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Abstract

Background/Aims: Tea, produced from the evergreen Camellia sinensis, has reported 

therapeutic properties against multiple pathologies, including hypertension. Although some studies 

validate the health benefits of tea, few have investigated the molecular mechanisms of action. 

The KCNQ5 voltage-gated potassium channel contributes to vascular smooth muscle tone and 

neuronal M-current regulation.

Methods: We applied electrophysiology, myography, mass spectrometry and in silico docking to 

determine effects and their underlying molecular mechanisms of tea and its components on KCNQ 

channels and arterial tone.

Results: A 1% green tea extract (GTE) hyperpolarized cells by augmenting KCNQ5 activity 

>20-fold at resting potential; similar effects of black tea were inhibited by milk. In contrast, 

GTE had lesser effects on KCNQ2/Q3 and inhibited KCNQ1/E1. Tea polyphenols epicatechin 

gallate (ECG) and epigallocatechin-3-gallate (EGCG), but not epicatechin or epigallocatechin, 

isoform-selectively hyperpolarized KCNQ5 activation voltage dependence. In silico docking 

and mutagenesis revealed that activation by ECG requires KCNQ5-R212, at the voltage sensor 

foot. Strikingly, ECG and EGCG but not epicatechin KCNQ-dependently relaxed rat mesenteric 

arteries.

Conclusion: KCNQ5 activation contributes to vasodilation by tea; ECG and EGCG are 

candidates for future anti-hypertensive drug development.
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Introduction

Since its initial use in China over 4000 years ago, tea has become one of the most commonly 

consumed beverages worldwide, second only to water [1]. The leaves of the evergreen 

species Camellia sinensis are used to make the most prevalent caffeinated teas (Fig. 1A). 

Since they are produced from the same plant, the differences between tea varieties (green, 

oolong, and black) are due to leaf fermentation levels (unfermented, partially fermented, and 

fully fermented, respectively), which impart the characteristic properties and flavors of the 

teas [1].

Though there is evidence of health benefits conferred by all tea produced by Camellia 
sinensis [2], green tea is the most studied as it has the highest antioxidant properties [3]. 

In vivo and in vitro studies show green tea extract inhibits carcinogenesis, as well as 

reduces hypertension and risk of heart disease [4–7]. However, the mechanism behind these 

therapeutic properties remains incompletely resolved. Medicinal plants contain bioactive 

compounds that either act independently or synergize to produce therapeutic results. 

The leaves of Camellia sinensis contain polyphenols belonging to the catechin family

—specifically epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and 

epigallocatechin-3-gallate (EGCG) [1]. These catechins are known for their antioxidant 

properties and are thought to convey the therapeutic benefits of tea, with some studies 

showing anticancer and cardiovascular health benefits [8]. The fermentation process of the 

leaves that results in the different tea varieties causes the oxidization of catechins, resulting 

in green tea containing a higher concentration of catechins [3].

We recently showed that herbs with hypotensive properties were unified in their ability 

to activate the vascular and neuronal voltage-gated potassium (Kv) channel, KCNQ5 [9]. 

KCNQ5 belongs to the KCNQ (Kv7) subfamily of voltage-gated potassium channels, which 

in the human genome is composed of five genes (KCNQ1–5). Each gene encodes six 

transmembrane domains (S1-S4 compose the voltage sensing domain, and S5-S6 form 

the pore module) (Fig. 1B). Homo- or heterotetramers form to produce active channels. 

Ancillary peptides, such as KCNEs, are also incorporated in vivo to modulate the channel 

properties (Fig. 1C) [10, 11]. Homomeric KCNQ1, for example, is not known to be 

expressed in vivo without a KCNE modifier subunit [12]. The KCNQ1/E1 co-assembly 

produces the slow-acting cardiac ventricular repolarization current (IKS) [13].

KCNQ2/Q3 and KCNQ3/Q5 α subunit heterotetramers, and possibly homomeric KCNQ2, 

KCNQ3, and/or KCNQ5, are important for generating the muscarinic receptor-inhibited 

Kv current (M-current) that regulates neuronal firing [14–17]. KCNQ4, expressed in 

auditory neurons and hair cells, is required for hearing [18]. KCNQ1, KCNQ4, and 

KCNQ5 expressed in vascular and non-vascular smooth muscle cells regulate the resting 

membrane potential of these cells, thereby controlling their contractility [19]. In the 

vasculature, KCNQ4/Q5 heteromers are involved in controlling arterial tone at rest, causing 
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vasoconstriction when these channels are blocked [20]. Due to their roles in a variety of 

physiological processes and different expression patterns, KCNQ channels are both linked to 

various inherited disease states and a potential drug target for a variety of diseases [12, 21].

Here, we hypothesized that KCNQ5 activation might underlie purported hypotensive 

properties of tea. We report that green and black tea extracts strongly and isoform-selectively 

activate KCNQ5. Screening the common catechins in tea, we found that ECG and 

EGCG selectively activate KCNQ5, making them potential candidates for future medicinal 

chemistry optimization and drug development for hypertension and even KCNQ5 loss-of

function encephalopathy.

Materials and Methods

Preparation of extracts and compounds

A methanolic extraction (80% methanol/20% water) was performed on 5 bags of Organic 

Green Tea sourced from Trader Joe’s (Irvine, CA, US) and on the contents of 5 PG Tips 

black teabags sourced from Amazon.com. Each methanol mixture (100 ml) was occasionally 

inverted over a 48-hour incubation at room temperature (20–25°C). After filtering with 

Whatman filter paper #1 (Whatman, Maidstone, UK), the methanol was evaporated off 

over 24 hours at room temperature (20–25°C) in a fume hood. The remaining extract was 

centrifuged for 10 minutes at 23°C, 4000 RCF to remove any remaining particulates and 

stored at −20°C. For electrophysiological recordings, the extract was thawed and diluted to 

1:100 in bath solution (see below) immediately before use. EC and ECG were solubilized 

in bath solution to a concentration of 1 mM (more concentrated solutions would require a 

different solvent) and diluted to appropriate concentrations before use. Likewise, a 1 mM 

solution of EGCG was prepared in bath solution and used fresh, with the remaining stock 

solution heated at 35°C for approximately 3 hours and stored at 4°C for four weeks before 

use.

