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Abstract

Environmental DNA (eDNA) metabarcoding is an increasingly important tool for surveying

biodiversity in marine ecosystems. However, the scale of temporal and spatial variability in

eDNA signatures, and how this variation may impact eDNA-based marine biodiversity

assessments, remains uncertain. To address this question, we systematically examined

variation in vertebrate eDNA signatures across depth (0 m to 10 m) and horizontal space

(nearshore kelp forest and surf zone) over three successive days in Southern California.

Across a broad range of teleost fish and elasmobranchs, results showed significant variation

in species richness and community assemblages between surface and depth, reflecting

microhabitat depth preferences of common Southern California nearshore rocky reef taxa.

Community assemblages between nearshore and surf zone sampling stations at the same

depth also differed significantly, consistent with known habitat preferences. Additionally,

assemblages also varied across three sampling days, but 69% of habitat preferences

remained consistent. Results highlight the sensitivity of eDNA in capturing fine-scale verti-

cal, horizontal, and temporal variation in marine vertebrate communities, demonstrating the

ability of eDNA to capture a highly localized snapshot of marine biodiversity in dynamic

coastal environments.

Introduction

Environmental DNA, or eDNA, is a metabarcoding approach for detecting and cataloging

local community biodiversity, and is increasingly used in marine habitats [1,2]. eDNA

approaches rely on the capture of freely dissociated cells/DNA originating from organisms in

the environment, which can then be isolated and sequenced to reconstruct the community of

organisms present [1,3]. Previous applications of eDNA metabarcoding in marine ecosystems

demonstrate its effectiveness for measuring biodiversity and capturing important ecological

information about taxa ranging from microbes to mammals [1,2], making it particularly useful

for ecosystem monitoring.

The rapid rise of eDNA metabarcoding in marine ecosystems is driven by several key

advantages of this technique. First, eDNA is cost-effective and has the potential for automa-

tion, allowing for increased sampling effort compared to traditional surveys [4,5]. Second,
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DNA barcoding approaches do not require extensive taxonomic expertise, allowing for the

identification of a broad range of marine taxa from a single sample. Third, eDNA sampling

only requires the collection of sea water, eliminating the potential risks associated with

repeated dives needed for SCUBA-based visual surveys [4,6].

Despite these advantages, because eDNA is a relatively new technique, we know less about

methodological biases compared to well-established visual survey methods. In particular, key

questions remain about the temporal and spatial variability of eDNA signatures in marine

environments, information that is critical for the effective design of eDNA biomonitoring

efforts. Previous studies in dynamic freshwater ecosystems show daily variation in eDNA sig-

natures [7], yet little is known about temporal variation in marine ecosystems. Degradation of

eDNA signatures is relatively rapid in marine environments [8–10], with laboratory experi-

ments showing degradation rates on the order of days [11–13]. However, in field conditions,

detection of a specific eDNA point source can degrade beyond detection limits in only a few

hours [14,15]. This evidence for rapid eDNA turnover rates suggests that eDNA signatures at a

given location could be highly dynamic over time, particularly for species that are transitory.

In addition to temporal variability, eDNA signatures vary across horizontal space. For

example, Port et al. [16] distinguished distinct communities from eDNA samples separated by

only 60 m in kelp forest ecosystems, and other studies report spatial variation in eDNA signa-

tures on similar spatial scales [17,18]. In contrast, other studies such as O’Donnell et al. [19]

and Lamy et al. [20] detect variation among communities across much larger distances, on the

order of thousands of meters. A key difference in these studies is the latter two examine eDNA

from a dynamic nearshore ecosystem, whereas Port et al. examined eDNA from a highly pro-

tected cove, suggesting that physical oceanographic processes may influence the scale of eDNA

variation.

Although the studies above demonstrate variation of eDNA community signatures across

horizontal space, less is known about variation in marine eDNA signatures across depth. In

fact, most eDNA studies collect samples from consistent depths to control for depth variation

[16,19,21]. The few studies that sample across multiple depths found significant variation in

eDNA signatures. For example, Yamamoto et al. [17] found differences in Japanese jack mack-

erel eDNA concentrations between samples from 1.5 m and 31 m depth. Andruszkiewicz et al.

