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�Introduction

Transgenic and knockout animal models are the most effective tools to study cardio-
vascular hormone systems, since they reveal effects of changes in single components 
of these systems on the whole physiology. In particular, studies on the renin-angio-
tensin systems (RAS) have profited from this technology in recent decades [3, 5, 58]. 
Therefore, it was warranted to establish such models also for the novel RAS consist-
ing of ACE2, Ang-(1-7), and Mas (Table 1). Despite that these three components 
comprise a common axis, distinct phenotypes of models with one of the components 
altered are expected since each of the three components has distinct additional func-
tions independent from the two other molecules. ACE2, in particular, is a protein 
with several functions, a carboxypeptidase metabolizing a multitude of peptides, 
such as AngII and apelins, thereby either activating or inactivating them [104], a pro-
tein with a collectrin domain, which is involved in amino acid uptake in the gut [34, 
95], and the receptor for the severe acute respiratory syndrome (SARS) coronavirus 
[45]. Moreover, also Ang-(1-7) may interact with other receptors than Mas and Mas 
may have other ligands or exert ligand-independent effects [4, 86].
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Table 1  Independently generated transgenic and knockout mouse and rat models for the ACE2/
Ang-(1-7)/Mas axis of the RAS

Gene Method Species Promoter
Expressing 
tissue Reference

ACE2 ESC-
Knockout

Mouse – – [17]

ACE2 ESC-
Knockout

Mouse – – [31]

ACE2 ESC-
Knockout

Mouse – – [125]

ACE2 TALEN-
Knockout

Mouse – – [47]

ACE2 CRISPR-
Knockout

Mouse – – [47, 129]

ACE2 
S680D

CRISPR-
Knockin

Mouse – – [47]

ACE2 TALEN-
Knockout

Rat – – [130]

ACE2 
(mouse)

Transgene, 
stopflox

Mouse Rosa26 Ubiquitous, 
inducible

[75, 107]

ACE2 
(human)

Transgene Mouse ACE2 Ubiquitous [126]

ACE2 
(human)

Transgene Mouse CMV Ubiquitous [102]

ACE2 
(human)

Transgene Mouse Cytokeratin 
18

Airways [53]

ACE2 
(human)

Transgene Mouse Cardiac 
α-MHC

Heart [21]

ACE2 
(human)

Transgene Mouse Nephrin Podocytes [61]

ACE2 
(human)

Transgene Mouse Synapsin Neurons [26]

ACE2 
(human)

Transgene, 
floxed

Mouse Synapsin Neurons [117]

ACE2 
(human)

Transgene Rat SM-MHC Smooth 
muscle

[79]

Mas ESC-
Knockout

Mouse – – [105]

Mas ESC-
Knockout

Mouse – – [20, 113]

Mas ZFN-
Knockout

Rat – – https://rgd.mcw.edu/
rgdweb/report/gene/main.
html?id=3049

Mas (rat) Transgene Mouse Opsin Retina [122]
Ang-(1-7) Transgene Mouse Cardiac 

α-MHC
Heart [54]

Ang-(1-7) Transgene Rat Cardiac 
α-MHC

Heart [27]

Ang-(1-7) Transgene Rat CMV Testis [28]

CMV cytomegalovirus, ESC embryonic stem cell, MHC myosin-heavy chain, SM smooth muscle, 
TALEN transcription activator-like effector nuclease, ZFN zinc-finger nuclease
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�ACE2 Models

�ACE2 Knockout Mice

Since the ACE2 gene is localized on the X-chromosome, male mice with ACE2 
gene deletion (ACE2−/y) are already deficient in the enzyme in the hemizygous state. 
Based on the pleiotropic actions of this protein, mice lacking ACE2 are expected 
to exhibit increased levels of AngII, decreased levels of Ang-(1-7) and tryptophan, 
as well as alterations in other peptide levels, which all may contribute to observed 
phenotypes. ACE2−/y mice and also heterozygous female ACE2+/− mice were more 
susceptible to cardiac injury induced by pressure overload, AngII infusion, or diabe-
tes [69, 109, 115, 125] and ACE2−/y mice developed cardiac abnormalities at older 
age [17] probably due to an increased level of Ang II [68]. However, the spontane-
ous appearance of cardiac alterations could not be confirmed by another group and 
therefore remains controversial [31, 32, 125]. However, obesity-induced epicardial 
inflammation was worsened and caused cardiac dysfunction in ACE2−/y mice [70]. 
Furthermore, in heart and skeletal muscle, ACE2 was involved in training-induced 
physiological hypertrophy [59].

