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Abstract
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assess-

ment that can be easily and quickly implemented in clinical-care and older-adult living envi-

ronments. This investigation generated models for wearable-sensor based fall-risk

classification in older adults and identified the optimal sensor type, location, combination,

and modelling method; for walking with and without a cognitive load task. A convenience

sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6

month retrospective fall occurrence) walked 7.62 m under single-task and dual-task condi-

tions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pel-

vis, and left and right shanks. Participants also completed the Activities-specific Balance

Confidence scale, Community Health Activities Model Program for Seniors questionnaire,

six minute walk test, and ranked their fear of falling. Fall risk classification models were

assessed for all sensor combinations and three model types: multi-layer perceptron neural

network, naïve Bayesian, and support vector machine. The best performing model was a

multi-layer perceptron neural network with input parameters from pressure-sensing insoles

and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC

score = 0.521). Head sensor-based models had the best performance of the single-sensor

models for single-task gait assessment. Single-task gait assessment models outperformed

models based on dual-task walking or clinical assessment data. Support vector machines

and neural networks were the best modelling technique for fall risk classification. Fall risk

classification models developed for point-of-care environments should be developed using

support vector machines and neural networks, with a multi-sensor single-task gait

assessment.

Introduction
Falls are a serious health concern for the elderly, with 30% of individuals older than 65 years
falling each year [1], costing approximately 20 billion dollars a year in the United States [2].
Approximately half of these falls occur during walking activities [3]. After experiencing a fall,
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fear of falling can reduce activities of daily living, leading to physical deterioration, social isola-
tion, and decreased quality of life [1,4].

Predicting fall risk would allow earlier interventions for fall risk reduction [5]. Wearable
sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can
be easily and quickly implemented in clinical-care and older-adult living environments. A wide
variety of wearable-sensor, inertial-based variables have been used to predict and classify fall
risk with varying levels of success (accuracy: 62–100%, specificity: 35–100%, sensitivity: 55–
99%) [6]. A detailed review of fall-risk assessment using inertial sensors is given in Howcroft
[6]. Gait data is a cyclic, time-series set (i.e., repeated steps). Network techniques have been
used in other healthcare applications with time-series data sets; such as, pathological heartbeat
detection [7], ventricular fibrillation detection [8], and detection of pathological brain dynam-
ics [9–11]. Broader, non-health care applications include turbulence [12], flow [13,14], and
chaotic [15] dynamics analysis.

While wearable-sensor-based fall risk prediction and classification have had some success,
optimized prediction and classification models that consider sensor type (e.g. accelerometer,
gyroscope, pressure-sensing insole), sensor placement (e.g. head, pelvis, sternum, ankles,
shoes), and model type (e.g. neural network, naïve Bayesian, decision tree, support vector
machine, logistic regression) [6] are required. Some studies compared sensor-based fall risk
predictive and classification capabilities to clinical questionnaire and assessment-based fall risk
predictive and classification capabilities [16–19] and most found that adding wearable sensor
data to the model improved fall risk prediction and classification compared to models based
only on clinical data [16–18]. However, no study has compared model performance using dif-
ferent sensor types, sensor body locations, or combinations of sensors. Furthermore, few stud-
ies [20–22] have assessed different model types to optimize fall risk classification and
predictive capabilities.

This paper presents a comprehensive investigation of fall-risk classification capabilities that
included two types of wearable sensors (accelerometers, pressure-sensing insoles), four acceler-
ometer locations (head, pelvis, left and right shank), and three types of models (neural network,
support vector machine, naive Bayesian). Furthermore, the effect of cognitive demand on fall
risk classification was assessed using single-task (ST) and dual-task (DT) gait. The objectives of
this study were to: (1) identify the best wearable-sensor type, location, and combination for
faller status classification (faller or non-faller), (2) determine whether single-task or dual-task
gait is more effective for faller status classification, and (3) determine if models based on wear-
able-sensor gait measurement outperform models based on clinical assessment for older-adult
faller classification.

Methods

Participants
A convenience sample of 100 people, 65 years or older, were recruited from the community
(Table 1). Participants were identified as fallers if they reported at least one fall during the six
months prior to study participation. Potential participants were excluded if they had a cogni-
tive disorder (self-reported) or were unable to walk for six minutes without an assistive device.