[22] and Lacoursière-Roussel et al. [23] report similar differences in eDNA signatures between

samples collected at the surface and at depth, suggesting that eDNA can resolve vertical differ-

ences in marine communities. In contrast, Stoeckle et al. [24] did not find eDNA differences

between surface and bottom samples. They note, however, that their pelagic sampling area

supports relatively uniform communities throughout the water column, indicating that their

eDNA results may still reflect the communities present.

Importantly, the scale of depth variation of eDNA signatures in these studies was multiple

tens of meters, yet marine communities can partition along much smaller depth gradients in

nearshore environments [25,26]. In one study, Jeunen et al. [27] found fine-scale depth varia-

tion in eDNA signatures from samples separated by only 4 vertical meters. However, these

samples were taken from a fjord characterized by a strong halocline and very low wave energy,

both of which greatly reduce vertical mixing. It is unclear whether similarly fine-scale vertical

variation in eDNA signatures exists in exposed, nearshore coastal marine ecosystems where

dynamic physical oceanographic processes should promote vertical mixing, potentially

homogenizing eDNA signatures across depth [27].

To better understand the scale of spatial and temporal variation of eDNA signatures, we

examined eDNA vertebrate community composition in a nearshore kelp forest and adjacent

surf zone habitat in Malibu, CA where dynamic physical oceanography may homogenize

eDNA community signatures. Specifically, we test 1) whether eDNA can differentiate among
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vertically structured vertebrate communities across a fine-scale depth gradient, 2) whether

eDNA signals from similar depths vary among adjacent near-shore habitats, and 3) whether

these patterns are stable over time in an exposed coastal marine environment.

Materials and methods

We conducted our study at Leo Carrillo State Beach, Malibu, California, USA (34.0446˚ N,

118.9407˚ W). We sampled on three successive days (September 24 to September 26 in 2018)

to test for temporal stability of spatial variation in eDNA signatures. On each day, we sampled

at the highest tide of the mixed semidiurnal tide to minimize the impact of tidal variation on

sampling.

To ensure that results reflected variation in spatial sampling, rather than time, we synchro-

nized watches and worked in multiple teams to simultaneously sample from five depths on

SCUBA along a vertical transect in a kelp forest ~140 m from shore: 0 m (at the ocean surface),

1 m, 5 m, 9 m, and 10 m (just above the sea floor). We also sampled a sixth station along the

shore in the surf zone, where we collected samples approximately 1 m below the water surface

where depth was approximately 2 meters. At each location, we collected triplicate seawater

samples using one-liter enteral feeding bags (Kendall-Covidien– 702500) following the meth-

ods of Curd et al [28]. After returning to shore, we immediately gravity filtered all samples

through 0.22 μm Sterivex filters to isolate eDNA [28]. We similarly filtered one liter of distilled

water as a negative template control. Upon completion of filtration, we stored the dried filters

at -20˚C until extraction 48 hours later. No permits were required for sampling seawater in

state waters outside of designated protected areas.

We extracted the DNA from the filters at UCLA using the Qiagen DNEasy Blood and Tis-

sue kit (Qiagen, Valencia, CA, USA). To maximize eDNA recovery, we employed modifica-

tions made by Spens et al. [29], adding proteinase K and ATL buffer directly to the filter

cartridges before overnight incubation in a rotating incubator at 56˚C. We amplified the

extracted eDNA using the 12S MiFish Universal Teleost (MiFish-U) and MiFish Elasmo-

branch (MiFish-E) primers with linker modifications for Nextera indices (S1 Table) [30].

Though the primers target teleost fish and elasmobranchs, they can also amplify other verte-

brate species such as birds and mammals [30,31]. PCR amplification and library preparation

was conducted following the methods of Curd et al. [28] (S1 Appendix). After library prepara-

tion, we sequenced the library on a NextSeq at the Technology Center for Genomics & Bioin-

formatics (University of California, Los Angeles, CA, USA) using Reagent Kit V3 with 30%

PhiX added to the sequencing run.

