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Sarcoma is a rare and an extremely aggressive form of cancer that originates from mesenchymal cells. Pyroptosis exerts a dual
effect on tumours by inhibiting tumour cell proliferation while creating a microenvironment suitable for tumour cell
development and proliferation. However, the significance of pyroptosis-related gene (PRG) expression in sarcoma has not yet
been evaluated. Here, we conduct a retrospective analysis to examine PRG expression in 256 sarcoma samples from The
Cancer Genome Atlas database. We identified the PRGs that had a significant correlation with overall patient survival in
sarcoma by performing a univariate Cox regression analysis. Subsequently, we conducted a LASSO regression analysis and
created a risk model for a six-PRG signature. As indicated from the Kaplan–Meier analysis, this signature revealed a significant
difference between high- and low-risk sarcoma patients. A receiver operating characteristic curve analysis confirmed that this
signature could predict overall patient survival in sarcoma patients with high sensitivity and specificity. Gene ontology
annotation and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses revealed that five independent
PRGs were closely associated with increased immune activity. Moreover, we also deciphered that increased number of immune
cells infiltrated the tumour microenvironment in sarcoma. In brief, the PRG signature can effectively act as novel prognostic
biomarker for sarcoma patients and is associated with the tumour immune microenvironment.

1. Introduction

Sarcomas are a heterogeneous group of uncommon mesen-
chymal malignancies that originate from the mesodermal
tissue. They amount to approximately 1–2% of all malignan-
cies, with 4-6 estimated incidence of sarcoma per 100,000

cases of cancer per year [1]. The World Health Organization
classifies major cancer types into over 100 subtypes based on
their morphological and genetic attributes [2]. Subcohort
studies on the morphological and molecular heterogeneity
of sarcomas revealed the biologically complex processes that
govern sarcoma development and lead to an unfavourable
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prognosis and limited treatment choices for people with
sarcomas.

Since current systemic therapy options have limited
effectiveness, metastatic progression is observed in approxi-
mately 50% of sarcoma patients during the first five years
of treatment [3]. Only 16% of these patients with distant
metastasis have a five-year relative survival rate [4]. Thus,
pretreatment assessment of sarcomas by molecular biomark-
ers potentially facilitates the development of a risk-adapted
approach for individualized treatment strategies in the
future [5]. As a result, identifying novel prognostic biomark-
ers for accurate prognostic evaluation of sarcoma patients
and the development of potential targeted treatments is of
great significance.

Pyroptosis is a novel form of programmed necrosis that is
behaviourally similar to the inflammatory necrosis of cells. In
inflammatory necrosis, gasdermin is cleaved via classical and
nonclassical pathways and causes continuous cell expansion
until the cell membrane ruptures. This results in the release
of cell contents and triggers an intense inflammatory response
[6, 7]. An inflammatory response attributed to pyroptosis
reduces the effects of immune surveillance and suppression
on malignant cells, thereby accelerating tumour growth and
progression [8, 9]. Moreover, malignant cells can escape
immune surveillance by immunoediting, called “immune
escape,” thus, promoting metastasis and cell proliferation.
Few studies have linked a substantial proinflammatory impact
of pyroptosis to themodulation of the tumour immunemicro-
environment (TIME) [10]. Increasing numbers of studies have
suggested that pyroptosis impacts the proliferation, invasion,
and metastasis of tumour cells and in turn affects cancer prog-
nosis [11, 12]. Nevertheless, the prognostic value of
pyroptosis-associated gene (PRG) signatures in sarcoma
patients has not yet been determined.

This study is aimed at building a risk-score model to pre-
dict patient prognoses by conducting retrospective bioinfor-
matic analysis of PRG expression profiles in sarcoma
patients. Moreover, we explore a potential connection
between pyroptosis, patient prognoses, and the TIME in
sarcoma.

2. Materials and Methods

2.1. Datasets. We extracted RNA-sequencing (RNA-seq)
expression profiles and related clinical follow-up parameters,
mainly survival status and period, for the sarcoma cohort
from The Cancer Genome Atlas (TCGA) database. The fil-
tered data was provided (Supplementary Figure 1–3). We
analysed this data using the R (version 4.1.1) and R
Bioconductor software. Prior to performing an in-depth
analysis, we normalized the expression data to the values
of fragments per kilobase of exon model, per Million
mapped fragments, and eliminated samples that were in
duplicates and those with missing clinical information. On
the whole, 33 PRGs, gathered from prior reports, were
analysed in this study [13–15].

2.2. Identification of PRG Signatures and Development of
Risk Model.We performed a univariate Cox regression anal-

ysis to identify a correlation between PRG expression and
overall patient survival in sarcoma as a potential biomarker.
This analysis was conducted via the “survminer” and “sur-
vival” packages and candidate genes with P < 0:05 were
selected for further analyses. Moreover, the “forestplot”
package was applied to visualize the results of the univariate
prognostic analysis.

The Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression analysis simultaneously analyses
all independent variables and identifies the most crucial reg-
ulatory factors.

