations of PGA (10 and 20 µg/mL) (Figure 1G), whereas, in
non-transfected RAW264.7 and/or HEK293 cells, the stimulation with LPS and/or PGA
did not change NF-kB activity (Supplementary Figure S2).

4.3. LPS-Induced Corneal Inflammation
4.3.1. Clinical Score

After 3 days from intrastromal injections, all mice injected with LPS (2 µg) showed
signs of keratitis. Particularly, severe alterations were evident in LPS corneal struc-
ture (clinical score: 3.9 ± 0.5; p < 0.01 vs. Saline/Veh). In contrast, PGA administra-
tion (5 mg/kg) after LPS attenuated the inflammation, as shown by the clinical score
(2.48 ± 0.3, p < 0.01 vs. LPS/Veh). Interestingly, the maximum protection was reached
when PGA was administered prior to LPS (clinical score: 1.74 ± 0.1, p < 0.01 vs. LPS/Veh)
(Figure 2A,B) (F value (4, 10) = 50.65; p < 0.01).

4.3.2. PGA Reduces ki67 and VEGF Labelling in LPS-Injected Mice

LPS intrastromal injection significantly increased the corneal staining of ki67 and
VEGF (fold: +12 and +15 respectively, p < 0.01 vs. Saline/Veh) compared to mice injected
with PBS. Specifically, ki67 was localized in the basal and suprabasal cell layers of the
peripheral corneal epithelium, while VEGF staining was increased in the corneal stroma.
PGA administration (5 mg/kg) did not affect ki67 and VEGF labeling in Saline/Veh group;
on the contrary, a significant reduction in ki67 and VEGF protein levels (fold: −1.8 and
−2.8 respectively, p < 0.01 vs. LPS/Veh) was observed in mice treated with PGA before
LPS, when compared to LPS alone. The same effect was evident in mice treated with PGA
following LPS intrastromal injection (fold: −1.5 and−2.7 respectively, p < 0.01 vs. LPS/Veh
(Ki67: F value (4, 15) = 57.67; p < 0.01; VEGF: F value (4, 15) = 49.32; p < 0.01) (Figure 2C,D).

4.3.3. PGA Affects TLR4-Dependent Cytokine Release through miRNA Regulation

Among the 5 miRNAs analyzed, miR-381-3p and miR-206-3p did not show any
differential expression in our experimental setting (data not shown). Concerning the
corneal levels of miR-20a-5p, miR-27a-5p and miR-106a-5p, they were not significantly
affected by PGA administration (5 mg/kg) in mice receiving PBS intrastromal injection
(Saline/PGA group), nor was TLR-4-dependent cytokine release (Figure 3A–C). On the
contrary, LPS intrastromal injection (LPS/Veh group) significantly reduced corneal miR-
20a-5p (fold regulation = −7.6, p < 0.01 vs. Saline/Veh) and miR-106a-5p (fold regulation
= −30.5, p < 0.01 vs. Saline/Veh) (Figure 3A,C) expression. This effect was paralleled
by a high increase of Il-6 (fold = +4.1, p < 0.01 vs. Saline/Veh), TNF-α (fold = +4.3, p <
0.01 vs. Saline/Veh) and Il-1β (fold = +2.7, p < 0.01 vs. Saline/Veh) levels (Figure 3D).
Moreover, miR-27a-3p was significantly up-regulated in the LPS group (fold regulation
= +8.3, p < 0.01 vs. Saline/Veh), with a marked decrement of corneal Il-10 content (fold =
−2.9, p < 0.01 vs. Saline/Veh) (Figure 3D). PGA administration (5 mg/kg) following LPS
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intrastromal injection (LPS/PGA group) significantly increased miR-106a-5p levels (fold
regulation = +9.9, p < 0.01 vs. LPS/Veh), while it reduced miR-27a-3p expression (fold
regulation = −2.3, p < 0.01 vs. LPS/Veh) compared to LPS alone (Figure 3B,C). Moreover, a
significant reduction of Il-6 corneal content was noticed in LPS/PGA mice (fold = −1.6,
p < 0.05 vs. LPS/Veh), together with an increment of Il-10 levels (fold = +2.4, p < 0.05 vs.
LPS/Veh). The same trend was shown by PGA/LPS mice (Il-6 fold = −1.5, p < 0.05 vs.
LPS/Veh; Il-10 fold = +2.5, p < 0.05 vs. LPS/Veh). Interestingly, while miR-27a-5p was
more reduced in mice receiving PGA pretreatment (PGA/LPS) compared to LPS/PGA
mice (fold regulation = −3.5, p < 0.01 vs. LPS/PGA), PGA pretreatment did not modify
miR-106a-5p expression compared to LPS/PGA mice. However, PGA/LPS mice were the
only group to show a significant increment in miR-20a-5p levels compared to LPS group
(fold regulation = +2.4, p < 0.01 vs. LPS/Veh). Also Il-1β and TNF-α were significantly
reduced only by PGA pretreatment compared to LPS (fold = −1.9, p < 0.01 vs. LPS/Veh
and p < 0.05 vs. LPS/PGA; fold = −1.9, p < 0.01 vs. LPS/Veh and p < 0.05 vs. LPS/PGA)
(Figure 3D) (miR-20a-5p: F value (4, 25) = 21.86; p < 0.01; miR-27a-3p: F value (3, 19) =
34.74; miR-106a: F value (4, 25) = 29.44; p < 0.01; Il-1β: F value (4, 10) = 32.5; p < 0.01; Il-6: F
value (4, 10) = 18.8; p < 0.01; Il-10: F value (4, 10) = 18.9; p < 0.01; TNF-α: F value (4, 10) =
52.0; p < 0.01).