Channel subunit cRNA preparation and Xenopus laevis oocyte injection

cRNA transcripts encoding ion channel subunits (KCNQ1, KCNQ2, KCNQ3, KCNQ4, 

KCNQ5, and KCNE1) were generated using in vivo transcription with the mMessage 

mMachine kit (Thermo Fisher Scientific) from linearized cDNA sub-cloned into plasmids 

with Xenopus laevis β-globin 5’ and 3’ UTRs flanking the coding region. The mutant 

KCNQ5 cDNA was generated by site-directed mutagenesis using the QuikChange kit 

(Strategene, San Diego, CA) and transcribed as described above. The cRNAs (2–20ng) were 

injected into defolliculated stage V and VI Xenopus laevis oocytes (Xenoocyte, Dexter, MI, 

US). The oocytes were stored at 16°C in ND96 oocyte storage solution containing penicillin 

and streptomycin, with daily washing, for 2–4 days prior to two-electrode voltage-clamp 

(TEVC) recording.

Two-electrode voltage clamp (TEVC)

We performed TEVC at room temperature with an OC-725C amplifier (Warner Instruments, 

Hamden, CT) and pClamp10 software (Molecular Devices, Sunnyvale, CA). Oocytes were 

placed in a small-volume oocyte bath (Warner). We solubilized tea polyphenols (Sigma) and 
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tea extract directly in bath solution (in mM, 96 NaCl, 4 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES; 

pH 7.6). We introduced tea extract/compounds via gravity perfusion (1ml/minute for 3 

minutes) before recording with pipettes of 1–3 MΩ resistance when filled with 3 M KCl. 

For intracellular ECG injection, we recorded a control voltage family, then immediately 

injected 50 nl of 2 mM ECG into each oocyte, giving an approximate intracellular ECG 

concentration of 100 μM assuming 1 μl oocyte volume. The post-ECG voltage family was 

recorded 20 minutes after ECG injection.

Recordings were performed with voltage pulses between −80 mV and +40 mV at 20 mV 

increments for the prepulse from a holding potential of −80 mV and then holding at −30 

mV for the tail pulse before repolarizing to −80 mV (see figures for protocols). Clampfit 

(Molecular Devices) and GraphPad Prism software (GraphPad, San Diego, CA, USA) were 

used to analyze data and produce figures. Raw and normalized tail currents were fitted with 

a single Boltzman function:

g = A1 − A2

1 + exp V 1
2

− V /V s y + A2
Equation 1:

where g is the normalized tail conductance, A1 is the initial value at −∞, A2 is the final 

value at +∞, V1/2 is the half-maximal voltage of activation and Vs the slope factor. We fitted 

activation and deactivation kinetics with single exponential functions.

Chemical structures and silico docking

We plotted and viewed chemical structures and electrostatic surface potential using Jmol, an 

open-source Java viewer for chemical structures in 3D: http://jmol.org/. For in silico ligand 

docking predictions of binding to KCNQ5 we performed unguided docking of ECG using 

SwissDock with CHARMM forcefields [22, 23] and a chimeric human neuronal KCNQ/

Xenopus KCNQ1 cryo-electron microscopy model as previously described [24].

Ultra-Performance Liquid chromatography-mass spectrometry (UPLC-MSe)

A 30-minute UPLC-MSe protocol was performed using a Waters Synapt G2 with a flow rate 

of 0.1 mL/min. Starting with 98% solution A (0.1% formic acid in water) and 2% solution 

B (100% acetonitrile), the protocol linearly ramps to 70% solution A and 30% solution B 

for the first 20 minutes. From minutes 20–25, another linear ramp begins until reaching 3% 

solution A and 97% solution B, which is held for 2.5 additional minutes; after which, a 1.5 

minute linear ramp brings solution A back to 98% and solution B to 2%, which is held until 

the end of the run. MSe continuum data was obtained in positive mode with the analyzer 

mode set to resolution, with a mass rage of 105 Da to 2000 Da, scanning every 250ms. 

The low energy was 6V, high energy ramped from 20–45V, with the cone voltage being 

30V. The temperature was kept at 110°C. The resulting chromatograms were analyzed using 

MassLynx. The spectra for the prominent peaks was analyzed and searched using the Human 

Metabolomics Database (HMDB), protonated under positive mode with a 0.05 Da molecular 

weight tolerance. The 459.110 Da peak was identified as HMDB0003153 (EGCG).
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Mesenteric artery myography

Male wistar rats, 12 weeks old (Janvier Labs, France) were euthanized by cervical 

dislocation and used in accordance with Directive 2010/63EU on the protection of animals 

used for scientific purposes, approved by the national ethics committee, Denmark. Rats 

were group-housed with regular 12-hour light/dark cycles, in clear plastic containers with 

ad libitum access to food and water and underwent at least one week of habituation. 

The intestines were removed, and third-order mesenteric arteries were dissected in ice

cold physiological saline solution containing (in mM): 121 NaCl, 2.8 KCl, 1.6 CaCl2, 

25 NaHCO3, 1.2 KH2HPO4, 1.2 MgSO4, 0.03 EDTA, and 5.5 glucose. Segments, 2 

mm in length, of mesenteric artery were mounted on 40 μm stainless steel wires in a 

myograph (Danish Myo Technology, Aarhus, Denmark) for isometric tension recordings. 

The chambers of the myograph contained PSS maintained at 37°C and aerated with 

95% O2/5% CO2. Changes in tension were recorded by PowerLab and Chart software 

(ADInstruments, Oxford, United Kingdom). The arteries were equilibrated for 30 minutes 

and normalized to passive force. Artery segments were precontracted with 10 μM 

methoxamine (Sigma; Copenhagen, Denmark) in the absence or presence of linopirdine 

(10 μM) (Sigma; Copenhagen, Denmark), before application of ECG, EGCG or EC (Sigma; 

Copenhagen, Denmark).