Subsequently, we conducted a LASSO regression analysis
to identify the optimal prognostic PRGs using the “glmnet”
and “survival” packages and built a multigene signature.
Thus, we identified candidate genes to build a future risk
model. Following that, we generated a risk score to predict
the overall survival of sarcoma patients using the regression
coefficients derived from the LASSO regression model. After
centralization and standardization (using the R “scale” func-
tion), the risk score was determined.

The risk model is expressed below: ∑n
i=1 = exp i × βi. In

this formula, the β i denotes the regression coefficient for a
gene, exp i is the expression value of each prognostic gene
for each TCGA sample, and n expresses the number of can-
didate genes.

2.3. Development of Independently Prognostic PRGs. To
assess the value of PRGs as independent prognostic bio-
markers in different risk score subcohorts, we performed
the Kaplan–Meier survival analysis. A nomogram was plot-
ted using the “rms” package obtained from the multivariate
Cox regression analysis. A calibration square plot was plot-
ted to assess the prognostic accuracy of the nomogram and
to calculate a relatively corrected C-index. Additionally, we
performed a bootstrap validation (1000 bootstrap resamples)
for the PRG nomogram.

2.4. Survival Investigation of Risk Model. For subsequent
analysis, we classified all sarcoma patients into either high-
risk (Risk-H) or low-risk (Risk-L) subcohorts using the
mean risk score of a patient as the threshold. We performed
the Kaplan–Meier survival analysis to estimate and compare
the differences in survival status and risk scores in the
respective subcohorts. To estimate the prognostic accuracy
of the PRG signature, we generated a time-dependent
receiver operating characteristic (ROC) curve. Thereafter,
using the “survminer” and “timeROC” packages of the R
software, we plotted the Kaplan–Meier and ROC survival
curves, respectively. We then initiated internal validation
to test our risk model and randomly divided the cohort of
sarcoma patients into two groups (as internal validation)
for 259 TCGA sarcomas samples. The R package “caret”
was employed for internal validation of risk score model
(Supplementary Figure 4).

2.5. Gene Ontology (GO) Annotation and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) Pathway
Enrichment Analyses of PRG with Independent Prognosis.
The enriched GO terms can primarily fall to molecular
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functions (MF) ontologies, cellular components (CC), and
biological processes (BP) [16]. The DAVID [17] (Gene
Functional Classification Tool, http://david.abcc.ncifcrf.gov/
) and KOBAS databases [18] (http://kobas.cbi.pku.edu.cn/)
are online tools that analyse KEGG signalling pathways
and GO terms, respectively. Significant enrichment was
defined as a P value < 0.05 and count ≥ 2.

2.6. Analysis of Immune Cell Infiltration in TIME. The
CIBERSORT algorithm is an analytical method that assesses
the overall expression cellular components by comparing
them with their corresponding characteristics in a cell type.
Therefore, we used CIBERSORT to determine the propor-
tion of immune cell that infiltrated the TIME in sarcoma.
A P < 0:05 was the threshold value to filter the results of
the CIBERSORT analysis. Moreover, the proportion of each
immune cell type in the samples was computed and plotted
as a bar graph. The “pheatmap” package was used to create a
heat map that presented the relative levels of 22 immune
cells in the respective samples from each risk subcohort.
The difference in the level of infiltration of these cells
between the Risk-L and Risk-H subcohorts was analysed
and visually compared. Additionally, “corrplot” package
was used to conduct a correlation heat map analysis of the
TIME infiltration by the 22 immune cell types.

2.7. Statistical Analysis. All data were statistically analysed
with the R (version 4.1.0) software. We used the “survminer”
package to perform a log-rank test to compare the differ-
ences in the survival curves between the Risk-H and Risk-L
subcohorts. We specified 1.258 as the optimal cut-off value
[19], and the difference was considered to be statistically sig-
nificant for P < 0:05.

3. Results

3.1. Construction of Risk Model for PRG Signature and
Assessment of Prognostic Predictive Capability. To develop
a PRG signature applicable to all cases in the sarcoma TCGA
cohort, we first detected the PRGs in 256 sarcoma samples in
the cohort. The univariate Cox regression analysis revealed
that 7 of the 33 detected PRGs [13–15] were associated with
the overall survival of sarcoma patients (P < 0:05). The seven
PRGs, CASP1, GSDMC, IL18, NLRP2, PLCG1, PYCARD,
and TNF, were visualized as a forest plot (Figure 1(a)). Sub-
sequently, we used the LASSO Cox regression model
(Figures 1(b) and 1(c)) to screen these seven PRGs and con-
struct a prognostic risk model. Furthermore, we calculated
the risk score for each patient as follows:

risk score = ð−0:001 × CASP 1 exp:Þ + ð−1:697 ×
GSDMC exp:Þ + ð−0:008 × IL18 exp:Þ + ð0:380 × NLRP 2
exp:Þ + ð0:060 × PLCG1 exp:Þ + ð−0:014 × PYCARD exp:Þ
+ ð−0:883 × TNF exp:Þ.