There were also inconsistencies in the reports about hypertension in ACE2−/y mice, 
but it is now accepted that this phenotype is depending on the strain of mice appear-
ing in C57BL/6 and FVB/N but not in 129 mice [32, 38, 77, 101]. ACE2-deficient 
mice on C57BL/6 background even developed a pre-ecclampsia-like syndrome when 
pregnant [8] and placental hypoxia and uterine artery dysfuncion caused fetal growth 
restriction in these animals [124]. In ACE2−/− female mice, estrogen cannot inhibit 
obesity-induced hypertension in contrast to wild-type controls [114]. We and others 
have described AngII-dependent endothelial dysfunction in ACE2-deficient mice [49, 
77], which probably mediated the prohypertensive phenotype. However, an increased 
sympathetic outflow may have also contributed [119]. On the other hand, ACE2 also 
degrades the vasodilator apelin peptides which consequently accumulate in ACE2−/y 
mice and counteract the effects on the RAS [110]. Nevertheless, there were several 
other vascular effects of genetic ACE2-deletion such as a worsening of atheroscle-
rosis and aortic aneurysm in apolipoprotein E (ApoE)- and low-density lipoprotein 
receptor-deficient mice [63, 81, 99, 100] and an increased neointima formation after 
vascular injury [81], to which the endothelial dysfunction was a major contributor.

In double knockout mice for ACE2 and ApoE, also the renal injury induced 
by atherosclerosis was aggravated [38]. Moreover, ACE2−/y mice spontaneously 
developed glomerulosclerosis in older age [67] and were more susceptible to renal 
ischemia/reperfusion injury due to increased cytokine expression, inflammation, 
and oxidative stress [23]. Accordingly, genetic ACE2 deficiency led to accelerated 
nephropathy in streptozotocin (STZ)-induced and Akita diabetic mice [91, 115]. 
Furthermore, knockout mice for ACE2 infused with AngII showed enhanced colla-
gen I deposition in renal glomeruli and expression of genes related to fibrosis, such 
as smooth muscle actin, transforming growth factor β (TGF-β), and procollagen I, 
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probably through activation of ERK1/2 and enhancement of protein kinase C levels 
[133]. ACE2-deficient mice also showed a worse outcome in shock-induced kid-
ney injury [127], chronic hepatic injury [66], liver steatosis [12, 64], and cerulein-
induced pancreatitis [48].

The lung is a major site of ACE2 expression. Accordingly, ACE2−/y mice exhib-
ited an aggravated pathogenesis of lung injury induced by cigarette smoke, air pollu-
tion, bleomycin, influenza virus or respiratory syncytial virus [30, 36, 46, 80, 134], 
of pulmonary hypertension [129], and of acute respiratory distress syndrome [37]. In 
most of these injury models, the increased oxidative stress observed in kidneys [116], 
livers [12, 64], and vessels [71] of ACE2−/y mice contributed to the exacerbation.

ACE2 in the gut with its collectrin domain is part of the amino acid uptake system 
and, therefore, mice lacking this protein showed reduced tryptophan in the blood, 
an altered gut microflora, and intestinal inflammation [34, 95]. These results were 
recently confirmed in a novel ACE2-deficient mouse model on an outbred genetic 
background generated by transcription-activator-like effector nucleases (TALEN) 
[47]. Whether the collectrin-domain-dependent effects contributed to the metabolic 
alterations shown in ACE2-deficient mice, such as insulin resistance and impaired 
glucose homeostasis [12, 63] in particular under a high-fat diet [15, 50, 90, 92, 123] 
needs still to elucidated [7]. However, in the liver, the carboxypeptidase function of 
ACE2 was more relevant for these metabolic effects since they could be ameliorated 
by Ang-(1-7) infusion [12].