Figure 2. (A) Representative images of keratitis development in CD1 mice cornea. (B) Keratitis clinical scores. Positive
keratitis was scored as > 1. Statistical significance was assessed by one-way ANOVA, followed by Tukey’s multiple
comparison test of N = 5 mice/group. Saline/Veh = mice receiving intrastromal injection of 2 µL PBS; LPS/Veh = mice
receiving intrastromal injection of 2 µg LPS dissolved in 2 µL PBS; PGA/LPS = mice administered with PGA 5 mg/kg
per os 30 min before LPS intrastromal injection; LPS/PGA = mice administered for three days with PGA 5 mg/kg per os,
starting from 30 min after LPS intrastromal injection; Saline/PGA mice administered for three days with PGA 5 mg/kg
per os, starting from 30 min after PBS intrastromal injection. ** p < 0.01 vs. Saline/Veh; ◦◦ p < 0.01 vs. LPS/Veh; ˆˆ p < 0.01
vs. LPS/PGA. (C) Representative immunohistochemical images for ki67 and VEGF corneal staining. (D) Ki67 and VEGF
protein levels were reported as percentage (%) ± S.D. of positive stained area/total area. Statistical significance was
assessed by one-way ANOVA, followed by Tukey’s multiple comparison test of N = 5 histological observations for each
individual/group. EP = epithelium; BL = Bowman’s layer; ST = stroma; DM = Descemet membrane; EN = endothelium;
Veh = vehicle; PBS = phosphate buffered saline; LPS = lipopolysaccharide; PGA = N-palmitoyl-D-glucosamine; red arrows =
Ki67 positive stain (scale bar: 100 µm); blue arrows = VEGF positive stain (scale bar: 25 µm). ** p < 0.01 vs. Saline/Veh;
◦◦ p < 0.01 vs. LPS/Veh.
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Figure 3. Dysregulated miRNA (A–C) and interleukin corneal levels (D). miR-20a-5p, miR-27a-3p and miR-106a expression
levels, reported as median 2ˆ−∆∆Ct ± SD and depicted according to the color scale (red: upregulation; green: downreg-
ulation). Interleukins levels were reported as mean pixel density ± SD. Statistical significance was assessed by one-way
ANOVA, followed by Tukey’s multiple comparison test of N = 3 measurements for each individual/group. Saline/Veh =
mice receiving intrastromal injection of 2 µL PBS; PGA/LPS = mice administered with PGA 5 mg/kg per os 30 min before
LPS intrastromal injection; LPS/Veh = mice receiving intrastromal injection of 2 µg LPS dissolved in 2 µL PBS; LPS/PGA
= mice consecutively administered for three days with PGA 5 mg/kg per os, starting from 30 min after LPS intrastromal
injection; Saline/PGA mice consecutively administered for three days with PGA 5 mg/kg per os, starting from 30 min after
PBS intrastromal injection. * p < 0.05 and ** p < 0.01 vs. Saline/Veh; ◦ p < 0.05 and ◦◦ p < 0.01 vs. LPS/Veh; ˆ p < 0.05 and
ˆˆ p < 0.01 vs. LPS/PGA.