We categorized 129 sarcoma samples into Risk-H and
130 into Risk-L cohorts based on the mean risk scores
(Figure 1(d)). Based on the data obtained from principal
component analysis, we categorized sarcoma patients into
two distinct clusters by their risk scores (Figure 1(e)).
Patients in the Risk-L cohort were more likely to survive lon-

ger and had lower mortality rates than in the Risk-H cohort
(Figure 1(f)).

Our Kaplan–Meier survival analysis corroborated with
the finding of the risk point distribution plot and revealed
a significant difference in the overall survival period between
the two risk score clusters (Figure 1(g)). In addition, the
ROC curve revealed that the AUC value of the risk score
in predicting the overall survival of sarcoma patients at 1/
2/3-year was 0.736, 0.687, and 0.694, respectively. This indi-
cated that the PRG risk model had a considerable prognostic
sensitivity and specificity (Figure 1(h)).

3.2. Prognostic Significance of Individual Six-PRG Signature.
We determined the correlation between PRG expression
levels and patient survival in the Risk-L and Risk-H cohorts
using the six-PRG risk model and assessed the prognostic
significance of each PRG. Only sarcoma patients with high
expression levels of IL18, NLRP2, PYCARD, and TNF genes
had favourable clinical outcomes, implicating that these
PRGs are possible biomarkers of protective pyroptosis in
sarcoma (Figures 2(a)–2(d)). However, sarcoma patients
with high expression of PLCG1 had poor clinical outcomes,
suggesting that it is a PRG biomarker that predicts poor
prognosis of sarcoma patients (Figure 2(e)).

3.3. Development and Validation of Five-PRG Nomogram
Model. Subsequently, we constructed a nomogram model
of the five PRGs (PLCG1, IL18, NLRP2, PYCARD, and
TNF) based on the results of the multiple-variate Cox analy-
sis (Figure 3(a)). We then used a calibration plot to validate
the prognostic capability of the nomogram model and to
evaluate the accuracy of the predicted risk compared to the
actual risk. In the nomogram model, as the expression levels
of PLCG1 increased, the probability of survival of sarcoma
patients decreased; thus, PLCG1 gene expression had a neg-
ative correlation with patient survival in sarcoma. On the
other hand, the higher the expression levels of TNF, the
higher the possibility of survival in sarcoma patients; the
TNF gene had a positive correlation with patient survival
in sarcoma. The calibration plot reflected the accuracy of
the nomogram model in sarcoma patients in predicting the
actual risk of death by these five genes, providing a valuable
guide for clinical application (Figure 3(b)). And the risk
score of PLCG1 and TNF could potentially serve as progno-
sis markers for sarcoma patients, in clinic.

3.4. Enrichment Analyses of Five Differentially Expressed
PRGs in Two Risk Subcohorts. We carried out GO annota-
tion and KEGG pathway enrichment for the five PRGs to
elucidate the biological functions and pathways associated
with them. Additionally, these five PRGs were differentially
expressed in the two risk subcohorts (Figure 4(a)). Remark-
ably, they were found to be associated with several immune
and inflammatory-related BP terms (P. adjust < 0.05,
Figure 4(b)). Furthermore, they were involved in CC related
to inflammatory complexes, such as the NLRP1 inflamma-
some complex, AIM2 inflammasome complex, and NLRP3
inflammasome complex (P. adjust < 0.05, Figure 4(b)). The
five PRGs had MF that was related to the terms “cysteine-
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type endopeptidase activity involved in the process,”
“cysteine-type endopeptidase activator activity participating
in the apoptosis,” “protease binding,” “cytokine activity,”
and “protein binding” (Figure 4(b)).

3.5. Immune Cell Infiltration Analysis. Subsequently, we
applied the CIBERSORT algorithm to predict the difference
in immune cell infiltration in Risk-L and Risk-H subcohorts

and to explore the correlation between the risk score and
immune response. The percentage of 22 immune cell types
in the respective samples was estimated with a bar plot and
heat map (Figure 5). Immune cells were divided into four
main categories [20]: macrophages, lymphocytes, mast cells,
and dendritic cells. We observed a difference in immune cell
infiltration between the cohorts, indicating that the Risk-H
subcohort was more likely to have a higher level of the TIME
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Figure 1: Prognostic capability of six-pyroptosis-related gene (PRG) signature. (a) Forest plot presenting the results of a univariate analysis
of PRGs associated with overall survival (P < 0:05). (b) LASSO regression analysis of seven PRGs. (c) Cross-validation to fine-tune the
parameter selection in the LASSO regression. (d) Sarcoma patients classified into Risk-L and Risk-H cohorts based on the mean risk
score. (e) Principal component analysis of sarcoma patients based on the risk score. (f) Survival status distribution of sarcoma patients.
(g) Kaplan–Meier curves for the overall survival of sarcoma cases indicated that the prognosis of the Risk-H cohort is worse than of the
Risk-L cohort. (h) Receiver operating characteristic (ROC) curves depict the sensitivity and specificity of the risk score model.
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infiltration by macrophages M2, macrophages M0, and mac-
rophages M1 than the Risk-L cohort (Figure 6(a)). More-
over, we observed that the TIME was dominated by
lymphocytes and macrophages that accounted for approxi-
mately 40% and 45% of the total percentage of infiltrating
immune cells, respectively (Figure 6(b)).