Table 1. Participant characteristics.

Participants (#) Age (years) Height (cm) Weight (kg) 6MWT distance (m)

Fallers 13 male, 11 female 76.3±7.0 165.2±10.3 71.9±14.3 446.6±101.4

Non Fallers 31 male, 45 female 75.2±6.6 165.1±9.9 73.1±13.4 455.8±102.4

doi:10.1371/journal.pone.0153240.t001

Wearable-Sensor Fall Classification in Older Adults

PLOS ONE | DOI:10.1371/journal.pone.0153240 April 7, 2016 2 / 16



The University of Waterloo, Office of Research Ethics approved the study and all participants
gave informed written consent.

Protocol
Participants reported six month retrospective fall occurrence, age, and sex. Body weight and
height were measured. Participants completed the Activities-specific Balance Confidence (ABC)
scale [23] and Community Health Activities Model Program for Seniors (CHAMPS) [24] ques-
tionnaires. They also ranked their fear of falling from 0 (no fear) to 10 (high level of fear).

Pressure-sensing insoles (F-Scan 3000E, Tekscan, Boston, MA) were equilibrated using
multi-point calibration (137.9, 275.8, 413.7 kPa), fit to the shoes, and calibrated. Accelerome-
ters (X16-1C, Gulf Coast Data Concepts, Waveland, MS) were attached to the posterior head
with a band, posterior pelvis with a belt, and lateral shank, just above the ankle, with a band.
Plantar pressure data were collected at 120 Hz and accelerometer data at 50 Hz.

In separate trials, the time to complete a 7.62 m (25 ft) walk with (dual task: DT) and with-
out (single task: ST) a cognitive load was recorded. The cognitive load was a verbal word flu-
ency task requiring the participants to say words starting with A, F, or S [25]. Participants also
completed the six minute walk test (6MWT) under standard, ST conditions [26]. The starting
letter and order of walking activities were randomized.

Data Processing
Gait velocities for ST and DT trials were calculated as 7.62 m divided by the time. Plantar-pres-
sure and accelerometer data were exported to Matlab v2010a to calculate outcome variables for
the 7.62 m ST and DT trials. Thirty plantar-pressure derived parameters were:

• Center of Pressure (CoP) path (Fig 1): Since the CoP path should advance monotonically
and anteriorly, posterior CoP path movements were identified as irregular. The number,
length, and duration of posterior deviations (PD) per stance phase were determined. Simi-
larly, smooth medial and lateral movements were expected. Deviations were defined as the
first derivative of the CoP ML signal exceeding a dual threshold of ± 0.5 mm/frame [27]. The
number, length, and duration of ML path deviations per stance were determined. Minimum,
maximum, mean, and median CoP path velocities were also calculated and normalized by
stance time. AP and ML coefficients of variation (CoV) for the stance phase CoP path were
calculated by determining the mean and standard deviation of CoP path positions at 1%
intervals, determined using ensemble averaging [28], for the entire stance phase and calculat-
ing the overall CoP path stance phase CoV as in Winter [29].

• Temporal: Cadence, stride time, stance time, swing time, percent stance time, percent double
support time, stride time symmetry index [30] between the left and right limbs, and CoV for
stride time, stance time, and swing time.

• Impulse: Impulse variables were determined from the total force-time curve (sum of forces
from all insole sensels, Fig 2) and calculated based on the area under the force-time curve
normalized by body mass (Ns/kg) for: I1 (foot-strike to first peak), I2 (first peak to mini-
mum), I3 (minimum to second peak), I4 (second peak to foot-off), I5 (foot-strike to mini-
mum), I6 (minimum to foot-off), and I7 (foot-strike to foot-off).

All variables were calculated for each stride for the left and right limbs for each walking con-
dition (ST and DT) before calculating means and standard deviations across both limbs (i.e.
left and right limb combined).
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For accelerometer data (Fig 3), the positive vertical axis was upwards, positive AP axis was
anterior, and positive ML axis was toward the participant’s right. Accelerometer-derived
parameters were:

• Descriptive statistics: Maximum, mean, and standard deviation of acceleration for the supe-
rior, inferior, anterior, posterior, right, and left axes.