Finally, LPS intrastromal injection significantly increased Il-1α levels compared to CTR
group (fold = +4.1, p < 0.01 vs. Saline/Veh), while markedly decreasing Il-1rα levels (fold =
−2.2, p < 0.01 vs. Saline/Veh) (Figure 3D). On the contrary, Il-1α levels were significantly
reduced by PGA treatment (5 mg/kg) after LPS (fold = −1.6, p < 0.05 vs. LPS/Veh). This
was paralleled by an increase of Il-1rα levels in LPS/PGA mice (fold = +1.6, p < 0.01 vs.
LPS/Veh) The same trend was shown in PGA/LPS mice (Il-1α fold = −1.5, p < 0.05 vs.
LPS/Veh; Il-1rα fold = +2.6, p < 0.01 vs. LPS/Veh) (Figure 3D). (Il-1α: F value (4, 10) = 61.3;
p < 0.01; Il-rα: F value (4, 10) = 33.0; p < 0.01).

4.4. LPS Does Not Alter the Spinal Nociceptive Specific Neuron (NS) Activity, but Increases
Responsiveness to a Thermal Stimulus in Naïve Mice

Based on LPS-induced inflammation, in vivo electrophysiological experiments were
performed to investigate possible hyperexcitability in spinal nociceptive specific neurons
(NS) after a single intraperitoneal administration of LPS (5 mg/Kg). The results were



Int. J. Mol. Sci. 2021, 22, 1491 12 of 22

obtained from recordings of single NS neurons (one cell recorded from each animal per
treatment) at a depth of 0.7–1.0 mm from the surface of the spinal cord (Figure 4A). This cell
population was characterized by a mean rate of spontaneous firing of 0.015± 0.002 spikes/s
and only cells showing this pattern of basal firing were chosen for the experiment. In
this study, we observed that a single intraperitoneal injection of LPS did not change the
electrical activity of NS neurons in naïve mice, as compared to mice treated with vehicle (p >
0.99) (Figure 4B). In particular, NS neurons showed the following parameters: spontaneous
activity (0.22 ± 0.20, spikes/s), frequency (16.99 ± 0.18 spikes/s) and duration (3.8 ±
0.0 s) of noxious-evoked activity of NS neurons, 180 min post-LPS, as compared to the
control group (0.10 ± 0.05 spikes/s; 10.45 ± 2.61 spikes/s; 3.87 ± 0.18 s; respectively)
(Figure 4C–E). These data, suggest the possible involvement of the activation of non-
neuronal cells, such as microglia [53], in LPS-mediated spinal cord inflammation and,
probably, that the LPS-preconditioning paradigm used in our study is not enough to
globally activate microglia and in turn observe neuronal sensitization.

Figure 4. (A) Schematic diagram showing recording electrode placement for single-unit in vivo recording of NS neurons
in spinal cord L4-L6 segments, after Von Frey stimulation on mouse hind paw. (B) Representative ratematers showing
spontaneous and noxious-evoked activity of NS neurons recorded pre- and post- intraperitoneal injection of vehicle or LPS.
(C) Spontaneous activity, (D) frequency and (E) duration of excitation of the evoked activity of NS neurons, in vehicle or
LPS-injected mice. Each point represents the mean ± S.E.M of 3 different mice per group (one neuron recorded per each
mouse). Two-way ANOVA for repeated measures followed by Tukey’s post hoc test was used for comparison between
groups. (F) Representative diagram of tail-Flick test apparatus. (G) Effect of PGA (10 and 20 mg/kg), injected 15 min
before LPS (5 mg/kg), on tail-flick latency in naïve mice (N = 5). Values are expressed as mean ± S.E.M. Two-way ANOVA
for repeated measures followed by Tukey’s post hoc test was used for comparison between groups. ** p < 0.01 indicates
statistical difference vs. Veh and ◦◦ p < 0.01 indicates statistical difference vs. LPS 5 mg/kg.