The correlation analysis revealed that the main immune
cell pairs with a negative correlation among the immune
cells were as follows: memory resting CD4+ T cells and
CD8+ T cells (r = −0:52), dendritic cells and memory B cells
(r = −0:39), activated dendritic cells and macrophages M1
(r = −0:4), and macrophages M2 and activated dendritic
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Figure 2: Individual prognostic significance of genes in six-pyroptosis-related gene (PRG) signature. Survival investigation indicated that
sarcoma patients with high expression of PVCARD (a), CASP1 (b), TNF (c), IL-18 (d), and PLCG1 (e) had a better clinical prognosis.
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cells (r = −0:32). However, activated mast cells activated
were negatively correlated with neutrophils (r = −0:34;
Figure 7). The interaction parameters were P < 0:05 and ∣
Correlation coefficient ∣ >0:15. Notably, a significant differ-
ence in the percentage of infiltrating immune cells was
observed among the two risk subcohorts that resulted in dif-
ferent clinical outcomes and risk statuses for the sarcoma
patients.

4. Discussion

Molecular markers that were associated with different clini-
cal outcomes have been identified in various solid tumours,
underpinning individualized therapies to facilitate diagnosis
and treatment [21–23]. Owing to biotechnology and bioin-
formatics, genetic analysis methods have been exploited to
screen for vital cancer and tumour biomarkers. Molecular
biomarkers are of great prognostic significance for sarcoma

patients, as they provide additional information and insight
into the mechanisms of carcinogenesis. It is noteworthy that
loss of tumour suppressor genes may present some informa-
tion on patient prognosis [24].

Since pyroptosis exerts a dual effect on cancer patients,
the most direct and effective way to explain its significance
is to build diagnostic and prognostic models related to
pyroptosis [25]. The prognostic PRG signature was devel-
oped for multiple types of cancers (e.g., lung adenocarci-
noma [13], gastric cancer [19], ovarian cancer [10], and
skin cutaneous melanoma [25]). Since sarcomas exhibit con-
siderable heterogeneity with respect to the anatomical loca-
tion and the age of a patient and origin of the
mesenchymal cells, the exact function of PRG signature in
sarcoma patient remains unknown and deserves further
study.

In this study, the mRNA levels of 33 PRGs were exam-
ined in samples from sarcoma patients to explore their

Points
0 10 20 30 40 50 60 70 80 90 100

CASP1
0

IL18
50 45 40 35 30 25 20 15 10 5 0

PLCG1
0 5 10 15 20 25 30 35 40 45 50 55

PYCARD
100 80 70 60 50 40 30 20 10 0

TNF
4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

Total Points
0 20 40 60 80 100 120 140 160 180 200 220 240 260

3−Year Survival
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5−Year Survival
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

10−Year Survival
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

(a)

Predicted risk
Estimated actual risk

Risk groups

0.6
 − 7.3

7.3
 − 12

.3

12
.3 −

 15
.8

15
.8 −

 18
.9

18
.9 −

 21
.4

21
.4 −

 23
.8

23
.8 −

 26
.8

26
.8 −

 30
.9

30
.9 −

 40
.4

40
.4 −

 10
0.0

4
0

10

34

1413
1815

20
17

23
19

2525
29

25

36
30

57 57

0%

25%

50%

75%

100%

(b)

Figure 3: Development and validation of five-pyroptosis-related gene (PRG) nomogram model. (a) Nomogram plot was used to visualize
the result of multiple-variate Cox regression investigation of a five-PRG signature. (b) The calibration plot was used to validate the accuracy
of the risk predicted by the nomogram with the actual values.
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significance regarding patient survival. We hypothesized
that different occurrences of pyroptosis in sarcoma tumour
tissues caused different clinical outcomes. We screened six
PRGs associated with overall patient survival by building
univariate-Cox and LASSO regression models capable of
classifying sarcoma patients into clusters based on their sur-

vival risk. Subsequently, we determined the risk scores for
each sarcoma sample to favourable and unfavourable clinical
outcomes. The six-PRG signature is a reliable prognostic
assessment, as it avoids the omission of prognostic informa-
tion and eliminates the redundancy of prognostic informa-
tion via 1000 LASSO regressions. Generally, such a
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multiple-gene fitting approach is used in machine learning
for the prognosis of various tumours [26] because multigene
signatures are more accurate and reliable as diagnostic and
predictive biomarkers of sarcoma than single-gene signa-