• Temporal features: Cadence and stride time.

• Fast Fourier Transform (FFT) Quartile: Percentage of acceleration frequencies in the first
quartile (i.e., frequencies� 12.5 Hz) of an FFT frequency plot for vertical, AP, and ML axes.

• Ratio of even to odd harmonics (REOH): Proportion of the acceleration signal in phase with
stride frequency. The harmonic ratio is used to measure irregular accelerations and overall
gait pattern stability [31–33]. The harmonic ratio was calculated for vertical, AP, and ML
axes as in Smidt [34].

• Maximum Lyapunov exponent (MLE): Average rate of expansion or contraction of the origi-
nal trajectory in response to perturbations [35,36], calculated for vertical, AP, and ML accel-
erations, as in van Schooten [37]. The number of dimensions was determined using the
global false nearest neighbours method [38] and a fixed time delay based on the first mini-
mum of the average mutual information [39].

For descriptive statistics and MLE parameters, acceleration data were filtered using a fifth
order, low pass Butterworth filter with a 12.5 Hz cut-off frequency. Unfiltered acceleration data
were used to calculate the FFT quartile and REOH.

Fig 1. Plantar pressure derived CoP path for 10 ST gait strides.

doi:10.1371/journal.pone.0153240.g001
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Model Development
Three classifier models were assessed for fall-risk classification capability: multi-layer percep-
tron neural network (NN), naïve Bayesian (NB), and support vector machine (SVM). Retro-
spective fall occurrence was the classification criterion. For all models, 75% of participant data
(18 fallers, 57 non-fallers) were used for training and 25% were used for testing (6 fallers, 19
non-fallers). Pelvis accelerometer data were missing for two non-fallers and left shank acceler-
ometer data were missing for one non-faller due to sensor power failure. All models were devel-
oped with the Matlab R2010a standard model algorithms. The Neural Network Pattern
Recognition Toolbox was used for NN development and supervised backpropagation training
was performed using the Neural Network Training tool. NN with 5, 10, 15, 20, and 25 nodes in
a single hidden layer were evaluated. Neural networks between the best NN and the best of the
two neighbouring NN were also evaluated. For example, if the 15-node NN provided the best
classification and the 20-node NN outperformed the 10-node NN, NN with 16, 17, 18, and 19
nodes were also evaluated. Other models included linear and quadratic multinomial NB mod-
els, and SVM with polynomial kernels with degrees one to seven.

Fall classification models were based on all gait variables derived from the wearable sensors,
separately for ST and DT gait data. All possible sensor combinations (Table 2) were evaluated
using all 138 parameters (30 pressure insole parameters, 29 accelerometer parameters at 4
body locations). In addition, models were developed with clinical assessment data: ABC score,

Fig 2. Typical total ground reaction force curve with impulse phases indicated.

doi:10.1371/journal.pone.0153240.g002
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Fig 3. ST gait accelerations. Vertical: positive is upwards, AP: positive is anterior, ML: positive is toward participant’s right.

doi:10.1371/journal.pone.0153240.g003
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CHAMPS derived activity frequency and calorie expenditure, 6MWT distance, ST and DT
walk times, fear of falling levels.

Model evaluation parameters included accuracy, specificity, sensitivity, positive predictive
value (PPV), negative predictive value [40], F1 score (harmonic mean of precision and sensitiv-
ity) [41], and Matthew’s Correlation Coefficient (MCC) [42]. F1 score was calculated as:

F1 ¼ 2PPV � sensitivity
PPV þ sensitivity

¼ 2TP
2TP þ FP þ FN

; ð1Þ

and MCC was calculated as:

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ; ð2Þ

Table 2. Summary of sensor combinations and total number of input parameters.