Results

Green tea extract inhibits KCNQ1/E1 and activates an endogenous oocyte Na+ current

EGCG is one of the major components of green tea, with the average cup containing 

approximately 78 mg of EGCG [25]. EGCG inhibits some voltage-gated potassium 

channels, such as the cardiac potassium channels human ether-a-go-go (HERG) [26] and 

KCNQ1/E1 (IC50 of 6 and 30.1 μM, respectively) [27]. Due to the high concentration of 

EGCG in green tea, we hypothesized that green tea extract (GTE) would inhibit KCNQ1/E1.

Using two-electrode voltage clamp (TEVC) recording of currents expressed in Xenopus 
laevis oocytes injected with cRNA encoding KCNQ1 and KCNE1 (10 ng and 2 ng), we 

studied the effects on KCNQ1/E1 of 1% GTE prepared using a methanolic extraction of 

organic green tea (Fig. 1D, 1E). As expected, we saw inhibition (66.3 ± 8.8 % at +40 mV 

prepulse) with the addition of 1% GTE, which is also reflected in the tail and prepulse 

current analysis (Fig. 1F), with no statistically significant change in EM (Fig. 1G).

Interestingly, a ‘hook’ was clearly present in the KCNQ1/E1 tail current at the more 

depolarized prepulse sweeps (0–40 mV), only in the presence of GTE (Fig. 1H). In 

inactivating channels, such as KCNQ1 without accessory proteins (Fig. 1I), a similar hook 

appears in the tail current as the membrane potential becomes more negative, causing the 

channel to pass through an open state when going from an inactivated state to a closed state 

[28]. As the inactivating property of KCNQ1 is eliminated when KCNQ1 is associated with 

KCNE1 [29], the appearance of a hook in the tail current was highly unusual.

Because it seemed unlikely that GTE was inducing inactivation in a non-inactivating channel 

[30], we next investigated the impact GTE had on endogenous oocyte currents (Fig. 1J). In 

the presence of 1% GTE, a negative current was induced by the more depolarizing pulses 
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(Fig. 1J, K). In addition, GTE shifted the unclamped oocyte EM from approximately −30 

mV to +60 mV, which is close to the reversal potential for Na+ under the ionic conditions 

used (Fig. 1L). These data suggest that GTE activates an endogenous voltage-dependent Na+ 

channel, similar to one previously observed [31–34].

Since this inward current could explain the hook induced by GTE in recordings of 

KCNQ1/E1 currents, we subtracted the endogenous currents from the KCNQ1/E1 currents

—causing the “hook” to disappear (Fig. 1M). We still observed inhibition in the corrected 

prepulse and tail current (Fig. 1N).

GTE strongly activates KCNQ5 with lesser effects on KCNQ2/Q3

Since, as expected, GTE inhibited KCNQ1/E1, we next examined KCNQ5. GTE 

(1%) strongly hyperpolarized the voltage-dependence of KCNQ5, inducing almost 80% 

constitutive activation at −80 mV (Fig. 2A, B). Accordingly, GTE (1%) induced a −12 ± 

1.8 mV shift in EM of unclamped oocytes expressing KCNQ5 (Fig. 2C). KCNQ5 plays a 

role in regulating vascular smooth muscle tone. It is also thought to contribute to M-current 

production, which regulates neuronal firing [6], although KCNQ2/Q3 channels compose the 

main molecular correlates of the M-current [35]. GTE slightly decreased peak KCNQ2/3 

current at positive potentials (Fig. 2D, E), although it increased raw and normalized tail 

current at −60 mV (Fig. 2F), which could explain the hyperpolarizing shift in unclamped 

EM of oocytes expressing KCNQ2/Q3 (Fig. 2G). Interestingly, GTE slowed KCNQ2/3 

activation, e.g., from τ = 44.2 ± 0.93 to 159.5 ± 10.6 ms at +40 mV (Fig. 2H).

Black tea activates KCNQ5 in the absence of milk

Black tea, typically consumed with milk, is preferred over green tea in many countries, such 

as United Kingdom. Black tea extract (1%, made from PG Tips brand teabags) was effective 

at hyperpolarizing the voltage-dependence of KCNQ5 activation with a V0.5activation shift 

of −10.7 ± 2.4 mV (Fig. 3A–C) and the EM of cells expressing KCNQ5 shifting −11.7 ± 

4.9 mV (control mean EM = −58.0 mV, black tea extract addition mean EM = −69.7, p = 

0.054) (Fig. 3D). Interestingly, milk inhibited the KCNQ5 augmenting effects of black tea. 

Milk had no effect alone on KCNQ5 activity, but in combination with black tea resulted in 

KCNQ5 current inhibition (Fig. 3A–C) and depolarization of KCNQ5-expressing oocytes 

(Fig. 3D).

Epicatechin gallate activates KCNQ5

While effects on some Kv channels have been documented for EGCG, other compounds 

in tea are little explored in this respect. As mentioned above, the main catechins found 

in tea other than EGCG are epicatechin (EC), epigallocatechin (EGC), and epicatechin 

gallate (ECG) (Fig. 4A). Due to the striking effect green and black teas had on KCNQ5, 

but the unwanted inhibitory effects on KCNQ1/E1 that recapitulate those previously found 

for EGCG, we next studied the individual effects of EC, EGC, and ECG on KCNQ5. The 

addition of 100 μM EC yielded negligible effects on KCNQ5 current magnitude, voltage 

dependence (Fig. 4B, C) and unclamped EM (Fig. 4D). EGC (100 μM) slightly increased 

KCNQ5 activity (19 ± 9 % at +40 mV) (Fig. 4E) but did not alter V0.5activation or unclamped 

EM (Fig. 4E–G). In contrast, ECG (100 μM) robustly increased KCNQ5 activation at 
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negative potentials by shifting the V0.5activation by −17.1 ± 3.1 mV (Fig. 4H, I). Accordingly, 

GTE hyperpolarized the unclamped EM by −11.0 ± 2.1 mV (Fig. 4J). Unlike whole GTE, 

these compounds did not induce a hook in the tail currents, suggesting these compounds also 

do not activate the endogenous oocyte voltage-dependent Na+ channel.