tures. In the present study, the Kaplan–Meier survival anal-
ysis confirmed the diagnostic and prognostic significance of
multi-PRG signatures in patients with early-stage sarcoma.
Furthermore, the ROC curve validated the accuracy and
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Figure 5: Immune infiltration landscape in Risk-H and Risk-L cohorts. (a) Relative percentages of 22 immune cell types in respective
sarcoma samples. (b) Heat map of 22 immune cell types in The Cancer Genome Atlas sarcoma cohort.
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reliability of this signature in patient prognoses. Five of the
six PRGs (PLCG1, IL18, NLRP2, PYCARD, and TNF) had
independent prognostic values. Notably, TNF and PLCG1
were stronger predictors of overall patient survival at 3 and
5 years, respectively, than the ideal model for the entire
cohort, in accordance with multigene prediction nomo-
grams. The constructed prognostic six-PRG risk model per-
formed well in the TCGA sarcoma cohort and provided a
reliable prognosis.

In the present study, PLCG1 was one of the PRGs iden-
tified. This gene is involved in apoptosis, differentiation, and
cell growth through a receptor tyrosine kinase-mediated sig-
nal transduction channel [27]. Previously, pyroptosis was
suppressed in GSDMD-N-induced cells by knocking down
the PLCG1 gene and was found to be critical to facilitate
the GSDMD-mediated pyroptosis [28]. However, the corre-
lation between PLCG1-mediated pyroptosis and tumour
development remains largely unknown. High expression of

PLCG1 in our model was correlated with poor patient sur-
vival outcomes and was, to a certain extent, a negative regu-
lator of pyroptosis and had a negative correlation with
survival of sarcoma patients. Enrichment analysis of five
independently prognostic PRGs revealed their involvement
in immune-related signalling pathways and biological
processes.

Pyroptosis is caspase-dependent inflammatory cell death
characterized by swelling of the cells, the formation of holes
and ruptures in the cell membrane, and the release of intra-
cellular content causing pericellular inflammation and
immune response [12]. It can induce the release of various
inflammatory cytokines and is a consequence of inflamma-
some activation [29]. Interaction of cytokines and cytokine
receptors involved in inflammasome activation is critical
for sarcoma development and prognosis [30]. As a result, it
is reasonable to presume that PRGs are linked to the
immune system and inflammatory response.
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Figure 6: Immune cell components of tumour microenvironment in sarcoma. (a) Comparison of 22 immune cell types between the two risk
cohorts. (b) Comparison of four major classes of immune cell types in sarcoma.
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Interestingly, besides the KEGG analysis results, we also
identified several signalling pathways associated with immune
rejection and autoimmune-related diseases. This is probably
because in sarcoma, tumour cells predominantly express PD-
1/PD-L1. Though the expression of the PD-1/PD-L1 check-
point pathway in sarcomas has been reported to be complex,
tumour cells in sarcomas usually express low PD-1 levels.
On the other hand, PD-L1 has been conformed to be
expressed on tumour-infiltrating lymphocytes [31]. In parallel,
pyroptosis-induced inflammation synergizes with the check-
point blockade to trigger the strong antitumour immunity in
the TIME [32]. Given the findings of our GO and KEGG anal-
yses, it is reasonable to hypothesize that pyroptosis impact the
composition of the TIME in sarcoma.

To examine the correlation between the proportion of
tumour-infiltrating immune cells and patient prognoses, sar-
coma cases were classified into high and low-risk cohorts.

The type of tumour-infiltrating immune cell in the sarcoma
tissues of patients belonging to both cohorts was then
assessed using the CIBERSOTR algorithm. Theories that
hypothesize that the immune system can alter the formation,
expansion, of tumour development [33]. Consistent with
these theories, the better the prognosis, the more immune
cells that infiltrate the TIME. In the six-PRG signature
model, high-risk scores determined from the expression
levels of the six PRGs were associated with poor patient out-
comes. Furthermore, an overlap with the genetic signature
found using the CIBERSORT platform implied that there
may be some association with the risk score and the percent-
age of the TIME infiltrating immune cells. The immune cell
infiltration analysis revealed that sarcoma cases in the Risk-L
cohort had a reliable prognosis with increased levels of
memory B cells, activated natural killer (NK) cells, M0 mac-
rophages, and resting dendritic cells infiltrating the TIME.
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Immune cells infiltrating the TIME in osteosarcoma
were reported to be primarily tumour-associated macro-
phages and T lymphocytes [34]. We used the CIBERSORT
algorithm to evaluate the percentage of TIME-infiltrating
immune cells in the six-PRG risk score model with compa-
rable results. The violin plot of immune cell infiltration indi-
cated a noticeably greater percentage of native CD4+ T cells
and M1 macrophages than other types of immune cells,
thereby validating the accuracy and reliability of the six-
PRG signature.