Sensor Combination Sensor Description Total parameters

I pressure insole 30

H accelerometer (head) 29

P accelerometer (pelvis) 29

LS accelerometer (left shank) 29

RS accelerometer (right shank) 29

H-P accelerometer (head, pelvis) 58

H-LS accelerometer (head, left shank) 58

H-RS accelerometer (head, right shank) 58

P-LS accelerometer (pelvis, left shank) 58

P-RS accelerometer (pelvis, right shank) 58

LS-RS accelerometer (left shank, right shank) 58

H-P-LS accelerometer (head, pelvis, left shank) 87

H-P-RS accelerometer (head, pelvis, right shank) 87

H-LS-RS accelerometer (head, left shank, right shank) 87

P-LS-RS accelerometer (pelvis, left shank, right shank) 87

H-P-LS-RS accelerometer (head, pelvis, left shank, right shank) 116

I-H pressure insole; accelerometer (head) 59

I-P pressure insole; accelerometer (pelvis) 59

I-LS pressure insole; accelerometer (left shank) 59

I-RS pressure insole; accelerometer (right shank) 59

I-H-P pressure insole; accelerometer (head, pelvis) 88

I-H-LS pressure insole; accelerometer (head, left shank) 88

I-H-RS pressure insole; accelerometer (head, right shank) 88

I-P-LS pressure insole; accelerometer (pelvis, left shank) 88

I-P-RS pressure insole; accelerometer (pelvis, right shank) 88

I-LS-RS pressure insole; accelerometer (left shank, right shank) 88

I-H-P-LS pressure insole; accelerometer (head, pelvis, left shank) 117

I-H-P-RS pressure insole; accelerometer (head, pelvis, right shank) 117

I-H-LS-RS pressure insole; accelerometer (head, left shank, right shank) 117

I-P-LS-RS pressure insole; accelerometer (pelvis, left shank, right shank) 117

I-H-P-LS-RS pressure insole; accelerometer (head, pelvis, left shank, right shank) 146

I: Pressure-sensing insole measures, H: Head accelerometer measures, P: Pelvis accelerometer measures, LS: Left shank accelerometer measures, RS:

Right shank accelerometer measures.

doi:10.1371/journal.pone.0153240.t002
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where TP = true positive, TN = true negative, FP = false positive, and FN = false negative. A
ranking method similar to Kendell [43] was used to determine the best models. Each model
evaluation parameter was ranked from best (1) to worst (n), and ranks for all model evaluation
parameters were summed to identify the overall best model (lowest summed rank) (Fig 4). For
comparative purposes, classifying all participants as non-fallers would produce an accuracy
of 76%, sensitivity of 0%, specificity of 100%, PPV of 0%, NPV of 76%, F1 score of 0, and MCC
of 0.

Results
Of the best 50 fall-risk classifier models based on ST data (Table 3), the top four models (I-P
SVM, I-H-P SVM, I-P NN, I-H-P-LS NN) had identical top ranking scores with an accuracy of
84%, F1 0.600, and MCC 0.521. These models classified participants using support vector
machines (degree 2 and 3) and neural networks (9 and 20 nodes) and included combinations
of 30 pressure insole variables, 29 head accelerometer variables, 29 pelvis accelerometer vari-
ables, and 29 left shank accelerometer variables. The fifth best model (H SVM), based on 29
head accelerometer variables, achieved an overall accuracy of 84% and the highest scores for F1
(0.667) and MCC (0.561) but relatively low specificity and PPV prevented this model from
ranking higher. The head sensor-based models ranked the highest of the single-sensor models
with two models ranking in the top six. No other single-sensor models ranked among the top
10. All 50 models achieved an MCC> 0, indicating that their performance was better than
chance. The five models based solely on clinical assessment data ranked the lowest.

Fig 4. Model development and ranking analysis.ClinAssess: Clinical assessment measures, NB: Naive Bayesian, NN: Neural network, SVM: Support
vector machine.

doi:10.1371/journal.pone.0153240.g004
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Table 3. Best 50 fall risk classifier models based on ST gait data.