ACE2 in the brain also influences behavior since ACE2-deficient mice showed 
impaired performance in cognition and memory tests [111].

�ACE2 S680D Knockin Mouse

Recently, it was discovered that serine 680 of mouse ACE2 is phosphorylated by 
AMP kinase, leading to increased stability of the protein. When this phosphory-
lation was mimicked (S680D) in knockin mice by CRISPR/Cas9 technology, the 
resulting animals were partially resistant to a pulmonary hypertension model [129].

�ACE2 Knockout Rats

ACE2 knockout rats have recently been established using TALEN technology [130]. 
These animals exhibited cardiac hypertrophy and impaired heart function; however, 
their blood pressure was not reported. Therefore, it remains unclear whether the 
cardiac effects are direct or caused by hypertension.

�Inducible Mouse ACE2 Overexpression in Mouse

In order to allow tissue-specific activation of ACE2 expression, the mouse ACE2 
coding region was knocked into the Rosa26 locus of mice with a Stop-lox cassette 
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in front of it, which inhibits transcription. This cassette can be removed by Cre-
recombinase expression and then ACE2 gets highly expressed in the cells express-
ing Cre-recombinase. When Cre-recombinase was expressed in the germline, 
ubiquitously ACE2 overexpressing mice resulted, which were protected from post-
infarction cardiac dysfunction [75] and exhibited less anxiety-related behavior 
[107]. The same behavioral effects were also observed when the gene was only acti-
vated in CRH (corticotropin-releasing hormone) expressing cells using the corre-
sponding Cre-recombinase-expressing mouse for breeding with the ACE2/Rosa26 
animals [108].

�Human ACE2 Overexpression in Mouse

Human ACE2 is hijacked by the SARS virus as a receptor to enter cells. In order to 
create a model for this disease, mice were “humanized” by several groups by inserting 
human ACE2 transgenes in their genome either using the ACE2 promoter itself [126], 
the ubiquitously active cytomegalovirus (CMV) promoter [102, 128], or the airway-
specific cytokeratin 18 promoter [53, 62]. These animals were also suitable for studies 
on the role of ACE2 in other diseases and therefore the first model was tested in a kid-
ney injury model and showed a protected phenotype [127]. Moreover, it was shown to 
be protected from AngII-induced hypertension and myocardial fibrosis [109].

�Human ACE2 Overexpression in Mouse Heart

When human ACE2 was overexpressed in hearts of transgenic mice, surprisingly 
ventricular tachycardia and sudden death was observed accompanied by a dysreg-
ulation of connexin expression [21]. Apelin, which is also a substrate for ACE2 
[104], may in this case be lacking and this deficiency may have caused the cardiac 
dysfunction [41].

�Human ACE2 Overexpression in Mouse Podocytes

When human ACE2 was overexpressed in kidneys of transgenic mice, particu-
larly in podocytes using the nephrin promoter, the animals became protected from 
diabetes-induced renal injury [61]. The authors provided evidence that the relative 
amounts of AngII and Ang-(1-7) are critical for the phenotype by increased AngII 
upregulating TGF-β.

�Human ACE2 Overexpression in Mouse Brain

When human ACE2 was overexpressed in brains of transgenic mice using the 
synapsin promoter, a protective phenotype is observed for several cardiovascular 
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diseases. This included hypertension induced by peripheral infusions of AngII 
[26] and by desoxycorticosterone acetate (DOCA)/salt treatment [118], cardiac 
hypertrophy elicited by AngII [25], coronary ligation-induced chronic heart failure 
[120], and stroke triggered by middle cerebral artery occlusion [14, 132]. In another 
model, the ACE2 transgene was flanked by loxP sites and it could therefore be spe-
cifically deleted in distinct brain regions by the local injection of Cre-recombinase-
expressing adeno-associated viruses to assess the relevance of these areas for the 
blood pressure increase after DOCA/salt treatment. Such experiments revealed the 
paraventricular nucleus of the hypothalamus and the subfornical organ as important 
but not exclusive contributors to hypertension development [117]. The shift in the 
balance between Ang-(1-7) and AngII in brain regions important for cardiovascular 
control modulated local NO and ROS production as well as cyclooxygenase-medi-
ated neuroinflammation [97] and likely caused the beneficial effects of ACE2  in 
the brain. Accordingly, the AngII-dependent deleterious effects on brain tissues 
observed in double transgenic mice expressing human angiotensinogen and human 
renin were mitigated in triple transgenic animals additionally expressing human 
ACE2 [14, 131].