In this context, to assess if LPS administration might contribute to peripheral sensiti-
zation, we performed a tail-flick test in naïve mice. Differently from electrophysiological
data, in the tail-flick test, naïve mice treated with LPS (5 mg/kg i.p.) showed a progressive
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reduction in latency of thermal responses that resulted significant at 180 min post-LPS (2.1
± 0.25 s), with respect to baseline (4.75 ± 0.57 s, −15 min; p = 0.045) and naïve mice treated
with vehicle (4.44 ± 0.52 s; p = 0.0034) (Figure 4G). Considering the hypothesis of TLR4
activation involvement in the anti-nociceptive effect of PGA, we also tested the preventive
effect of a single intraperitoneal injection of PGA at 5, 10 and 20 mg/Kg on tail flick latency
in LPS-injected mice. In particular, tail-flick trials were evoked at 15 min intervals prior
to the i.p. injection of vehicle or PGA at 10 or 20 mg/Kg, and regular intervals post-LPS
injection (Figure 4G). Data showed that a single injection of PGA 20 mg/Kg (i.p.) effectively
prevented systemic LPS-induced pain hypersensitivity in mice, 180 min post-LPS (4.1 ±
0.15 s, p = 0.0083), as compared to LPS-treated mice. On the contrary, no effect was ob-
served after injection of PGA at 10 mg/Kg (i.p.) in LPS-treated mice (2.32 ± 0.12 s; p > 0.99)
(Figure 4G). Two-way ANOVA analysis revealed a significant effect for time (p = 0.0020;
F7, 112 = 4.41) and treatment (p = 0.0014; F3, 16 = 8.45), and significant interaction treatment
X time (p = 0.0064; F21, 112 = 2.12).

4.5. PGA Prevented the Formalin- or Oxaliplatin-, but not SNI-Induced Allodynia

Formalin injection on the dorsal surface of hind-paw induced an increase in paw
volume and spontaneous pain behavior reported as a typical biphasic response [54,55].
The first phase was characterized by a first robust nociceptive response followed by a
transient decline thereafter. The second phase started 30 min after formalin reaching a
peak at 50 min. A single PGA injection (5 and 10 mg/kg) prevented pain behavior in both
phases of the formalin test in a dose dependent manner (time 35 min for PGA 5 mg/kg:
0.749 s ± 0.249 vs. time 35 min for Veh: 2.40 s ± 0.376; time 35 min for PGA 10 mg/kg:
0.345 s ± 0.117 vs. time 35 min for Veh: 2.40 s ± 0.376, p < 0.0001, Ftreatment (3,33) = 16.67;
Two-way ANOVA followed by Bonferroni post hoc test) (Figure 5A). In agreement with
our previous studies [37], we observed a significant decrease of the mechanical threshold
in the injected and contralateral paw 7 days after formalin administration as compared
to the saline-injected mice (Veh: 0.047 g ± 0.553 vs. BL 1.31 g ± 0.78 (Figure 5B). The
subcutaneous injection of saline into the paw or oral vehicle administration did not change
the pain response as compared with naive mice (not shown). We found that PGA (5
and 10 mg/kg) daily treatment significantly reduced the formalin-induced mechanical
allodynia at 7 days in both the ipsi- and contralateral paws (PGA 5 mg/kg 0.55 g ± 0.459
vs. Veh: 0.047 g ± 0.553; PGA 10 mg/kg 0.76 g ± 0.612 vs. Veh: 0.047 ± 0.553; p = 0.0136, F
treatment (3,33) = 16.67; One-way ANOVA followed by Bonferroni post hoc test). Lower doses
of PGA (2.5 mg/kg) did not exert any changes in acute or chronic treatment (Figure 5B).