Macrophages are a vital part of the TIME since they are
key regulators of the sarcoma immune response by inducing
the immune cells to produce cytokines [35, 36]. Undefined
macrophages (M0) differentiate into proinflammatory
(M1) and anti-inflammatory (M2) macrophages by interact-
ing with the TIME. The M1 macrophages are involved in
inflammatory and antitumour responses in sarcoma tissues,
whereas the M2 macrophages facilitate tumour development
[37]. The M2 macrophages assist tumours to escape T lym-
phocyte assault and release cytokines that facilitate tumour
proliferation and metastasis in the TIME [38].

An analysis was conducted on the immune cell composi-
tion in sarcoma and sarcoma patients, wherein a higher per-
centage of infiltrating B cells were found to have increased
patient survival. These patients were reported to have an
effective response to PD-1 blockade therapy [39]. Generally,
activated NK cells are recognized as essential mediators of
immunotherapeutic modalities, and activating NK cells to
treat high-grade osteosarcoma may result in a positive
patient prognosis [40]. Dendritic cell-based immunotherapy
has been used to treat sarcoma and found to be both safe and
well-tolerated. This is because incorporation of autologous
dendritic cells with radiotherapy may increase cytotoxic T
cell titres, exhibiting tumour antigen specificity. Thus, this
promotes lymphocyte infiltration in sarcoma and synergisti-
cally exerts antitumour effects [41]. According to our analy-
sis of infiltrating immune cells in sarcoma, we conclude that
patients belonging to the low-risk cohort have a longer
disease-free survival than those belonging to the high-risk
cohort. Thus, these patients benefit from the crosstalk estab-
lished between the sarcoma tumour cells and their TIME by
reducing local immunosuppression and moderating the pro-
gression of the sarcoma.

Nonetheless, the present study has its limitations. First,
the small number of sarcoma tissue samples analysed might
have caused some bias. Second, as nontumour samples were
absent in the TCGA cohort, the differences in the PRG land-
scapes between sarcoma and normal samples were not com-
pared and analysed. Moreover, the multiple sources of
sarcoma cells limited the sampling of normal tissues. Thus,
the current data could only be applied to predict the progno-
sis of sarcoma patients with a confirmed diagnosis. Third,
there were no independent external data or clinical informa-
tion available to verify the observations. Accordingly, we
need to validate our observations in depth.

To summarise, we demonstrated that the pyroptosis is
strongly associated with patient prognoses in sarcoma.
Although the PRG expression levels were heterogenous in
the sarcoma tissues, we established that risk scores generated

based on the six-PRG risk signature can be used to predict
the overall survival of a sarcoma patient. Moreover, expres-
sion of these genes was associated with the TIME. In the
present study, we provide a novel genetic signature to help
clinicians assess the prognoses of sarcoma patients.

Data Availability

The datasets and code generated and analysed in this study
are available from the corresponding author on request.

Conflicts of Interest

The authors declare that this research was conducted in the
absence of any commercial or financial relationships that
could be construed as potential conflicts of interest.

Authors’ Contributions

QLT, JS, and LM designed this study; DW, XL, and ZH col-
lected the data and composed the R-scripts for this study;
QT, ZW, YM, LW, and QW performed the LASSO regres-
sion and cross-validation analysis; JZ, JJS, and SH compared
immune cell types. Dalong Wei, Xiaoling Lan, and Zhiqun
Huang contributed equally to this study.

Acknowledgments

This research was funded by grants from Special Funding for
Guangxi Special Experts (#GRCT[2019]13), Guangxi Medi-
cal High-level Leading Talents Training “139” Project,
Guangxi Natural Science Foundation
(#2020GXNSFAA259050), and Youjiang Medical University
for Nationalities Research Project (#yy2019bsky001).

Supplementary Materials

Supplementary 1. Supplementary Figure 1: the sarcoma
TCGA cohort of clinical signature.

Supplementary 2. Supplementary Figure 2: the group of sar-
coma TCGA cohort.

Supplementary 3. Supplementary Figure 3: the gene mRNA
(FPKM) matrix of the sarcoma TCGA cohort.

Supplementary 4. Supplementary Figure 4: internal valida-
tion of the risk score model. (a) Risk-L and Risk-H groups
classified by median risk score in internal data. (b) Predictive
sensitivity and specificity of the risk score model in internal
validation. (c) Distribution of survival status of sarcoma
patients demonstrated by internal validation. (d) Kaplan-
Meier curves for OS of sarcoma patients in internal
validation.

References

[1] J. Y. C. Hui, “Epidemiology and etiology of sarcomas,” The
Surgical Clinics of North America, vol. 96, no. 5, pp. 901–914,
2016.

11Disease Markers

https://downloads.hindawi.com/journals/dm/2021/9919842.f1.txt
https://downloads.hindawi.com/journals/dm/2021/9919842.f2.txt
https://downloads.hindawi.com/journals/dm/2021/9919842.f3.txt
https://downloads.hindawi.com/journals/dm/2021/9919842.f4.pdf


[2] M. Sbaraglia, E. Bellan, and A. P. Dei Tos, “The 2020 WHO
classification of soft tissue tumours: news and perspectives,”
Pathologica, vol. 113, no. 2, pp. 70–84, 2021.