We processed the resulting sequencing data using the Anacapa Toolkit (version 1.0) for qual-

ity control, amplicon sequence variant parsing, and taxonomic assignment using standard

parameters [28]. The Anacapa Toolkit sequence quality control and amplicon sequence variant

(ASV) parsing module relies on cutadapt (version 1.16) [32], FastX-toolkit (version 0.0.13) [28],

and DADA2 (version 1.6) [33] as dependencies and the Anacapa classifier module relies on Bow-
tie2 (version 2.3.5) [34] and a modified version of BLCA [35] as dependencies. We processed

sequences using the default parameters and assigned taxonomy using two CRUX-generated ref-

erence databases following the methods of Gold et al. [18]. We first assigned taxonomy using the

California Current Large Marine Ecosystem fish specific reference database [36]. Second, we

used the CRUX-generated 12S reference database supplemented with California Current Large

Marine Ecosystem fish specific references to assign taxonomy using all available 12S reference

barcodes to identify any non-fish taxa following the methods of Gold et al. [36] using a Bayesian

cutoff score of 60. Although CRUX relies on ecoPCR (version 1.0.1) [37], blastn (version 2.6.0)

[38], and Entrez-qiime (version 2.0) [28] as dependencies, we note that Bayesian cutoff scores are
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not directly analogous to percent identity from blastn. The BLCA classifier incorporates align-

ment metrics, including percent identity and percent overlap, into the underlying Bayesian

model which then returns the Bayesian cutoff score metric as a measure of confidence for each

taxonomic rank for a given ASV (See [36] and [28] for more detail).

The resulting Anacapa-generated taxonomic tables were transferred into R for further pro-

cessing [36,39]. We then decontaminated the taxonomic tables using methods developed by

Kelly et al. [8] and McKnight et al. [40] as implemented in Gold [41], which removes

sequences from index hopping and negative controls and conducts a site occupancy model to

identify true rare sequences (S2 Appendix). We also manually removed sequences for species

with taxonomic assignments for non-marine taxa (e.g. terrestrial mammals) in R. We then

merged ASVs by summing reads by assigned taxonomy (e.g. summed all sequences reads from

the 7 ASVs that assigned to Garibaldi, Hypsypops rubicundus).
Following decontamination, we converted the taxonomic tables into phyloseq objects (ver-

sion 1.30.0) in R [42]. We analyzed the eDNA signatures across depth and across nearshore vs.

surf zone habitats. We analyzed differences in eDNA across depth using only the nearshore

signatures, excluding the samples collected in the adjacent surf zone. To examine species rich-

ness across depths, we conducted ANOVA and post-hoc Tukey tests using eDNA read counts

(see S2 Table for eDNA read counts) [43]. We then transformed eDNA read counts to eDNA

index scores, which better correlates to abundance, following the methods of Kelly et al. [44]

(see S3 Table for eDNA Index scores). The eDNA index calculation standardizes eDNA abun-

dance across samples and across taxa. To calculate the eDNA index values, we first calculated

the relative abundance of each taxa in each sample. We then divided the relative abundance of

each taxa by it’s maximum observed abundance across all samples to standardize the read

counts per species per sample. This results in an index that ranges from 0 to 1 for each species

where a value of 1 corresponds to the sample with the greatest relative abundance observed for

that species. Although these eDNA index values allow for direct comparisons of relative abun-

dance within individual species, allowing for direct comparisons in relative abundance by

depth, location and/or time, it cannot be used for comparisons among different species. See

Kelly et al. [45] for more detail.

To analyze the importance of sampling depth on eDNA vertebrate community composi-

tion, we conducted a PERMANOVA test using the vegan (version 2.5–6) package in R [43].

The PERMANOVA was run using Bray-Curtis dissimilarity and the model eDNA_Index ~

Depth + Day + Replicate. We also ran a multivariate homogeneity of group dispersions test

using the betadisper function and Bray-Curtis dissimilarity using vegan. We then ran a Mantel

Test and non-metric multi-dimensional scaling (NMDS) using vegan on Bray-Curtis dissimi-

larities to assess community composition differences across the depth gradient. We further

analyzed vertical depth community composition by generating a gradient forest model using

the gradientForest package (version 0.1–17) using 500 runs [45]. The environmental variables

in the vertical depth gradient forest model included sampling depth, sampling day, and repli-

cate. We then extracted the taxa with the highest model performances and plotted their eDNA

index values across depth. Using the broken stick method [46], we defined highest model per-

formance as� 0.35 R2 importance, as there was a steep drop-off in R2 importance after 0.35.