The daily treatment of mice with a clinically relevant dose of oxaliplatin (2.4 mg/kg)
induced an increasing painful condition. Indeed, on day 10, we found a reduction of
threshold to mechanical, as well as cold stimuli which do not normally elicit pain. As
measured by Von Frey apparatus, the mechanical withdrawal threshold was significantly
lower in oxaliplatin-treated mice as compared with controls (Oxaliplatin/Veh 0.086 g ±
0.014 vs. Control: 1.040 g ± 0.256) (Figure 5C). Likewise, the licking latency in the cold
plate test decreased from 0 sec to 30 sec (Oxaliplatin 16.40 s ± 3.50 vs. Control: 5.00 s ±
1.87) (Figure 5D). Remarkably, preventive administrations of PGA (20 mg/kg), starting
from 5 days before oxaliplatin protocol, significantly (day 10 PGA 20 mg/kg 0.95 g ±
0.102 vs. Control: 1.040 g ± 0.256; p = 0.0076 Ftreatment (4.20) = 4.72; Two-way ANOVA
followed by Tukey’s post hoc test; for mechanical allodynia) and (day 10 PGA 20 mg/kg
18.60 s ± 2.881 vs. Control: 16.40 s ± 3.50; p < 0.0001 Ftreatment (4.20) = 13.65; One-way
ANOVA followed by Tukey’s post hoc test; for cold allodynia) relieved pain in both tests
(Figure 5D).
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Figure 5. (A,B) Effect of PGA (2.5, 5 and 10 mg/kg os) in the formalin model of pain in mice. The total time of the nociceptive
response was measured every 5 min and expressed in min and in repeated treatment on mechanical withdrawal threshold
of the ipsilateral hind paw 7 days after formalin injection in mice. Modifications on withdrawal thresholds [expressed as
applied force (g)] of hindpaw ipsilateral of SNI mice (C) after chronic injection of different doses of vehicle or PGA (5, 10
and 20 mg/kg, o.s.). Effect of PGA (2.5, 5, 10 and 20 mg/kg, os) on withdrawal thresholds and cold allodynia of hindpaw
of CIPN mice (D,E). Data were expressed as mean± SEM of mechanical withdrawal thresholds in grams. + (p < 0.05),
++ (p < 0.01) and +++ (p < 0.001) indicate significant differences vs vehicle treatment in formalin injected mice. * (p < 0.05),
** (p < 0.01) and *** (p < 0.001) indicate significant differences vs veh/saline-treated mice, ◦ (p < 0.05) ◦◦◦ (p < 0.001) indicate
significant differences vs. vehicle treatment (Two-way ANOVA followed by Tukey’s and Bonferroni post hoc test).

Three or seven days of SNI significantly reduced the tactile threshold as compared
with sham animals (7 days SNI: 0.025g ± 0.012 vs. Sham 1.040g ± 0.256) (Figure 5E).
Preventive (5 days) treatment with PGA (20 mg/kg) was not effective against SNI-induced
allodynia (Figure 5E).

4.6. PGA Prevented the Formalin- or Oxaliplatin- but not SNI-Induced Myelino-Axonal
Degeneration of Sciatic Nerve

The ultrastructural study of the sciatic nerve by electron microscopy confirmed our
previous behavioral results. Formalin-, oxaliplatin-(CPN) or SNI-induced neuropathic mice
showed severe myelino-axonal degeneration of the sciatic nerve evidenced by the presence
of irregular shaped myelinated structures, differences in the thickness and alterations of
the myelin sheath integrity in the cross-sections of the sciatic nerve (Figure 6A(c,g,e). These
modifications were reverted or prevented by PGA injection in both formalin- or oxaliplatin-
treated mice (Figure 6A(d,f)), but not in SNI-treated mice (Figure 6A(h)). The quantitative
evaluation of the frequency of distribution of myelino-axonal degenerated profiles as a
hallmark of damaged nerve revealed that PGA (5–20 mg/kg o.s.) was able to halve the
frequency of distribution as several myelino-axonal degenerated profiles/micron2 of nerve
section as reported in Figure 6B (mean number/µm2 ± SEM; CTL mice: vehicle: 0.51 ±
0.10/3 µ2 vs. PGA: 0.42 ± 0.09/3 µ2, p > 0.9999; Formalin-injected mice: vehicle: 4.33 ±
0.17/3 µ2 vs. PGA: 2.38 ± 0.14/3 µ2, p < 0.0001; CPN mice: vehicle: 4.98 ± 0.22/3 µ2 vs.
PGA: 2.62 ± 0.18/3 µ2, p < 0.0001; SNI mice: vehicle: 4.24 ± 0.19/3 µ2 vs. PGA: 3.67 ±
0.21/3 µ2, p > 0.9999).
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Figure 6. PGA (5–20 mg/kg o.s.) reinstated the ultrastructural changes of the impaired sciatic nerve in neuropathic mice.
(A) Representative ultrastructural images of the myelin sheath showed that compared with control (a and b), PGA treatment
restored the injured structure of sciatic nerve in formalin (c and d)- or CPN (e and f)-induced neuropathic mice, but not in
SNI (g and h) mice, in which the myelin layers were damaged and detached from each other. Impaired fibers of sciatic nerve
were indicated by red arrows [Scale bar: 1 µm]. (B) Bar graph showing the mean number of injured fibers for each treatment.
Measure was expressed as means ± SEM of the number of myelino-axonal degenerated fibers/3micron2. One-way ANOVA
followed Kruskal-Wallis test plus Dunn’s multiple comparison test was applied. *** p < 0.0001 is referred to vehicle +
formalin or vehicle + CPN or vehicle + SNI. ◦◦◦ p < 0.0001 is referred to PGA-treated formalin or CPN groups.