�Human ACE2 Overexpression in Rat Vascular Smooth Muscle

When we overexpressed human ACE2 in vascular smooth muscle of transgenic rats 
of the spontaneously hypertensive stroke-prone (SHRSP) strain using the smooth 
muscle myosin heavy chain promoter, blood pressure was significantly reduced 
[79]. This confirmed a study postulating that reduced ACE2 is an important genetic 
determinant for hypertension in this strain [17]. Reduced blood pressure was accom-
panied by decreased oxidative stress and improved endothelial function [79].

�Mas Models

�Mas Knockout Mice

When we generated Mas-deficient (Mas−/−) mice, it was not yet known that it is 
the receptor for Ang-(1-7) [105]. Therefore, phenotyping concentrated on the brain 
as major Mas-expressing organ. Male (but not female [106]) Mas-deficient mice 
showed increased anxiety-like behavior and long-term potentiation (LTP) in the 
hippocampus [105]. Surprisingly, despite the improved LTP, object recognition 
memory was impaired [43]. However, Mas−/− mice showed delayed extinction of 
fear memory [42] and were protected from cognitive impairments induced by isch-
emia but only in the presence of the AngII AT2 receptor [35] supporting a role of the 
dimerization of both receptors in brain function [44].
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After our discovery that Mas is the receptor for Ang-(1-7) [85], we performed 
comprehensive cardiovascular phenotyping. Mas-deficient mice on the C57BL/6 
background exhibited spontaneous cardiac fibrosis and dysfunction [13, 72, 83, 113]. 
Increased oxidative stress and endothelial dysfunction were observed on all genetic 
backgrounds studied (C57BL/6 and FVB/N) [33, 78, 121], but only resulted in hyper-
tension in FVB/N mice. Possibly, an autonomic dysbalance in Mas−/− mice also con-
tributed to the increased blood pressure [76]. Moreover, regional blood flow and local 
vascular resistance were differentially altered in different tissues of Mas−/− mice [10], 
which may also be the cause for the increased vascular resistance in the corpus caver-
nosum and the resulting erectile dysfunction observed in these mice [29].

Mas−/− mice showed an impaired renal function with increased urinary volume 
and proteinuria [74]. However, Esteban and coworkers found that Mas knockout 
mice presented an attenuation of renal damage in the unilateral ureteral obstruc-
tion and in the renal ischemia/reperfusion model [22]. The authors reported that 
Ang-(1-7) infusion led to NF-κB activation and inflammation via Mas. In contrast, 
Kim et al. showed protective effects of Ang-(1-7) infusion in the same model [40] 
and no aggravation of renal injury produced by kidney ischemia/reperfusion was 
observed in Mas−/− mice [6]. Moreover, Mas−/− mice were protected from adria-
mycin-induced renal injury, again confirming the protective actions of the ACE2/
Ang-(1-7)/Mas axis of the RAS in the kidney [94]. The discrepancy between the 
studies remained unresolved, but anti-inflammatory and protective actions of Mas 
have repeatedly been described also in other organs: Ang-(1-7) protected from intra-
cranial aneurysm only in wild-type but not in Mas−/− mice [73]. Mas deficiency 
promoted atherosclerosis and autoimmune encephalitis by affecting macrophage 
polarization and migration [33] and by increasing vascular intima proliferation [2]. 
The effects on macrophages and other leukocytes were probably also the reason 
for the higher susceptibility of Mas−/− mice in an endotoxic shock model [65, 96]. 
Moreover, Mas−/− mice presented aggravated inflammatory pain [16] and allergic 
pulmonary inflammation [51].