Sensors Model Type Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

I-P SVM-2 84.0 50.0 94.7 75.0 85.7 0.600 0.521 49

I-H-P SVM-3 84.0 50.0 94.7 75.0 85.7 0.600 0.521 49

I-P NN-9 84.0 50.0 94.7 75.0 85.7 0.600 0.521 49

I-H-P-LS NN-20 84.0 50.0 94.7 75.0 85.7 0.600 0.521 49

H SVM-2 84.0 66.7 89.5 66.7 89.5 0.667 0.561 52

H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68

I-H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68

I-P-LS SVM-2 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68

H-P-LS-RS NN-5 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68

I-P-LS-RS NB-Q 80.0 83.3 78.9 55.6 93.8 0.667 0.554 85

H NB-Q 80.0 50.0 89.5 60.0 85.0 0.545 0.421 105

LS-RS NN-23 80.0 50.0 89.5 60.0 85.0 0.545 0.421 105

I-P NN-8 80.0 50.0 89.5 60.0 85.0 0.545 0.421 105

I-H-P-LS NN-25 80.0 50.0 89.5 60.0 85.0 0.545 0.421 105

I-P NB-Q 76.0 83.3 73.7 50.0 93.3 0.625 0.497 125

I-P-LS NB-Q 76.0 83.3 73.7 50.0 93.3 0.625 0.497 125

H SVM-6 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

H-P SVM-3 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

I-H SVM-2 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

I-H-P-LS SVM-2 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

P NN-5 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

P NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

H-P NN-20 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

LS-RS NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

H-LS-RS NN-15 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

P-LS-RS NN-12 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

I-P-LS-RS NN-21 80.0 33.3 94.7 66.7 81.8 0.444 0.369 132

I-P-RS NB-Q 72.0 83.3 68.4 45.5 92.9 0.588 0.445 155

H-LS NB-Q 76.0 50.0 84.2 50.0 84.2 0.500 0.342 170

H-P-LS NB-Q 76.0 50.0 84.2 50.0 84.2 0.500 0.342 170

H-P-LS-RS NB-Q 76.0 50.0 84.2 50.0 84.2 0.500 0.342 170

H SVM-7 80.0 16.7 100.0 100.0 79.2 0.286 0.363 173

P SVM-7 80.0 16.7 100.0 100.0 79.2 0.286 0.363 173

LS SVM-1 80.0 16.7 100.0 100.0 79.2 0.286 0.363 173

H-P SVM-5 80.0 16.7 100.0 100.0 79.2 0.286 0.363 173

H-LS SVM-3 80.0 16.7 100.0 100.0 79.2 0.286 0.363 173

I-H-RS NB-Q 68.0 66.7 68.4 40.0 86.7 0.500 0.306 205

I-P-LS NB-L 68.0 66.7 68.4 40.0 86.7 0.500 0.306 205

H-P-RS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 210

H-LS-RS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 210

I-H-LS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 210

I-H-P-LS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 210

I-H-LS-RS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 210

H NN-15 76.0 33.3 89.5 50.0 81.0 0.400 0.266 233

P NN-6 76.0 33.3 89.5 50.0 81.0 0.400 0.266 233

CA NN-11 76.0 33.3 89.5 50.0 81.0 0.400 0.266 233

CA NN-12 76.0 33.3 89.5 50.0 81.0 0.400 0.266 233

(Continued)
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Of the best 50 fall-risk classifier models based on DT data (Table 4), the top model (I-P SVM)
achieved an overall accuracy of 80%, F1 score of 0.706, andMCC of 0.634. This model classified
participants using a support vector machine (degree of 1) and included 30 pressure insole vari-
ables and 29 pelvis accelerometer variables. The second best model, which was based solely on
pelvis accelerometer data, achieved an overall accuracy of 80%, the second highest F1 score
(0.545) and second highest MCC (0.421). This model classified participants using a neural net-
work (7 nodes) and 29 pelvis accelerometer variables. All 50 models achieved an MCC> 0, indi-
cating that their performance was better than chance. The pelvis sensor-based models ranked the
highest of the single-sensor models, with three models ranking in the top ten. The next best sin-
gle-sensor model was LS NN, with one model among the top 10. In contrast to the ST data, two
of the models based solely on clinical assessment data ranked twelfth (identical scores).

A comparison between the ten best ST and ten best DT models (Table 5) shows that all but
one of the ST models outranked and thus clearly outperformed the DT models.