PGA Does Not Induce TRPA1-Mediated Elevation of Intracellular Ca2+

To understand whether PGA could activate TRPA1, we performed a calcium assay on
HEK293 cells stably transfected with human TRPA1. Our experiments revealed that PGA
(up to 10 µM) was ineffective in inducing TRPA1-mediated influx of Ca2+ ions in these cells
or in counteracting the action of a canonical agonist of TRPA1 such us Allyl isothiocyanate
(AITC) 100 µM (Supplementary Figure S4).

5. Discussion

This study shows a possible mechanism of action of N-palmitoyl-D-glucosamine
(PGA), a lipid molecule featuring a C-16 saturated alkyl chain bound through an amide
bond to a D-glucose unit, by the direct binding to the MD2/TLR4 receptor complex. PGA
resembles other TLR4 ligands based on a glucosamine core and linear carbon chains [56,57],
and is produced by bacteria (i.e., genus Rhizoma) whose function is to facilitate the growth
of other organisms (leguminous plants for example) or to promote mutual well-being
between the host and its gut microbiome [13]. Molecular docking and molecular dynamics
showed here that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Since
palmitic acid has been shown to act as TLR4 agonist by direct binding to MD-2 [50] we
can speculate that the glucosamine core of PGA is responsible for its switch towards
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antagonism. Therefore, to prove that this compound can antagonize the effect of LPS by
acting on TLR4, we performed a luciferase assay in Nf-kB transfected RAW264.7 cells.
Using this approach, we demonstrated that the Nf-kB activation triggered by LPS can be
prevented by 10 and 20 µg/mL PGA. This effect, which was not found in HEK293 cells
not expressing TLR4, corroborated our hypothesis that PGA has antagonist activity on
this receptor.

Previous evidence showed the effectiveness of PGA in chronic inflammatory patho-
logic states like arthritis [15]. However, very little was known about the mechanisms of
action of the PGA before the present study. PGA belongs to a group of mediators known
Autacoid Local Injury Antagonists (i.e., the ALIA mechanism), a definition underlining their
role as endogenous homeostatic factors produced on demand in damaged tissues to attempt
tissue repair. This definition, however, does not provide any information on the molecular
targets engaged by the PGA. This is the first study showing a relationship between PGA
and the MD2/TLR4 complex, and the experiments performed here have also demonstrated
the anti-inflammatory activity of PGA in pathologic conditions triggered by LPS, and hence
involving TLR4 activation.

We first investigated PGA effects in a keratitis mouse model, by evidencing a signif-
icant reduction of keratitis score in mice receiving PGA. These effects on the molecular
mechanisms due to persistent TLR4 activation induced by LPS were assessed by ki67
staining [58], which evidenced an increase in migration and proliferation of corneal cells
after TLR4 activation by LPS, leading to a hyperplastic appearance of the epithelium [59,60].
Interestingly, ki67 positive cells were markedly reduced by PGA treatment. PGA effects
were also evaluated on corneal neovascularization [61,62], usually occurring in inflamma-
tory or infectious cornea diseases. Interestingly, PGA treatment led to a decrease of VEGF
positive cells in corneal stroma, which are instead induced by LPS [63,64].