Mas−/− mice are also a model for metabolic syndrome since they developed meta-
bolic abnormalities, such as type 2 diabetes mellitus and dyslipidemia [88], besides 
their hypertensive phenotype. On the mechanistic level, this was accompanied by 
decreased PPARγ expression in fat tissue [52] and a change in the relative amounts of 
α and β cells in pancreatic islets [24]. Ang-(1-7), mainly via Mas, stimulated insulin 
secretion from β cells [82]. Furthermore, Mas−/− mice developed liver steatosis when 
bred with ApoE-deficient mice [93] and Mas−/− female mice were more susceptible 
to obesity-induced hypertension [113]. Ang-(1-7) and Mas were involved in vascular 
repair, which is deficient in diabetes, and hindlimb ischemia-induced progenitor cell 
mobilization was absent in Mas−/− mice [103].

In skeletal muscle, Ang-(1-7) and Mas protected from atrophy since Mas−/− mice 
were more susceptible to a Duchenne muscular dystrophy model (mdx) [1] and to 
immobilization-induced atrophy [56].
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�Mas Knockout Rats

Mas knockout rats have been established using Zinc-finger nuclease technology 
but their phenotype is only partially reported on the Rat Genome Database website 
(https://rgd.mcw.edu/rgdweb/report/gene/main.html?id=3049).

�Mas Overexpression in Retina

Transgenic mice overexpressing Mas in the retina under the control of the opsin 
promoter developed degeneration of photoreceptors [122]. This surprising pheno-
type may have been caused by the ligand-independent constitutive activity of Mas 
[4] causing proliferative effects in cells when the gene is overexpressed.

�Ang-(1-7) Models

�Transgenic Rats Overexpressing Ang-(1-7)

The group of Timothy Reudelhuber invented a method to express and secrete pep-
tides from an artificial protein without the need of specific proteases in transgenic 
animals [54, 55]. Using this method, Ang-(1-7) was overexpressed in transgenic rats 
(TGR(A1-7)3292) using the CMV promoter [28]. These animals mainly expressed 
the peptide in the testis, which nevertheless significantly increased plasma levels 
of Ang-(1-7). As a consequence, total peripheral resistance was decreased together 
with increases in the blood flow to several organs. Nonetheless, the animals 
remained normotensive, probably since they exhibited an improved pumping func-
tion of the heart [11]. These cardiac effects also protected the heart from pressure 
and ischemia-induced damage [84] as well as from DOCA-induced diastolic dys-
function [19]. A part of these effects may be due to alterations in autonomic regula-
tion observed in these rats [18]. The increased levels of plasma Ang-(1-7) exerted 
antinatriuretic actions in the kidney resulting in reduced urinary flow and increased 
urinary osmolality [28]. Furthermore, TGR(A1-7)3292 rats exhibited metabolic 
improvements such as decreased plasma lipid levels, improved glucose tolerance, 
less fat tissue, decreased lipogenesis, and less cafeteria-diet-induced obesity [9, 57, 
87, 89]. Moreover, these rats presented a reduction in anxiety-like behavior [39] and 
in the response to stress [60].

�Transgenic Mice and Rats Overexpressing Ang-(1-7) in the Heart

We also generated transgenic mice and rats expressing the Ang-(1-7) release protein 
specifically in the heart using the α cardiac myosin heavy chain promoter. Both lines 
showed a slightly improved heart function at baseline and were protected from car-
diac hypertrophy [27, 54], but, interestingly, not from myocardial infarction [112].
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�Conclusions

As summarized in this chapter, several genetically altered rat and mouse models 
have been generated changing the expression of components of the ACE2/Ang-
(1-7)/Mas axis of the RAS (Table 1). With the help of these models, physiological 
and pathophysiological functions of this axis have been elucidated. Nevertheless, 
novel models are warranted with cell-type-specific deficiency of ACE2 or Mas to 
further delineate their tissue-specific effects. The already collected findings are the 
basis for the development of novel therapeutic strategies for cardiovascular and 
metabolic diseases by targeting ACE2 or Mas [86, 98].
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