Discussion
Models derived from this investigation predicted retrospective fall occurrence with varying
degrees of accuracy, sensitivity, and specificity. The large number of models assessed using dif-
ferent combinations of sensor-based-measures, model types, and ST or DT gait data permitted
determination of the optimal combination for fall risk classification.

The head and pelvis accelerometers provided the best single-sensor classification capability,
with two head sensor-based models ranking among the top six for ST and three pelvis sensor-
based models among the top ten for DT. In previous studies, the pelvis or lower back location
was the most frequent sensor site for fall risk prediction and classification models [6]. This
location is intuitively appropriate since it is close to the body center of mass. The pelvis location
also allows unobtrusive and easy monitoring with a belt attached sensor or accelerometer-
equipped smartphone, and high user acceptance was found for a 20 day case-study with a
lower back sensor [44]. The head location may have provided strong single-sensor results
because it provided measurements relevant to visual input and upper body stability. While the
head accelerometer performed well for ST gait assessment, the pelvis accelerometer performed
better for DT gait assessment. The pelvis accelerometer appears in nine of the top ten DT mod-
els and seven of the top ten ST models, whereas the head accelerometer appears in one of the
top ten DT models and six of the top ten ST models. The head accelerometer may not perform
as well under DT conditions when the head may experience non-gait related movements dur-
ing attention demanding periods (e.g., struggling to think of another word that starts with the
desired letter, researcher prompts to continue with cognitive task). The pelvis location is less
likely to experience non-gait related movements under DT conditions. Our study is the first to
directly compare sensor locations (head, pelvis, left shank, right shank) to show that an

Table 3. (Continued)

Sensors Model Type Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

CA NN-10 72.0 33.3 84.2 40.0 80.0 0.364 0.187 280

CA SVM-1 72.0 16.7 89.5 33.3 77.3 0.222 0.081 305

CA NN-9 72.0 16.7 89.5 33.3 77.3 0.222 0.081 305

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole measures, H: Head accelerometer measures, P: Pelvis

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank accelerometer measures, NN: Neural network, NB: Naive Bayesian

model, SVM: support vector machine, L: Linear, Q: Quadratic.

doi:10.1371/journal.pone.0153240.t003
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Table 4. Best 50 fall-risk classifier models based on DT gait data.