Catechin activation of KCNQ5 is isoform-selective

Neither EC, EGC, nor ECG (all 100 μM) altered KCNQ1/E1 activity (Fig. 5A–I). To further 

test the specificity of ECG, the most KCNQ5-activating of the three, we quantified its effects 

on KCNQ2/Q3 and found it to be essentially inactive on this heteromeric neuronal channel 

(Fig. 6A, B). Thus, ECG in particular is a relatively isoform-specific KCNQ5 activator.

Current augmentation by ECG requires KCNQ5-R212

Unbiased in silico docking identified KCNQ5-R212, at the junction of S4 and the S4/S5 

linker, as a predicted binding site for ECG (Fig. 7A–C). Accordingly, in contrast to effects 

on wild-type KCNQ5 (Fig. 4), KCNQ5-R212A channels were insensitive to ECG (100 μM), 

exhibiting negligible changes in current magnitude (Fig. 7D, E), V0.5activation (Fig. 7E) and 

unclamped EM (Fig. 7F). We next assessed ECG sensitivity of KCNQ4/Q5 heteromers, 

which are also thought to help control arterial tone at rest. Interestingly, ECG slightly 

inhibited (Fig. 7G) and negative-shifted the V0.5activation (by-12.7 ± 0.8 mV) (Fig. 7H) 

of KCNQ4/5, with negligible effects on unclamped EM (Fig. 7I). Thus, the docking and 

electrophysiology results suggested KCNQ5-R212 is necessary for the activation by, and 

possibly binding of, ECG; co-assembly with KCNQ4 reduces the efficacy of ECG on 

KCNQ5. These findings are summarized by comparing ΔV0.5activation (Fig. 7J) and current 

fold-increase versus voltage (Fig. 7K).

The predicted ECG binding site, and critical residue R212, are located deep into the 

membrane near the intracellular face (Fig. 7B), albeit potentially accessible from the 

extracellular face via the retigabine/GABA binding pocket entrance between S5 and 

the VSD (Fig. 7L). We injected ECG into oocytes (to an intracellular concentration 

of approximately 100 μM) expressing KCNQ5 and recorded the effects 20 minutes post

injection compared to pre-injection currents and to water-injected controls. We did not 

observe KCNQ5 current augmentation from intracellular ECG or water (Fig. 7M, N); 

neither did either alter EM of KCNQ5-expressing oocytes (Fig. 7O). We therefore conclude 

that despite the depth of KCNQ5-R212, it is most likely that ECG accesses it via the 

extracellular side through the retigabine/GABA binding pocket [9, 24].

Heated EGCG inhibits KCNQ1/E1 and activates KCNQ5.—Contrary to a prior 

report [27], we found that freshly prepared EGCG (100 μM) (solubilized at room 

temperature) had no effect on KCNQ1/E1 current magnitude (Fig. 8A, B); neither did it alter 

voltage dependence (Fig. 8C) or EM of KCNQ1/E1-expressing oocytes (Fig. 8D). However, 

when EGCG was first heated to 35°C, then subsequently stored at 4°C before being returned 

to room temperature before use, its ability to inhibit KCNQ1/E1 at depolarized voltages was 

restored (Fig. 8E–G). In addition, its ability to hyperpolarize EM of KCNQ1/E1-expressing 

oocytes, likely because of small increases in current at negative potential (Fig. 8G), was 

uncovered (Fig. 8H). Freshly made EGCG was able to increase KCNQ5 current at −80 mV 
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at concentrations above 1 μM (Fig. 8I, J) (maximal effect was 2.7-fold, at 10 μM), and at 

100 μM shifted the voltage dependence of activation by −7.6 ± 2.5 mV (Fig. 8K) and the 

EM of KCNQ5-expressing oocytes by −8.0 ± 1.9 mV (Fig. 8L). Strikingly, prior heating 

of EGCG to 35°C followed by storage at 4°C then returning to room temperature before 

recording resulted in a KCNQ5 current increase of 25-fold at −80 mV (100 μM EGCG) (Fig. 

8M, N). Preheated EGCG also had greater effects than those of freshly prepared EGCG on 

KCNQ5 voltage-dependence of activation (Fig. 8O) (a negative shift of −11.7 ± 2.1 mV) and 

EM of KCNQ5-expressing oocytes (Fig. 8P) (a negative shift of −12.0 ± 2.1 mV).

Fresh and heated EGCG have additive effects on KCNQ5 activation.—Liquid 

chromatography mass spectrometry (LC-MS) analysis revealed that green and black tea 

extracts each contained (Fig. 9A) the prominent peak at 459 Da also observed in fresh 

(non-heated) EGCG (Fig. 9B). The 459 Da peak disappeared upon heating of EGCG (Fig. 

9C). As both green and black tea activated KCNQ5 even more effectively than heated EGCG 

(Fig. 2, 3,8), we hypothesized that rather than the fresh EGCG 459 Da peak impairing 

KCNQ5 activation, its degradation upon heating produces other compounds (or modified 

versions of EGCG) more effective at KCNQ5 activation and potentially additive with that of 

the 459 Da moiety. To test this hypothesis, we studied effects of combinations of compounds 

each at 10 μM. Fresh EGCG could not induce KCNQ5 activation in combination with ECG 

(Fig. 10A–C), while at 10 μM heated EGCG caused a −7.1 ± 1.6 mV shift in KCNQ5 

activation voltage dependence (Fig. 10D, E) and hyperpolarized EM by −8.7 ± 2.5 mV 

(Fig. 10F). Strikingly, the combination of heated and fresh EGCG produced larger shifts, 

in both KCNQ5 activation voltage dependence (−10.4 ± 1.7 mV) (Fig. 10G, H) and EM 

(−14.2 ± 2.0 mV) (Fig. 10I). Further addition of ECG produced mixed effects and less 

of a hyperpolarizing shift (Fig. 10J–L). The results suggest that the fresh EGCG 459 Da 

moiety is not the most effective EGCG moiety with respect to KCNQ5 activation, but it 

does not impair KCNQ5 activation and may synergize with other EGCG moieties present in 

tea extract to enhance KCNQ5 activation. Further, it is possible that one or more of these 

moieties may compete with ECG for a KCNQ5 binding site.