The anti-proliferative and anti-angiogenic effects of PGA were confirmed here by
the reduction of pro-inflammatory corneal cytokine levels (Il-1α, Il-1β, Il-6 and TNF-α),
paralleled by an increment in anti-inflammatory cytokines (Il-10, Il-1rα). Particularly,
cytokine levels were modulated by miRNAs strictly involved in LPS response [62,65–67]
and known to modulate TLR4-dependent cytokines, such as TNF-α and Il-β, targeted
by both miR-20a-5p and miR-106a-5p [53,68]; Il-10, regulated by miR-27a-5p [67], and
Il-6, modulated by miR-106a-5p [53] Overall, PGA was able to increase miR-20a-5p and
miR-106a-5p, which were reduced by LPS intra-stromal injection. The increase of these
miRNA by PGA was paralleled by the reduction of three important pro-inflammatory
cytokines such as Il-6, TNF-α and Il-1β. On the contrary, PGA decreased miR-27a-5p levels,
which exerts a pro-inflammatory effect by targeting Il-10. This anti-inflammatory cytokine,
together with Il-1rα, was up-regulated by PGA treatments [53,68].

The findings from inflamed corneas correlate well with previous studies that described
an anti-inflammatory and pain-relieving effect of PGA in arthritis or osteoarthritis mod-
els [15]. Chronic inflammation and the consequent functional changes of sensory fibers are
traditionally distinct from those related to cell damage signaling (DAMP) or pathogens
(PAMP) considered modulated only by immune cells. However, a close correlation between
peripheral neural fibers and the immune system is now recognized, as in the case, for
example, of the “sensory” functions of some previously considered purely immune-type
cells (e.g., mast cells, microglia). Thus, it is not surprising that TLR4 activation drives the
development and maintenance of neuropathic pain [4]. It is noteworthy that substances
from Gram-negative bacteria, related chemically to LPS (i.e., LPS-RSU from Rhodobacter
sphaeroides), were shown to block TLR4 and decrease neuropathic pain [69]. Consistently,
we showed here for the first time that PGA, which is produced by bacteria of the genus
Rhizobia [13], is a TLR4 antagonist and is capable of preventing both neuropathic pain and
LPS-induced pro-inflammatory cytokines release.

There is, in fact, extensive evidence that innate immune signaling is necessary for
the onset of pathological pain and that microglial cells play a key role for pain chro-
nization [11,70]. To evaluate the pain-relieving effect of PGA, we first investigated the
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nociceptive threshold in the tail flick test after intra-peritoneal LPS in mice and, at the
same time, recorded the nociceptive responses of spinal neurons. In agreement with pre-
vious data [71], no modification of neuronal activity during the four hours post LPS was
observed. However, at the third hour post-LPS there was a reduction in the nociceptive
threshold measured by the tail flick test. This effect, which was reversible after one hour,
was prevented by PGA.

Since different phenotypes of neuropathic pain syndrome depend on varying factors,
it is not unusual that therapeutic protocols in humans very often require combinations
of pain relievers with different mechanisms of action to decrease allodynia, paresthesia
and dysesthesia. We therefore investigated whether PGA was effective in three models
of neuropathic pain, induced either by a chemical (e.g., oxaliplatin) or a peripheral nerve
lesion (SNI). PGA produced a therapeutic effect only in the former case.

An unexpected finding in this study was that PGA, if administered for one week, was
per se capable of lowering the nociceptive threshold under physiological conditions. On
the contrary, allodynia was prevented by PGA in neuropathic mice. This might suggest a
different role of TLR4 depending on whether healthy or chemically-induced neuropathic
mice are treated. Based on new emerging findings of some unexpected roles for TLRs
in neuroplasticity, it is possible that TLR4 blockade interferes with the tonic activity of
immunity and may also alter the normal plasticity of spinal and supraspinal neural cir-
cuits. [49,72]. Further confirmation of an alternative protective role of the TLR4 receptor
was obtained from a recent study in which deprivation of TLR4 signaling worsened neu-
rodegeneration from viral infection. In that study, the authors showed that the homeostatic
activation of microglia and their neuroprotective role depended on the intrinsic signaling
of TLR4 [12]. Therefore, the allodynia observed after seven days of PGA treatment could be
the consequence of a disruption of a fine functional balance between the immune and neu-
ral systems. In physiological conditions, both in utero or postnatal age and in adulthood,
there is now clear evidence that TLRs perform complex functions including controlling
neuroplasticity [48].