Sensors Model Type Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

I-P SVM-1 80.0 100.0 73.7 54.5 100.0 0.706 0.634 44

P NN-7 80.0 50.0 89.5 60.0 85.0 0.545 0.421 45

P NN-6 80.0 33.3 94.7 66.7 81.8 0.444 0.369 68

LS NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 68

I-P NN-14 80.0 33.3 94.7 66.7 81.8 0.444 0.369 68

I-P NN-15 80.0 33.3 94.7 66.7 81.8 0.444 0.369 68

I-H-P SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 85

I-P-RS SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 85

I-P-LS SVM-1 72.0 50.0 78.9 42.9 83.3 0.462 0.275 106

P NN-10 72.0 50.0 78.9 42.9 83.3 0.462 0.275 106

I-P NN-25 72.0 50.0 78.9 42.9 83.3 0.462 0.275 106

CA NN-11 76.0 33.3 89.5 50.0 81.0 0.400 0.266 126

CA NN-12 76.0 33.3 89.5 50.0 81.0 0.400 0.266 126

I-P SVM-5 76.0 33.3 89.5 50.0 81.0 0.400 0.266 126

I-P NN-13 76.0 33.3 89.5 50.0 81.0 0.400 0.266 126

I-LS NN-9 76.0 33.3 89.5 50.0 81.0 0.400 0.266 126

I-H-P NN-15 76.0 33.3 89.5 50.0 81.0 0.400 0.266 126

LS-RS SVM-6 80.0 16.7 100.0 100.0 79.2 0.286 0.363 133

I-H-P-LS NN-23 80.0 16.7 100.0 100.0 79.2 0.286 0.363 133

P NB-L 60.0 66.7 57.9 33.3 84.6 0.444 0.210 143

H-P NB-L 60.0 66.7 57.9 33.3 84.6 0.444 0.210 143

P SVM-3 68.0 50.0 73.7 37.5 82.4 0.429 0.217 164

LS SVM-3 68.0 50.0 73.7 37.5 82.4 0.429 0.217 164

P-RS SVM-1 68.0 50.0 73.7 37.5 82.4 0.429 0.217 164

P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

P-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

H-P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

H-P-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

P-LS-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

H-P-LS-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

I-P NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

I-H-P NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

I-P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

I-P-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

I-H-P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

I-P-LS-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 176

P-LS NN-5 76.0 16.7 94.7 50.0 78.3 0.250 0.180 180

I-H NN-7 76.0 16.7 94.7 50.0 78.3 0.250 0.180 180

I-LS NN-5 76.0 16.7 94.7 50.0 78.3 0.250 0.180 180

I-H-LS NN-9 76.0 16.7 94.7 50.0 78.3 0.250 0.180 180

CA NN-10 72.0 33.3 84.2 40.0 80.0 0.364 0.187 184

P SVM-1 72.0 33.3 84.2 40.0 80.0 0.364 0.187 184

I-P SVM-3 72.0 33.3 84.2 40.0 80.0 0.364 0.187 184

I-P-LS SVM-3 72.0 33.3 84.2 40.0 80.0 0.364 0.187 184

P SVM-5 68.0 33.3 78.9 33.3 78.9 0.333 0.123 237

RS SVM-1 68.0 33.3 78.9 33.3 78.9 0.333 0.123 237

RS SVM-2 68.0 33.3 78.9 33.3 78.9 0.333 0.123 237

(Continued)
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accelerometer located at the head and posterior pelvis are superior for single-sensor-based fall
risk classification.

While a single sensor is practical, the best results were found with multiple sensors, particu-
larly when combining pelvis and head accelerometer with pressure-sensing insole parameters.
The top ST models (I-P, I-H-P, I-P, I-H-P-LS) achieved an accuracy of 84%, F1 score of 0.600,
MCC of 0.521, sensitivity of 50%, and specificity of 95% using the pressure-sensing insole and
head, pelvis, and left shank accelerometers. The best single-sensor head-based model also
achieved an accuracy of 84%, F1 score of 0.667, MCC of 0.561, sensitivity of 67%, and specific-
ity of 90%. Therefore, the multi-sensor models were better at classifying non-fallers and the
head-based model was better at classifying fallers. While the multi-sensor models ranked first
in the ST ranking analysis (Table 3), the head-based model ranked first when comparing ST

Table 4. (Continued)

Sensors Model Type Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

CA SVM-1 72.0 16.7 89.5 33.3 77.3 0.222 0.081 247

CA NN-9 72.0 16.7 89.5 33.3 77.3 0.222 0.081 247

I NB-Q 72.0 16.7 89.5 33.3 77.3 0.222 0.081 247

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole measures, H: Head accelerometer measures, P: Pelvis

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank accelerometer measures, NN: Neural network, NB: Naive Bayesian

model, SVM: support vector machine, L: Linear, Q: Quadratic.

doi:10.1371/journal.pone.0153240.t004

Table 5. Comparison across 10 best ST and 10 best DT gait basedmodels.

Gait Data Sensors Model Type Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

ST H SVM-2 84.0 66.7 89.5 66.7 89.5 0.667 0.561 33

ST I-P SVM-2 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35

ST I-H-P SVM-3 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35

ST I-P NN-9 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35

ST I-H-P-LS NN-20 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35

ST H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44

ST I-H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44

ST I-P-LS SVM-2 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44

ST H-P-LS-RS NN-5 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44

DT I-P SVM-1 80.0 100.0 73.7 54.5 100.0 0.706 0.634 48

ST I-P-LS-RS NB-Q 80.0 83.3 78.9 55.6 93.8 0.667 0.554 49

DT P NN-7 80.0 50.0 89.5 60.0 85.0 0.545 0.421 73

DT P NN-6 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84

DT LS NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84

DT I-P NN-14 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84

DT I-P NN-15 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84

DT I-H-P SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 85

DT I-P-RS SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 85

DT I-P-LS SVM-1 72.0 50.0 78.9 42.9 83.3 0.462 0.275 102

DT P NN-10 72.0 50.0 78.9 42.9 83.3 0.462 0.275 102

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole measures, H: Head accelerometer measures, P: Pelvis