ECG and EGCG KCNQ-dependently relax rat mesenteric arteries

As KCNQ5 is expressed in vascular smooth muscle cells and plays a role in regulating 

vascular tone, we studied the effects of tea catechins on ex vivo segments of rat mesenteric 

arterial tone under isometric tension at 37°C in the absence or presence of the relatively 

KCNQ-specific inhibitor linopirdine. ECG relaxed arterial segments pre-contracted with 

methoxamine. This relaxation was partially linopirdine-sensitive (Fig. 11A). EGCG was 

even more efficacious at relaxing mesenteric artery and its effects were highly linopirdine

sensitive (Fig. 11B). In contrast, and consistent with lack of effects on KCNQ5 in oocytes, 

epicatechin did not relax mesenteric artery segments (Fig. 11C). The EC50 for ECG 

relaxation of arteries was 3.1 ± 0.4 μM, which was shifted to 26 ± 0.1 μM by linopirdine 

(n = 6) (Fig. 11D). Quantification of EC50 values for EGCG in the presence of linopirdine 

was not possible because it eliminated the relaxation response to EGCG (illustrating the 

strong KCNQ-dependence of EGCG effects), but the Rmax for EGCG relaxation of arterial 

segments was 64 ± 13 %, shifted to 5 ± 4 % by linopirdine. Consistent with in vitro 
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effects on KCNQ5, the myography data strongly suggested that ECG and EGCG are KCNQ

dependent vasodilators.

Discussion

Tea played a role in creating the world as we know it today. As the consumption of 

tea spread across the globe, it changed the areas it encountered. It was used as a status 

symbol, led to new trading routes, helped with religious practices, and even played a role 

in instigating the American Revolution [36]. With more than 2 billion people currently 

consuming tea daily in one form or another, it is still playing a significant role in society. 

Not only has tea had significant cultural and historical impacts on the world, there have also 

been many reported health benefits to drinking tea—dating as far back as the Shang dynasty 

(1766–1050 BC), during which tea leaves were used as an herbal remedy in conjunction 

with other forest herbs [36]. For as long as tea has been around, it has been considered to 

have medicinal properties. Though people have only recently started studying the science 

behind tea’s perceived health benefits, there is a growing pool of evidence that drinking tea, 

especially green tea, can help with cardiovascular health and can inhibit carcinogenesis [4–

7]. As exciting as these results are, the mechanism behind these health benefits has remained 

largely elusive.

Other commonly consumed plants that, like green and black tea [37], are known to have 

hypotensive properties, were also recently shown [9] to activate KCNQ5, a voltage-gated 

potassium channel expressed in vascular smooth muscle that regulates vascular tone. Here, 

we show that 1% methanol-extracted black and green teas are capable of strongly activating 

KCNQ5. At hyperpolarized potentials, GTE increased the tail current by nearly 20-fold and 

diminished the voltage-dependence of the channel. Unlike KCNQ5, KCNQ1/E1, necessary 

for the cardiac delayed rectifier K+ current, was inhibited by GTE—likely due to the high 

concentration of EGCG in GTE. Similar to other hypotensive plants studied [9], GTE had 

relatively minimal effects on KCNQ2/Q3 complexes.

Interestingly, in the present study GTE shifted the unclamped, non-injected oocyte EM by 

approximately 90 mV to +60 mV, close to the reversal potential for Na+ under the ionic 

conditions used (Fig. 1L) and induced a negative current. These data are consistent with 

GTE activating an endogenous voltage-dependent Na+ current, similar to one previously 

described by several different groups [31–34]. The previously described current is non

inactivating, has a shallow voltage dependence and activates at more depolarized potentials 

than typical voltage-dependent Na+ channels; it is also activated during staurosporine

induced apoptosis in Xenopus oocytes [33]. It is blocked by the calcium channel blocker 

verapamil (which is known to be relatively nonselective) and by lidocaine, and is relatively 

insensitive to tetrodotoxin [32, 33]. The Na+ that enters the cell through this channel is 

thought to be required for staurosporine-induced apoptosis, rather than it being simply 

activated by staurosporine but unrelated to the apoptotic process [33]. The current has 

been previously annotated as Nax [34]. There is to date no known molecular correlate, 

and no known mammalian analog, suggesting the possibility that this channel has a unique 

molecular architecture, or is confined to non-mammalian chordates and possibly solely 
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amphibians. Future studies could determine whether GTE induces Xenopus oocyte apoptosis 

and if there is a mammalian Nax channel with unusual sequence or structure.

As we discovered in the present study for ECG (Fig. 7), we previously found that aloperine, 

the KCNQ5-selective activator from the hypotensive plant Sophora flavescens, binds at or 

close to R212 [9]. This site is also required for activation of other KCNQ isoforms by 

botanical therapeutic compounds; E-2-dodecenal from Coriandrum sativum and Eryngium 
foetidum binds to the equivalent position in KCNQ2 [38], as do mallotoxin and 3-ethyl-2

hydroxy-2-cyclopenten-1-one from Mallotus oppositifolius in KCNQ1, and mallotoxin in 

KCNQ2/Q3 channels [39]. The R212 site is juxtapositioned between the voltage sensor 

foot and the S4-S5 linker that connects the voltage-sensing domain to the pore module in 

KCNQ channels. Despite this location close to the intracellular side, we found that ECG 

was only effective at shifting the voltage dependence of KCNQ5 activation if applied from 

the extracellular face, suggesting it accesses R212 from the outside of the cell. The region 

containing KCNQ5-R212 is highly influential in KCNQ channel gating, and regulation by 

the endogenous soluble lipid-derived phosphatidylinositol 4,5-bisphosphate (PIP2) that is 

required for normal KCNQ activation [40]. R212 and its equivalents form part of a binding 

pocket that accommodates not just plant metabolites, but also endogenous mammalian 

metabolites and synthetic drugs such as the anticonvulsants retigabine and gabapentin, and 

the neurotransmitter γ-aminobutyric acid (GABA) [24, 41–44].

The polyphenols in tea leaves have multiple promising bioactive properties. The main 

catechins are EC, EGC, ECG, and EGCG. Of these compounds, EGCG has been the most 

widely studied. It has pro-oxidant properties in cancer cells, which help induce apoptosis. 