To analyze differences between the kelp forest and surf zone, we ran Welch t-tests, PERMA-

NOVA and betadisper tests, only including samples taken at 1 m depths from nearshore and

surf zone habitats. We used the Bray-Curtis dissimilarity for both tests and the model

eDNA_Index ~ Habitat (nearshore vs. surf zone) + Depth + Day + Replicate for the PERMA-

NOVA. We also ran an additional gradient forest model with the environmental variables

sampling depth, nearshore vs. surf zone, sampling day, and replicate for eDNA index scores

from all stations. We then extracted the top performing taxa and plotted their eDNA index
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distributions, defining highest model performance as� 0.40 R2 importance using the broken

stick method, as there was a steep drop-off in R2 importance after 0.40. Because of the addi-

tional nearshore vs. surf zone variable, the R2 importance values were higher in this model,

resulting in a different threshold R2 value than the one in the depth gradient forest model.

To test whether vertical and horizontal variation in eDNA signatures were consistent over

time, we compared species richness across sampling days in an ANOVA framework, looking

at both total community diversity as well as the eDNA index abundances. The linear models

used for the eDNA index ANOVA tests were eDNA_Index ~ Station + Day + Station:Day.

Results

We generated a total of 23,504,223 sequence reads that passed filter from the NextSeq run.

After decontamination, we recovered 21,231,865 reads and 980 ASVs representing 48 families,

71 genera and 71 species, with an average of 5.3 ASVs per taxa. Species detected included tele-

ost fish (n = 57), elasmobranchs (n = 8), marine mammals (n = 2) and birds (n = 6) (S4 Table).

Most teleost fish and elasmobranchs were demersal (rocky reef or sandy bottom species)

(n = 56; 86%), while the others were pelagic (n = 9; 14%) (S4 Table) [47]. Of the six bird spe-

cies, three were seabirds (Western gull Larus occidentalis, Brown pelican Pelecanus occidentalis
and Pelagic cormorant Urile pelagicus) and three were terrestrial birds (American golden plo-

ver Pluvialis dominica, Band-backed wren Campylorhynchus zonatus, and Ruby-crowned

kinglet Regulus calendula). The two marine mammal species were the Bottlenose dolphin (Tur-
siops truncates) and California sea lion (Zalophus californianus).

Vertical depth comparisons

Species richness. Species richness differed significantly across depth, with shallow sam-

pling stations having lower species richness than deeper stations (ANOVA; p<0.001; Fig 1).

Specifically, the 0m and 1m species richness values were significantly different from the 9m

(both p = 0.001) and 10m (p = 0.001 and p = 0.002, respectively) species richness values. Mean

species richness for the 0 m and 1 m sites were 31.4 and 32.1, respectively, while the 5 m, 9 m,

and 10 m sites were 38.2, 45.7 and 44.8, respectively.

Community composition. Community composition differed significantly across depth

(PERMANOVA; p = 0.001). Depth accounted for most of the variation in community composi-

tion (R2 = 0.16), followed by sampling day (R2 = 0.14) and bottle replicate (R2 = 0.03) (S1 Fig).

Pairwise PERMANOVA comparisons indicated that the 5 m, 9 m and 10 m stations were

all significantly different from the 0 m and 1 m stations (all p<0.05). The 5 m station was sig-

nificantly different from the 10 m station (p<0.05) but not the 9 m station (p = 0.14). Group

dispersions also differed between the 1 m and 5 m stations (p = 0.02).

Mantel tests indicate that community composition significantly correlated with depth

(Mantel statistic r = 0.405, p = 0.001). Further support for this result comes from the NMDS

plots, which show that communities closer in vertical distance more closely resemble each

other than communities separated by greater vertical distance (Fig 2).

Of the environmental variables in the gradient forest model, depth had the highest accuracy

importance (0.010) and R2 importance (0.111) values, followed by sampling day (accuracy

importance: 0.010; R2 importance: 0.109) and replicate (accuracy importance: -0.001; R2 impor-

tance: 0.006) (S2 Fig). There were 14 taxa characterized by model performances of R2

importance> 0.35 (S3 Fig). Pacific sardine Sardinops sagax, Topsmelt silverside Atherinops affi-
nis and California grunion Leuresthes tenuis were most abundant the shallow stations (0 m and 1

m station). The remaining eleven taxa (Yellowfin drum Umbrina roncador, Barred sand bass

Paralabrax nebulifer, California anchovy Engraulis mordax, Kelp bass Paralabrax clathratus,
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Speckled sanddab Citharichthys stigmaeus, California kingcroaker Menticirrhus undulatus, the

surfperches of Family Embiotocidae, Queen croaker Seriphus politus, California sheephead Semi-
cossyphus pulcher, Pacific angelshark Squatina californica and clinids of the Genus Gibbonsia)

were most abundant in the mid and deeper stations (5 m, 9 m and 10 m) (Fig 3).