In a previous study we have shown that a single administration of formalin deter-
mines, apart from the classic noxious biphasic reaction, a progression towards a persistent
peripheral neuropathy, which becomes apparent (with allodynia and hyperalgesia) a few
days later and then lasts for several weeks [73–75]. We found that after single intra-paw
formalin injection, PGA was able to decrease the first phase and completely prevented the
second phase of the nocifensive behavior in mice. The fact that the first phase was also
in part decreased could suggest that PGA might act as an indirect inhibitor of the TRPA1
channel [76–78], apart from to directly inhibit the TLR4 signal transduction. However, our
data demonstrate that PGA does not activate TRPA1 receptor. Furthermore, we found that
PGA was effective at reducing all pain symptoms in mice which developed neuropathy
with allodynia and hyperalgesia one week after formalin injection.

Likewise, peripheral nerve damage and the associated pain symptoms caused by
administration of the antineoplastic agent, oxaliplatin, were significantly reduced by PGA
administered prior to oxaliplatin. The mechanisms underlying the neurotoxicity induced
by chemical agents are diverse and include damage in the assembly and functioning of
microtubules within the nerve fibers, with subsequent severe axonal toxicity and deficit
of neuro-mediator transport. Regarding the bio-molecular or receptor mechanisms that
could explain the very similar pathophysiological state induced either by oxaliplatin or
by formalin, but not by SNI, these could lie in the fact that both cytoskeletal toxins and
aldehyde products, as well as LPS, are powerful activators of TRPA1 receptors expressed in
both nerve fibers and cells that participate in neuro-immuno-inflammation [76,79]. Indeed,
thought PGA was not capable to activate TRPA1 in our in vitro system, we cannot exclude
a possible indirect interaction between TLR4 and TRPA1 [80]. In fact, although the cellular
and systemic effects induced by LPS are mainly attributed to the activation of the TLR4
signaling cascade, recent evidence demonstrates that this bacterial toxin activates several
members of the TRP channel family, including TRPA1 [81].
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It is very likely that PGA, by acting as a natural inhibitor of TLR4, can prevent the
innate immunity response and peripheral cytokine release, which participate in neuronal
sensitization and nerve inflammatory reactions. In fact, PGA reduced myelin damage
only if this was generated by formalin or oxaliplatin, but not if the axons were sectioned
entirely (SNI). Since PGA counteracts the excessive activation of cell-mediated peripheral
neuro-immune responses, which lead to nerve demyelination, this suggests that this
compound is effective only when axon integrity is maintained, and hence acts selectively
on peripheral cells coating the axons and ensuring their normal functioning. This also leads
to hypothesize the possible use of PGA in central neurological diseases of the demyelinating
type, such as multiple sclerosis, where the primary damage is to the non-neuronal cells
responsible for myelination.

The anti-allodynic effects of PGA were also supported by anatomical observations
conducted by ultrastructural analysis (TEM) on the sciatic nerve in different mouse models
of neuropathy. Electron microscopy revealed a significant reduction in the frequency of
myelin-axonal degenerated profiles/micron2 of sciatic cross-sectioned area in the case
of both intra-paw formalin-injected mice and in mice receiving systemic oxaliplatin, in
comparison to SNI-treated mice, where PGA was ineffective.

In conclusion, we have shown how a molecule of bacterial origin, probably pro-
duced also by the human intestinal microbiome, can exert anti-inflammatory and immune-
regulatory effects through the direct binding on the MD2 protein. Additionally, we have
highlighted that PGA is also capable of preventing local or systemic damage induced by
LPS and, in particular, peripheral nerve damage induced by antineoplastic therapy. Future
studies may be important to characterize other related natural molecules and provide
us with new drugs directed against TLR4 in controlling the cytokine storm in chronic
inflammatory syndromes.
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