[3] M. F. Brennan, C. R. Antonescu, N. Moraco, and S. Singer,
“Lessons learned from the study of 10,000 patients with soft
tissue sarcoma,” Annals of Surgery, vol. 260, no. 3, pp. 416–
422, 2014.

[4] N. N. Howlader, A. M. Noone, M. E. Krapcho et al., SEER can-
cer statistics review, 1975–2016, vol. 1, National Cancer Insti-
tute, 2019.

[5] X.-W. Wang, Q. Sun, S.-B. Xu et al., “A 3-DNA methylation
signature as a novel prognostic biomarker in patients with sar-
coma by bioinformatics analysis,” Medicine, vol. 100, no. 20,
p. e26040, 2021.

[6] Z. Zhou, H. He, K. Wang et al., “Granzyme A from cytotoxic
lymphocytes cleaves GSDMB to trigger pyroptosis in target
cells,” Science, vol. 368, no. 6494, 2020.

[7] Z. Zhang, Y. Zhang, S. Xia et al., “Gasdermin E suppresses
tumour growth by activating anti-tumour immunity,” Nature,
vol. 579, no. 7799, pp. 415–420, 2020.

[8] X. Ma, P. Guo, Y. Qiu et al., “Loss of AIM2 expression pro-
motes hepatocarcinoma progression through activation of
mTOR-S6K1 pathway,” Oncotarget, vol. 7, no. 24,
pp. 36185–36197, 2016.

[9] L.-C. Chen, L.-J. Wang, N.-M. Tsang et al., “Tumour
inflammasome-derived IL-1β recruits neutrophils and
improves local recurrence-free survival in EBV-induced naso-
pharyngeal carcinoma,” EMBO Molecular Medicine, vol. 4,
no. 12, pp. 1276–1293, 2012.

[10] Y. Ye, Q. Dai, and H. Qi, “A novel defined pyroptosis-related
gene signature for predicting the prognosis of ovarian cancer,”
Cell Death Discovery, vol. 7, no. 1, pp. 1–11, 2021.

[11] Y.-F. Tan, M. Wang, Z.-Y. Chen, L. Wang, and X. H. Liu,
“Inhibition of BRD4 prevents proliferation and epithelial-
mesenchymal transition in renal cell carcinoma via NLRP3
inflammasome-induced pyroptosis,” Cell Death & Disease,
vol. 11, no. 4, p. 239, 2020.

[12] Y. Fang, S. Tian, Y. Pan et al., “Pyroptosis: a new frontier in
cancer,” Biomedicine & Pharmacotherapy, vol. 121, article
109595, 2020.

[13] W. Lin, Y. Chen, B. Wu, Y. chen, and Z. Li, “Identification of
the pyroptosis‑related prognostic gene signature and the asso-
ciated regulation axis in lung adenocarcinoma,” Cell death dis-
covery, vol. 7, no. 1, pp. 1–10, 2021.

[14] R. Karki and T.-D. Kanneganti, “Diverging inflammasome sig-
nals in tumorigenesis and potential targeting,” Nature Reviews
Cancer, vol. 19, no. 4, pp. 197–214, 2019.

[15] E. Latz, T. S. Xiao, and A. Stutz, “Activation and regulation of
the inflammasomes,” Nature Reviews Immunology, vol. 13,
no. 6, pp. 397–411, 2013.

[16] S. Xiao, Y. Zhou, A. Liu et al., “Uncovering potential novel bio-
markers and immune infiltration characteristics in persistent
atrial fibrillation using integrated bioinformatics analysis,”
Mathematical Biosciences and Engineering, vol. 18, no. 4,
pp. 4696–4712, 2021.

[17] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic
and integrative analysis of large gene lists using DAVID bioin-
formatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57,
2009.

[18] J. Wu, X. Mao, T. Cai, J. Luo, and L. Wei, “KOBAS server: a
web-based platform for automated annotation and pathway

identification,”Nucleic Acids Research, vol. 34, no.Web Server,
pp. W720–W724, 2006.

[19] W. Shao, Z. Yang, Y. Fu et al., “The pyroptosis-related signa-
ture predicts prognosis and indicates immune microenviron-
ment infiltration in gastric cancer,” Frontiers in Cell and
Developmental Biology, vol. 9, p. 1512, 2021.

[20] B. Li, Y. Cui, D. K. Nambiar, J. B. Sunwoo, and R. Li, “The
immune subtypes and landscape of squamous cell carcinoma,”
Clinical Cancer Research, vol. 25, no. 12, pp. 3528–3537, 2019.

[21] P. Roepman, A. Schlicker, J. Tabernero et al., “Colorectal can-
cer intrinsic subtypes predict chemotherapy benefit, deficient
mismatch repair and epithelial-to-mesenchymal transition,”
International Journal of Cancer, vol. 134, no. 3, pp. 552–562,
2014.