Overall, of the 67 teleost and elasmobranch taxa, 16 (24%) were most abundant in the shal-

low stations and 50 (76%) were most abundant in the mid and deep stations (S5 Table). One

species, Gray smoothhound Mustelus californicus, was only found in the surf zone station.

Nearshore vs. surf zone analysis

Species richness. The surf zone station had a mean of 44.1 taxa per sample compared to

32.1 per sample for the corresponding 1 m nearshore station. Species richness differed between

the 1 m surf zone and 1 m nearshore station (Welch two sample t-test: p = 0.02).

Fig 1. Boxplot of mean species richness (± standard error) across depth stations. The deep stations had higher species richness than the shallow stations.

Figure includes only the nearshore samples and does not include the surf zone samples. The colors represent relative depths of the stations: Yellow is shallow (0 m and 1

m), green is mid-water (5 m), and purple is deep (9 m and 10 m).

https://doi.org/10.1371/journal.pone.0253104.g001
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Community composition. Marine vertebrate community composition differed signifi-

cantly between the 1 m surf zone and 1 m nearshore stations (PERMANOVA: p = 0.001; S4

Fig). The 1 m surf zone station also had significantly lower group dispersions than the 1 m

nearshore station (p = 0.002).

In the nearshore vs. surf zone gradient forest model, depth still had the highest accuracy

importance (0.011) and R2 importance (0.122) values (S5 Fig). Nearshore vs. surf zone desig-

nations had the second highest accuracy importance (0.006) and R2 importance (0.060) values,

followed by sampling day (accuracy importance: 0.006; R2 importance: 0.055) and replicate

(accuracy importance: -0.001; R2 importance: 0.005) (S5 Fig). There were seven taxa with per-

formances in the model with> 0.40 R2 importance values (S6 Fig). Five taxa (California king-

croaker Menticirrhus undulatus, surfperches of Family Embiotocidae, Yellowfin drum

Umbrina roncador, Queen croaker Seriphus politus and Zebra perch sea-chub Hermosilla
azurea) were most abundant in the surf zone station (Fig 4). Barred sand bass Paralabrax neb-
ulifer and Kelp bass Paralabrax clathratus were most abundant in the deep nearshore stations

(9m and 10 m) (Fig 4).

Temporal comparisons

Species richness. Species richness did not differ across sampling days (ANOVA:

p = 0.195). Mean species richness was 37.8 on Day 1, 38.1 on Day 2 and 42.6 on Day 3.

Community composition. There were fourteen taxa that varied strongly in the gradient

model with> 0.35 R2 importance values (S3 Fig). Six taxa (Yellowfin drum Umbrina roncador,

Fig 2. NMDS of species assemblages across depth (m) using Bray-Curtis dissimilarity. Differences in community

composition increased with greater distance between depth stations (stress = 0.178). 0 m represents the surface and 10 m

represents the sea floor.

https://doi.org/10.1371/journal.pone.0253104.g002
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California anchovy Engraulis mordax, California kingcroaker Menticirrhus undulatus, surf-

perches of Family Embiotocidae, Queen croaker Seriphus politus, and clinids of Genus Gibbon-
sia) were most abundant on Day 1, three taxa (Pacific sardine Sardinops sagax, Topsmelt

silverside Atherinops affinis, California grunion Leuresthes tenuis) were most abundant on Day

2, and four taxa (Barred sand bass Paralabrax nebulifer, Speckled sanddab Citharichthys stig-
maeus, California sheephead Semicossyphus pulcher, Pacific angelshark Squatina californica)

were most abundant on Day 3 (S6 Table). Kelp bass Paralabrax clathratus was most abundant

in Day 2 and Day 3 (S6 Table).

Of the 67 teleost and elasmobranch taxa, 46 (69%) had depth distribution patterns that did

not vary across the three days (p>0.05; see S7 Table for p-values). Interestingly, 37 of these

taxa (80%) are characterized as nonmigratory and non-transitory species (S7 Table). Of the 21

taxa with variable depth distributions (p<0.05), 10 (48%) of the taxa are transitory or migra-

tory (S7 Table).