Additionally, EGCG has the highest antioxidant activity out of the catechins and has been 

shown to chelate metal ions, which can help maintain metal homeostasis in chronic diseases 

like diabetes, cardiovascular disease, and atherosclerosis. EGCG also was shown to inhibit 

KCNQ1/E1 channels, which are expressed in cardiac myocytes and epithelia, but not in 

vascular smooth muscle, which lacks KCNE1, and the human ether-a-go-go (hERG) channel 

[27]. Inhibition of these channels could be problematic as life-threatening disorders, such 

as congenital long QT syndrome, are often associated with dysfunction or loss-of-function 

mutations in these channels [45, 46], and hERG blockade by drugs can cause acquired long 

QT syndrome, especially when combined with loss-of-function mutations in hERG or its 

cardiac β subunits [47, 48]. However, EGCG also inhibits the cardiac voltage-gated sodium 

channel and cardiac L-type calcium channel, and did not prolong the QT interval when 

applied directly to isolated guinea pig hearts [27], which express similar IKs and IKr currents 

to those of human hearts (generated by KCNQ1/E1 and hERG/KCNE2). Thus, if the human 

heart is safely exposed to EGCG in the tens of micromolar range and above, it could 

be because of the overall balance of inhibitory effects on both excitatory and inhibitory 

currents, such as occurs, e.g., with the anti-arrhythmic drug, amiodarone [49, 50].

While we found that addition of cow’s milk to black tea eliminated the KCNQ5 augmenting 

effects of black tea in vitro (Fig. 3), a prior study showed that black tea ingestion resulted 

in robust increases in plasma levels of total phenols, catechins, quercetin and kaempferol 

that were unaffected by addition of sem-skimmed cow’s milk to the ingested tea [51]. While 

another study suggested that milk impairs the increased antioxidant capability of whole 
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blood derived from black tea [52], others found that milk did not impair this effect of black 

tea consumption [53]. We conclude that in our in vitro experiments, milk constituents bind 

to black tea polyphenols and prevent them from activating KCNQ5, but that when ingested, 

this binding would be released, e.g., in the stomach, to permit release of polyphenols such 

as ECG into a free state that could permit KCNQ5 activation. The overall human plasma 

levels of total tea-derived phenols peak at 400 μM about an hour after a single cup of 

black tea [51]. Depending on how much of this constitutes ECG, EGCG and KCNQ5-active 

EGCG derivatives (that form at/after heating to at least 35°C as occurs during preparation 

or ingestion of tea), this is well within the concentration range where we see robust effects 

on KCNQ5 activation (e.g., Fig. 10) and vasodilation (Fig. 11). This strongly supports the 

contention that polyphenol activation of KCNQ5 underlies at least some of the vascular 

health benefits of tea.

For this study, we also examined EC, EGC and ECG. Though EC and EGC had little 

to no effect on the KCNQ channels tested, ECG had a striking hyperpolarizing effect on 

the voltage dependence of KCNQ5 activation, with minimal effects on KCNQ1/E1 and 

KCNQ2/Q3. Although ECG has been studied for its anticancer properties [54, 55], little 

work has been conducted with ECG and cardiovascular health. Our results suggest that 

both ECG and EGCG contribute to the hypotensive properties of tea through KCNQ5 

activation, making ECG in particular (because it lacks KCNQ1/E1 and hERG inhibition) 

an interesting candidate for potential drug development, possibly involving medicinal 

chemistry approaches to optimize its safety and efficacy profiles. Future studies may also 

target elucidation of the molecular changes that occur in EGCG upon heating to body 

temperature that enhance its KCNQ5 activation efficacy (after prior heating to 35°C herein) 

and permit it to relax arteries (studies conducted at 37°C herein). KCNQ5 loss-of-function 

mutations can also lead to intellectual disability or epileptic encephalopathy [56], therefore 

the identification of KCNQ5 selective activators could also help drug development for 

these disorders. In summary, activation of the vascular and neuronal KCNQ5 potassium 

channel contributes significantly to vasodilation by both green and black tea. The tea 

polyphenols ECG and EGCG are major contributors to this effect, via hyperpolarization 

of the voltage dependence of KCNQ5 activation. ECG and EGCG or optimized derivatives 

of these compounds are candidates for future anti-hypertensive drug development.
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Fig. 1. 
Green tea extract inhibits KCNQ1/E1 channels. All error bars indicate SEM. A: Image of 

the tea producing plant, Camellia sinensis. B: Topological representation of a Kv channel 

showing two of the four α subunits that comprise a channel. PH, pore helix; VSD, voltage 

sensing domain. C: Schematic of heteromeric composition of KCNQ2/KCNQ3 (left) and 

KCNQ1/KCNE1 (right) channels. D: Voltage protocol used throughout the study (20 

mV prepulse increments). E: Mean TEVC current traces for KCNQ1/E1 cRNA-injected 

Xenopus oocytes (10 ng/ 2 ng) as indicated, in the absence (Control) or presence of 1% 

green tea extract (GTE) (n = 5). Dashed line here and throughout indicates the zero-current 

level. F: Left, mean tail current; right, mean prepulse peak current verses prepulse voltages 

for traces as in E (n = 5). G: Scatter plot of unclamped membrane potential (EM) for cells as 

in E (n = 5). Statistical analyses by two-way ANOVA. H: Magnified mean tail currents from 

E (left, control; right, green tea extract). I: Mean TEVC current trace for KCNQ1 (left), with 

mean tail current magnified (right). J: Mean TEVC current traces for uninjected oocytes in 

the absence (Control) or presence of GTE. K: Left, mean tail current; right, mean tail current 
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fold-change verses prepulse voltage for traces as in J (n = 5). L: Scatter plot of unclamped 

membrane potential (EM) for cells as in E (n = 5). Statistical analyses by two-way ANOVA. 