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank accelerometer measures, NN: Neural network, NB: Naive Bayesian

model, SVM: support vector machine, L: Linear, Q:Quadratic, ST: Single-task gait, DT: Dual-task gait.

doi:10.1371/journal.pone.0153240.t005
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and DT models (Table 5), with all these models having similar SR scores. Therefore, both the
multi-sensor and single-sensor models achieved strong fall risk classification performance and
represent a trade-off between model sensitivity and specificity. The benefit of using insole and
accelerometer sensor types, as well as multiple sensor locations, may outweigh the additional
cost and complexity in implementing multiple sensors for point-of-care assessments. However,
the head sensor accurately identified retrospective fall occurrence and should be considered if a
lower cost and faster to implement assessment is desired.

ST models outperformed DT models in overall ranking of performance measures, thus
demonstrating better fall risk classification by ST models. While DT gait can reveal increased
fall risk from impaired executive functioning that impacts mobility control [45–48], fall risk
has a broad spectrum of physical, psychological, social, and environmental risk factors [49].
DT gait data could improve classification ability for those with impaired executive functioning,
but worsen classification ability for those with normal executive functioning. Furthermore,
other studies have failed to find an improvement in fall prediction and classification under DT
gait conditions, compared to ST, in older individuals [50,51]. For people at risk of falling but
with normal executive functioning, normal gait deterioration due to a second cognitive task
may mask gait-related fall risk factors, thus worsening fall risk classification performance.

The sensor based models were also compared to models developed from commonly per-
formed clinical point-of-care assessments. ST sensor based models outperformed clinical
assessment based models, with clinical assessment models ranking lowest of the 50 ranked
models. These results demonstrate the advantage of using wearable sensors when assessing fall
risk compared to using only common clinical assessments. This is supported by Weiss [16],
van Schooten [17], and Rispens [18] who found that sensor-based classifier and predictive
models, or a combination of sensor and clinical assessment, improved fall risk classification
and prediction compared to clinical assessment alone.

Three different intelligent modeling techniques were assessed in this study: neural networks,
naive Bayesian classifiers, and support vector machines. The top ten models, based on ST gait
data, used six support vector machines, three multi-layer perceptron neural networks, and one
naive Bayesian classifier (10th). Support vector machines and NN provided the best classifica-
tion of retrospective fall occurrence when trained with ST gait-based data.

This study used retrospective fall occurrence as the criterion for classifying faller and non-
faller status. While this is superior to using a clinical assessment based criterion [6], future
studies should use prospective fall occurrence as the criterion for classification. Retrospective
fall occurrence has two main limitations: inaccurate recall of falls and changes to gait patterns
that occur between the fall and assessment, either in an attempt to increase stability or as a
result of fear of falling. Future studies should use prospective fall occurrence. Future studies
could include readily available participant information, such as age and sex, to determine if
adding these parameters to the wearable sensor-based models improves performance.

In this study, computation time was considered acceptable since the run-time for trained
models were typically less than 0.04 s for all models. The small computation time could provide
outcome results to a clinician immediately after data collection. For applications that require
computation times in the order of several ms, neural networks should be considered with caution
since neural networks typically have longer computational time compared to support vector
machines and naive Bayesian classifiers, given the greater complexity of neural networks [52].

Conclusions
Wearable-sensor based models were able to predict retrospective fall occurrence in older indi-
viduals and outperform the predictive ability of models based on clinical assessments. Multi-

Wearable-Sensor Fall Classification in Older Adults

PLOS ONE | DOI:10.1371/journal.pone.0153240 April 7, 2016 13 / 16



sensor gait assessment provided the best input data for fall risk classification, using the foot-
pressure-sensing insole and head, pelvis, and left shank accelerometers. Fall risk single-task
gait assessment using a single-sensor would be best with the head sensor. Single-task gait
assessment was better that dual-task for evaluating multi-factorial fall risk of older adults. Sup-
port vector machines and neural networks were the best intelligent modelling technique for fall
risk classification. Fall risk classification models developed for point-of-care environments
should be developed using support vector machines and neural networks, with a multi-sensor
single-task gait assessment.
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