Discussion

Results of eDNA surveys in a dynamic, California coastal ecosystem demonstrate fine-scale

vertical and horizontal variation in marine vertebrate communities. Differences in vertebrate

Fig 3. eDNA Index abundance depth distributions for the top predictor taxa. eDNA Index mean and standard error (+/- 1SE) for taxa with greater

than 0.35 R2 importance in the gradient forest model. See S1 and S2 Appendices for assigning. Family Embiotocidae and Genus Gibbonsia.

https://doi.org/10.1371/journal.pone.0253104.g003

Fig 4. The top predictor taxa eDNA index abundance nearshore and surf zone distributions. eDNA Index mean and standard error (+/- 1SE) for the taxa with

greater than 0.40 R2 importance in nearshore vs. surf zone gradient forest model. See S1 and S2 Appendices for assigning Family Embiotocidae.

https://doi.org/10.1371/journal.pone.0253104.g004
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eDNA signatures across a 10 m depth gradient largely reflect species-specific variation in

microhabitat depth preferences, particularly within fishes [48]. Similarly, eDNA discriminated

between nearshore and surf zone communities with patterns also reflecting known ecological

differences among fishes. While eDNA signatures varied across time, signatures of resident

taxa were relatively stable. Combined, these results underscore the sensitivity of eDNA to dis-

criminate ecologically relevant vertical, horizontal, and temporal variation.

Other studies report depth variation in eDNA over larger depth ranges [17,22], or similar

scales in marine ecosystems with limited vertical mixing [25]. Studies also report horizontal

partitioning on larger spatial scales along exposed coastlines [18] or on similar spatial scales in

protected coves. Our results are unique in that eDNA discerned fine-scale vertical and hori-

zontal variation in marine vertebrate communities in a dynamic, exposed coastal ecosystem,

highlighting the ability of eDNA to provide a highly localized snapshot of marine diversity

across depth and habitat type.

eDNA distinguishes marine communities by depth

Previous eDNA studies report differences in eDNA signatures across depth [17,22,23,27], but

these differences were observed across large depth ranges across tens of meters. The finest

depth partitioning reported in an eDNA study, only 4 m [27], occurred in a unique marine

ecosystem with a pronounced pyncocline driven by a 3–4 ˚C temperature gradient and 20–30

PSU salinity gradient [26], values that greatly exceed those observed in Southern California

[49]. In such a stratified water column, in an ecosystem with limited wave energy, vertical

movement of eDNA would be limited to diffusion, or potentially other processes such as bio-

genic vertical mixing [50,51], allowing for fine-scale variation in eDNA signatures.

While results of this study also differentiated eDNA community signatures over 4–5 m, our

study site was a wave-exposed coastal environment, where currents and wave energy should

facilitate vertical water mixing. Over the three sampling days of this study, daily tidal fluctua-

tions exceeded 1 m (0.15 m low tide, 1.5 m high tide), swell height ranged from 0.23–0.43 m,

and surf height ranged from 0.3–0.9 m, providing water movement and wave energy to facili-

tate mixing. Although we sampled at the end of the boreal summer, when the nearshore South-

ern California summer thermocline is typically most pronounced and within a few meters of

the ocean surface [52,53], observed surface temperatures were typical for the time of year

(19.2–19.4˚C) and neither divers or dive computers observed a thermocline that would limit

vertical mixing. As such, the community variation in eDNA signatures across a depth gradient

of 4–5 m cannot be attributed to water stratification and limited mixing.

Instead, the composition of vertebrate communities detected with eDNA corresponded to

species-specific depth preferences [47,48]. Fifty-one (77%) of the taxa had eDNA depth distri-

bution patterns that match their known depth preferences (pelagic vs. demersal). This result

held true particularly for 13 of the 14 highest performing taxa (R2 > 0.35) in the gradient forest

model. For example, the coastal-pelagic species Pacific sardine Sardinops sagax, Topsmelt sil-

verside Atherinops affinis and California grunion Leuresthes tenuis were most abundant in the

0 m and 1 m stations [48,54–56]. Ten demersal taxa (Barred sand bass Paralabrax nebulifer,
clinids of the Genus Gibbonsia, Yellowfin drum Umbrina roncador, Speckled sanddab Cithar-
ichthys stigmaeus, California kingcroaker Menticirrhus undulatus, surfperches of the Family

Embiotocidae, Queen croaker Seriphus politus, Kelp bass Paralabrax clathratus, California

sheephead Semicossyphus pulcher and Pacific angelshark Squatina californica) were most

abundant in the mid and deeper stations [48,57]. The correspondence in species-specific

eDNA relative abundances and the preferred microhabitats of these species strongly suggests

that eDNA is recovering ecologically informative depth variation in marine communities,
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adding to a growing list of studies highlighting the ability of eDNA to accurately discriminate

fine-scale habitat partitioning in nearshore marine environments [48,57,58].