M: Mean TEVC currents from uninjected oocytes (J) subtracted from mean KCNQ1/E1 

currents (E). N: Left, mean tail current; right, mean prepulse current verses prepulse voltage 

for traces as in M (n = 5).
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Fig. 2. 
Green tea activates KCNQ5, with mixed effects on KCNQ2/Q3. All error bars indicate 

SEM. A: Mean KCNQ5 current traces in the absence (Control) and presence of 1% green 

tea extract (GTE) (n = 5). B: Left, mean tail current; right, mean normalized tail current 

(G/Gmax) verses prepulse voltage for traces as in A (n = 5). C: Scatter plot of unclamped 

membrane potential (EM) for cells as in A (n = 5). Statistical analyses by two-way ANOVA. 

D: Mean KCNQ2/KCNQ3 traces in the absence and presence of 1% GTE (n = 4). E: Mean 

prepulse currents verses prepulse voltages for traces as in D (n = 4). F: Left, mean tail 

current; right, mean normalized tail current (G/Gmax) verses prepulse voltage for traces as 

in D (n = 4). G: Scatter plot of unclamped membrane potential (EM) for cells as in D (n = 

4). Statistical analyses by two-way ANOVA. H: Scatter plot of activation rate τ values in the 

absence and presence of 1% GTE for 0, 20, and 40 mV for traces as in D (n = 4).

Redford et al. Page 17

Cell Physiol Biochem. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Black tea activates KCNQ5, an effect inhibited by milk. All error bars indicate SEM. A: 

Mean KCNQ5 current traces in the absence (Control) and presence of 1% extract of PG Tips 

brand black tea and/or milk (n = 4–5). B: Mean tail current versus prepulse voltage for traces 

as in A (n = 4–5). C: Mean normalized tail current (G/Gmax) versus prepulse voltage for 

traces as in A (n = 4–5). D: Scatter plot of unclamped membrane potential (EM) for cells as 

in A (n = 4–5). Statistical analyses by two-way ANOVA.
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Fig. 4. 
Epicatechin gallate activates KCNQ5 channels. All error bars indicate SEM. A: Chemical 

structures of compounds used in this study, from left to right: (−)-epicatechin (EC), (−)

epigallocatechin (EGC), and (−)-epicatechin gallate (ECG). B: Mean KCNQ5 traces in 

the absence (Control) and presence of 100 μM EC (n = 4). C: Left, mean tail current; 

right, mean normalized tail current (G/Gmax) verses prepulse voltage for traces as in B 

(n = 4). D: Scatter plot of unclamped membrane potential (EM) for cells as in B (n = 4). 

Statistical analyses by two-way ANOVA. E: Mean KCNQ5 traces in the absence (Control) 

and presence of 100 μM EGC (n = 3). F: Left, mean tail current; right, mean normalized 

tail current (G/Gmax) verses prepulse voltage for traces as in E (n = 3). G: Scatter plot 

of unclamped membrane potential (EM) for cells as in E (n = 3). Statistical analyses by 

two-way ANOVA. H: Mean KCNQ5 traces in the absence (Control) and presence of 100 μM 

ECG (n = 4). I: Left, mean tail current; right, mean normalized tail current (G/Gmax) verses 

prepulse voltage for traces as in H (n = 4). J: Scatter plot of unclamped membrane potential 

(EM) for cells as in H (n = 4). Statistical analyses by two-way ANOVA.
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Fig. 5. 
EC, EGC and ECG have negligible effects on KCNQ1/E1 channels. All error bars indicate 

SEM. A: Mean KCNQ1/E1 traces in the absence (Control) and presence of 100 μM EC (n = 

4). B: Left, mean tail current; right, mean normalized tail current (G/Gmax) verses prepulse 

voltage for traces as in A (n = 4). C: Scatter plot of unclamped membrane potential (EM) 

for cells as in A (n = 4). Statistical analyses by two-way ANOVA. D: Mean KCNQ1/E1 

traces in the absence and presence of 100 μM EGC (n = 5). E: Left, mean tail current; right, 

mean normalized tail current (G/Gmax) verses prepulse voltage for traces as in D (n = 5). 

F: Scatter plot of unclamped membrane potential (EM) for cells as in D (n = 5). Statistical 

analyses by two-way ANOVA. G: Mean KCNQ1/E1 traces in the absence and presence 

of 100 μM ECG (n = 4). H: Left, mean tail current; right, mean normalized tail current 

(G/Gmax) verses prepulse voltage for traces as in G (n = 4). I: Scatter plot of unclamped 

membrane potential (EM) for cells as in G (n = 4). Statistical analyses by two-way ANOVA.
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Fig. 6. 
Epicatechin gallate has negligible effects on KCNQ2/Q3. All error bars indicate SEM. A: 

Mean KCNQ2/Q3 traces in the absence (Control) and presence of 100 μM ECG (n = 5). 

B: Left, mean tail current; right, mean normalized tail current (G/Gmax) verses prepulse 

voltage for traces as in A (n = 5).
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Fig. 7. 
Epicatechin gallate requires KCNQ5-R212 for current augmentation. All error bars indicate 

SEM. A: Electrostatic surface potential plot (red, negative; blue, positive) and molecular 

structure od epicatechin gallate (ECG). B: Unbiased results showing all predicted ECG 

(blue) docking poses on the transmembrane region of a neuronal KCNQ structural model 

based on the Xenopus KCNQ1 cryo-EM structure. C: Close-up of the model in panel B 

showing the ECG (blue) pose with the most negative predicted ΔG score, close to the 

KCNQ5-R212 equivalent position (pink). D: Mean KCNQ5-R212A traces in the absence 

(Control) and presence of 100 μM ECG (n = 5). E: Left, mean tail current; right, mean 

normalized tail current (G/Gmax) verses prepulse voltage for traces as in D (n = 5). F: 

Scatter plot of unclamped membrane potential (EM) for cells as in D (n = 5). Statistical 
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analyses by two-way ANOVA. G: Mean KCNQ4/Q5 traces in the absence (Control) and 

presence of 100 μM ECG (n = 4). H: Left, mean tail current; right, mean normalized 

tail current (G/Gmax) verses prepulse voltage for traces as in G (n = 4). I: Scatter plot 

of unclamped membrane potential (EM) for cells as in G (n = 4). Statistical analyses by 

two-way ANOVA. K: ΔV0.5activation of KCNQ5, KCNQ4/Q5, and KCNQ5-R212A induced 

by 100 μM ECG (n = 4–5). J: Tail current fold-change of KCNQ5, KCNQ4/Q5, and 

KCNQ5-R212A induced by 100 μM ECG (n = 4–5). L: A view from the extracellular side 

of the predicted ECG binding site in panel C. M: Mean KCNQ5 traces in the absence 