Species at depth greatly outnumbered species at the surface (�1 m), with the 0 m and 1 m

stations having, on average, 13 fewer taxa than the deeper stations (5 m, 9 m, 10 m). While the

partitioning of shallow and deeper water vertebrate communities broadly conformed to

known habitat preferences, taphonomic processes may also reduce the detection of surface-

dwelling taxa. Solar radiation, particularly ultraviolet (UV) light, is highest in surface waters

and may increase DNA denaturation and degradation [59–63]. Similarly, surface water tem-

peratures are warmer, potentially increasing microbial and enzymatic activity, accelerating

eDNA degradation [61,64]. Conversely, settlement processes could also elevate eDNA commu-

nity diversity at depth [65]. Common sources of eDNA (e.g. feces) are often too large to

remain suspended, potentially inflating eDNA community diversity at depth as these particles

sink [66–68]. In our study, some pelagic, surface-dwelling species were found in the deep sta-

tions, possibly due to such settlement processes. For example, Topsmelt silverside Atherinops
affinis, California grunion Leuresthes tenuis and Pacific sardine Sardinops sagax were pelagic

species found in the 9 m and 10 m stations. Though these three species were found in the

deeper stations, they had low abundances in these stations and had much higher abundances

in the shallow stations (Fig 3). These relative abundances reflect their habitat preferences,

which suggests that, because community composition largely matches microhabitat differ-

ences, the impacts of settlement processes are likely relatively minor.

eDNA fate and transport is likely limited

The strong depth gradient in eDNA signatures strongly suggests limited persistence and trans-

port of eDNA, even in dynamic nearshore coastal environments. However, previous labora-

tory experiments and modeling studies indicate marine eDNA degradation rates on the scale

of multiple days, with potential transport distances of hundreds of meters to kilometers

[9,13,17,19]. One possible explanation to reconcile this apparent contradiction is high shed-

ding rates of endogenous eDNA. If local sources of eDNA generation are high and continuous,

recently generated eDNA should dominate signatures [8], as eDNA from more distant sources

would have much lower concentrations due to diffusion and degradation processes during

transport. Controlled field and lab experiments are needed to explicitly test this hypothesis.

eDNA recovers nearshore and surf zone communities

Surf zone and nearshore rocky reef community eDNA signatures varied significantly, and was

comparable to variation observed by O’Donnell et al. [19] over kilometers in a dynamic coastal

ecosystem. The PERMANOVA and low group dispersions for the surf zone station both indicate

that the surf zone community is distinct from the nearshore community. Importantly, four of the

five taxa in the nearshore vs. surf zone gradient forest model that were most abundant in the surf

zone station (California kingcroaker Menticirrhus undulatus, surfperches of Family Embiotoci-

dae, Yellowfin drum Umbrina roncador, and Queen croaker Seriphus politus) are all associated

with surf zone habitats, providing further evidence that eDNA accurately recovers distinct com-

munities across adjacent habitat types (S4 Table) [48,57]. Combined with the above, these results

indicate that eDNA can capture variation in nearshore marine ecosystems, both vertically and

across habitats, highlighting that eDNA is a localized snapshot of marine diversity.

eDNA signatures vary across time

The PERMANOVA and gradient forest analyses indicate eDNA signatures varied daily, simi-

lar to previous in situ eDNA studies [8–10]. Importantly, much of the temporal variance
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appears to result from species behavioral patterns. Of the 67 teleost and elasmobranch species,

47 (70%) had temporal variation in eDNA depth distributions that matched their known

behavior. Twenty-one (31%) taxa had significantly variable depth distributions (S7 Table). Of

these 21 taxa, ten (48%) are transitory or migratory, including species such as Queen croaker

Seriphus politus, Pacific sardine Sardinops sagax, and the Pacific anchovy Engraulis mordax (S7

Table). These mobile species transit in and out of kelp forest ecosystems [48,55], potentially

contributing the observed daily temporal variation in eDNA signatures. Furthermore, the rela-

tive abundances of less mobile taxa were fairly consistent over time at different depths. Forty-

six (69%) of species exhibited consistent eDNA depth distributions across the three days. Of

these taxa with consistent depth distributions across the three days, 37 (80%) are nonmigratory

and relatively stationary species, such as Speckled sanddab Citharichthys stigmaeus, California

sheephead Semicossyphus pulcher the Barred sand bass Paralabrax nebulifer (S7 Table).

Together, the majority of species exhibited depth variation were consistent with their behavior,

indicating eDNA is likely reflecting behavioral patterns of marine vertebrates within the eco-

systems they inhabit (S7 Table).

However, there were taxa whose eDNA temporal variation did not match their known behav-

ior. For example, Kelp bass Paralabrax clathratus, a non-migratory, less mobile species, had

highly variable eDNA abundances across days, while Chub mackerel Scomber japonicus, a transi-

tory species, had consistent abundances. It is unknown whether this discrepancy indicates an

incomplete understanding of the ecology of these fishes, variability in generation or degradation

rates among these species, or whether physical oceanographic processes obscure potential

eDNA-derived behavior patterns (e.g. algae dwelling species eDNA trapped within the boundary

layer). Regardless, the broad concordance of eDNA distributions and species ecologies under-

scores its ability to accurately recover marine communities over space, depth and time, opening

the door to future applications of eDNA to better understand the behavior of marine organisms.

Conclusions

Our study demonstrates the power of eDNA to distinguish unique vertebrate community

microhabitats, both across depth at a single location, and across horizontally distinct commu-

nities. Patterns in spatial partitioning were relatively stable despite sampling a dynamic, near-

shore marine environment, and reflected ecological differences in vertebrate communities.

This consistency provides confidence for the application of eDNA methods in coastal biodi-

versity assessments. For example, eDNA can help us better understand species habitat distribu-

tions and how these distributions change over time with increased global change. However,

our results also highlight the incredible sensitivity of eDNA metabarcoding approaches and

suggest eDNA signatures only integrate biodiversity information across short time periods

and small depth ranges.

These results underscore the importance of consistent sampling depth in marine eDNA

studies, as variation in sampling depth could impact results. Moreover, for studies that seek to

maximize sampling of local biodiversity through eDNA, efforts may need to incorporate sam-

pling across horizontal space, depth, and time, as one depth and one location may not accu-

rately reflect the full scope of local biodiversity of a given kelp forest. Fortunately, given the

ease and cost-effective nature of eDNA sampling, such sampling efforts are not cost prohibi-

tive, and will help us better document and monitor changes in coastal marine biodiversity.

Supporting information

S1 Fig. Apportioned variance plot of the three variables in the PERMANOVA model.

Depth accounted for 16% variance (p = 0.001), collected date accounted for 14% variance
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(p = 0.001) and replicate accounted for 3% variance (p = 0.426).
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S2 Fig. Importance of variables in the depth gradient forest model. Sampling depth had the

highest accuracy importance and R2 weighted importance in the depth gradient model.

(TIFF)

S3 Fig. Performance of species in the depth gradient forest model. There were fourteen top

predictor species with R2 values greater than 0.35 in the gradient forest model.

(TIFF)

S4 Fig. NMDS for shore vs. 1 m stations. Surf zone community composition differs from the

nearshore community composition. NMDS stress is 0.082.

(TIFF)

S5 Fig. Importance of variables in the nearshore vs. surf zone gradient forest model. Sam-

pling depth had the highest accuracy importance and R2 weighted importance in the nearshore

vs. surf zone space gradient forest model.

(TIFF)

S6 Fig. Performance of species in the nearshore vs. surf zone space gradient forest model.

There were seven top predictor species with R2 values greater than 0.40 in the gradient forest

model.

(TIFF)

S1 Table. MiFish-U and MiFish-E primer sequences.

(XLSX)

S2 Table. Taxonomy table with read counts after decontamination.
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S3 Table. Taxonomy table with eDNA Index values after decontamination.

(XLSX)

S4 Table. Species list.
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S5 Table. eDNA abundance patterns (shallow vs. deep stations) for all teleost and elasmo-

branch taxa.

(XLSX)

S6 Table. Mean eDNA Index across days for top predictor taxa in the gradient forest

model.

(XLSX)

S7 Table. Ecology, behavior and depth distribution variability across days. Table includes

p-values for the Day:Station interaction of the ANOVA for the linear model of eDNA index

abundance.

(XLSX)

S1 Appendix.
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