(Control) and presence of injected ECG (50 nl, 2 mM in water) or water as indicated (n = 

5). N: Left, mean tail current; right, mean normalized tail current (G/Gmax) verses prepulse 

voltage for traces as in M (n = 5). O: Scatter plot of unclamped membrane potential (EM) for 

cells as in M (n = 5). Statistical analyses by two-way ANOVA.
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Fig. 8. 
Heating EGCG enables KCNQ1/E1 inhibition and KCNQ5 activation. All error bars 

indicate SEM. A: Mean KCNQ1/E1 traces in the absence (Control) and presence of 100 

μM fresh EGCG (n = 4). B: KCNQ1/E1 tail current fold-change versus voltage for traces as 

in A (n = 4). C: Left, mean tail current; right, mean prepulse current versus prepulse voltage 

for traces as in A (n = 4). D: Scatter plot of unclamped membrane potential (EM) for cells 

as in A (n = 4). Statistical analyses by two-way ANOVA. E: Mean KCNQ1/E1 traces in 

the absence (Control) and presence of 100 μM heated EGCG (n = 4). F: KCNQ1/E1 tail 

current fold-change versus voltage for traces as in E (n = 4). G: Left, mean tail current; 

right, mean prepulse current versus prepulse voltage for traces as in E (n = 4). H: Scatter 

plot of unclamped membrane potential (EM) for cells as in E (n = 4). Statistical analyses 

by two-way ANOVA. I: Mean KCNQ5 traces in the absence (Control) and presence of 100 

μM fresh EGCG (n = 4). J: KCNQ5 tail current fold-change versus voltage for traces as in 

I, for a range of fresh EGCG concentrations (n = 4). K: Left, mean tail current; right, mean 

normalized tail current (G/Gmax) versus prepulse voltage for traces as in I (n = 4). L: Scatter 

plot of unclamped membrane potential (EM) for cells as in I (n = 4). Statistical analyses by 

two-way ANOVA. M: Mean KCNQ5 traces in the absence (Control) and presence of 100 

μM heated EGCG (n = 4). N: KCNQ5 tail current fold-change versus voltage for traces as in 

M (n = 4). O: Left, mean tail current; right, mean normalized tail current (G/Gmax) versus 

prepulse voltage for traces as in M (n = 4). P: Scatter plot of unclamped membrane potential 

(EM) for cells as in M (n = 4). Statistical analyses by two-way ANOVA.
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Fig. 9. 
LC-MS analysis of tea, fresh and heated EGCG. A: LC-MS mass fragmentation traces of 

green tea and PG Tips black tea extracts as indicated. EGCG peak boxed. B: LC-MS traces 

of fresh EGCG; lower, main peaks versus time; upper, mass fragmentation showing mass/

charge (m/z). Main EGCG peak boxed. C: LC-MS traces of heated EGCG; lower, main 

peaks versus time; upper, mass fragmentation showing mass/charge (m/z).
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Fig. 10. 
Fresh and heated EGCG have additive effects on KCNQ5 activation. All error bars indicate 

SEM. A: Mean KCNQ5 traces, tail current and normalized tail current (G/Gmax) verses 

prepulse voltage in the absence (Control) and presence of ECG + fresh (f) EGCG (each 

10 μM) (n = 4). B: KCNQ5 current fold-change versus voltage for traces as in D (n = 4). 

C: Scatter plot of unclamped membrane potential (EM) for cells as in D (n = 4). Statistical 

analyses by two-way ANOVA. D: Mean KCNQ5 traces, tail current and normalized tail 

current (G/Gmax) verses prepulse voltage in the absence (Control) and presence of 10 μM 

heated (h) ECG (n = 3). E: KCNQ5 current fold-change versus voltage for traces as in 

G (n = 3). F: Scatter plot of unclamped membrane potential (EM) for cells as in G (n 

= 3). Statistical analyses by two-way ANOVA. G: Mean KCNQ5 traces, tail current and 
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normalized tail current (G/Gmax) verses prepulse voltage in the absence (Control) and 

presence of 10 μM each heated (h) + fresh (f) ECG (n = 3). H: KCNQ5 current fold-change 

versus voltage for traces as in J (n = 4). I: Scatter plot of unclamped membrane potential 

(EM) for cells as in J (n = 4). Statistical analyses by two-way ANOVA. J: Mean KCNQ5 

traces, tail current and normalized tail current (G/Gmax) verses prepulse voltage in the 

absence (Control) and presence of 10 μM each ECG + heated (h) + fresh (f) ECG (n = 4). 

K: KCNQ5 current fold-change versus voltage for traces as in M (n = 4). L: Scatter plot 

of unclamped membrane potential (EM) for cells as in M (n = 4). Statistical analyses by 

two-way ANOVA.
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Fig. 11. 
ECG and EGCG are KCNQ-dependent vasorelaxants. All error bars indicate SEM. A: 

Concentration-response for relaxation of methoxamine-precontracted rat mesenteric artery 

by epicatechin gallate alone (black) or in the presence of linopirdine (red) (n = 6). B: 

Concentration-response for relaxation of methoxamine-precontracted rat mesenteric artery 

by epigallocatechin-3-gallate alone (black) or in the presence of linopirdine (red) (n = 7–

8). C: Concentration-response for relaxation of methoxamine-precontracted rat mesenteric 

artery by epicatechin alone (black) or in the presence of linopirdine (red) (n = 4). D: 

Scatter plot showing epicatechin gallate LogEC50 values for relaxation of methoxamine

precontracted rat mesenteric artery alone or in the presence of linopirdine as indicated 

(n = 6). *P<0.05 according to an unpaired Student’s t test. E: Scatter plot showing 
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epigallocatechin-3-gallate Rmax values for methoxamine-precontracted rat mesenteric artery 

alone or in the presence of linopirdine as indicated (n = 7–8). **P<0.001 according to an 

unpaired Student’s t test.
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