[22] T. Li, H.-J. Kung, P. C. Mack, and D. R. Gandara, “Genotyping
and genomic profiling of non–small-cell lung cancer: implica-
tions for current and future therapies,” Journal of Clinical
Oncology, vol. 31, no. 8, pp. 1039–1049, 2013.

[23] M. J. Higgins and J. Baselga, “Targeted therapies for breast
cancer,” The Journal of Clinical Investigation, vol. 121,
no. 10, pp. 3797–3803, 2011.

[24] A. Mariño-Enríquez and J. V. Bovée, “Molecular pathogenesis
and diagnostic, prognostic and predictive molecular markers
in sarcoma,” Surgical pathology clinics, vol. 9, no. 3, pp. 457–
473, 2016.

[25] A. Ju, J. Tang, S. Chen, Y. Fu, and Y. Luo, “Pyroptosis-related
gene signatures can robustly diagnose skin cutaneous mela-
noma and predict the prognosis,” 2021, https://www.biorxiv
.org/content/10.1101/2021.04.17.440259v2.abstract.

[26] E. Ren, Y. Deng, W. Yuan, Z. L. Wu, G. Z. Zhang, and Q. Q.
Xie, “An immune-related gene signature for determining
Ewing sarcoma prognosis based on machine learning,” Journal
of Cancer Research and Clinical Oncology, vol. 147, no. 1,
pp. 153–165, 2021.

[27] G. Carpenter and Q. Ji, “Phospholipase C-γ as a signal-
transducing element,” Experimental Cell Research, vol. 253,
no. 1, pp. 15–24, 1999.

[28] R. Kang, L. Zeng, S. Zhu et al., “Lipid peroxidation drives gas-
dermin D-mediated pyroptosis in lethal polymicrobial sepsis,”
Cell Host & Microbe, vol. 24, no. 1, pp. 97–108.e4, 2018.

[29] K. Schroder and J. Tschopp, “The inflammasomes,” cell,
vol. 140, no. 6, pp. 821–832, 2010.

[30] J. Kim and J. S. Bae, “Tumor-Associated Macrophages and
Neutrophils in Tumor Microenvironment,” Mediators of
Inflammation, vol. 2016, Article ID 6058147, 11 pages, 2016.

[31] A. Dufresne, T. Lesluyes, C. Ménétrier-Caux et al., “Specific
immune landscapes and immune checkpoint expressions in
histotypes and molecular subtypes of sarcoma,” OncoImmu-
nology, vol. 9, no. 1, article 1792036, 2020.

[32] Q. Wang, Y. Wang, J. Ding et al., “A bioorthogonal system
reveals antitumour immune function of pyroptosis,” Nature,
vol. 579, no. 7799, pp. 421–426, 2020.

[33] V. Francescutti and J. J. Skitzki, “Sarcomas and the immune
system: implications for therapeutic strategies,” Surgical
Oncology Clinics, vol. 21, no. 2, pp. 341–355, 2012.

[34] M.-F. Heymann, F. Lézot, and D. Heymann, “The contribution
of immune infiltrates and the local microenvironment in the
pathogenesis of osteosarcoma,” Cellular Immunology,
vol. 343, article 103711, 2019.

[35] A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and
P. Allavena, “Tumour-associated macrophages as treatment

12 Disease Markers

https://www.biorxiv.org/content/10.1101/2021.04.17.440259v2.abstract
https://www.biorxiv.org/content/10.1101/2021.04.17.440259v2.abstract


targets in oncology,” Nature reviews Clinical oncology, vol. 14,
no. 7, pp. 399–416, 2017.

[36] L. Cassetta and J. W. Pollard, “Targeting macrophages: thera-
peutic approaches in cancer,” Nature Reviews Drug Discovery,
vol. 17, no. 12, pp. 887–904, 2018.

[37] T. Yamaguchi, A. Movila, S. Kataoka et al., “Proinflammatory
M1macrophages inhibit RANKL-induced osteoclastogenesis,”
Infection and Immunity, vol. 84, no. 10, pp. 2802–2812, 2016.

[38] M. Genin, F. Clement, A. Fattaccioli, M. Raes, and C. Michiels,
“M1 and M2 macrophages derived from THP-1 cells differen-
tially modulate the response of cancer cells to etoposide,” BMC
Cancer, vol. 15, no. 1, pp. 1–14, 2015.

[39] F. Petitprez, A. de Reyniès, E. Z. Keung et al., “B cells are asso-
ciated with survival and immunotherapy response in sar-
coma,” Nature, vol. 577, no. 7791, pp. 556–560, 2020.

[40] X. Yang,W. Zhang, and P. Xu, “NK cell and macrophages con-
fer prognosis and reflect immune status in osteosarcoma,”
Journal of Cellular Biochemistry, vol. 120, no. 5, pp. 8792–
8797, 2019.

[41] D. J. Indelicato and S. E. Finkelstein, “Dendritic cell immuno-
therapy in soft tissue sarcoma,” Immunotherapy, vol. 4, no. 10,
pp. 1023–1029, 2012.

13Disease Markers


	Pyroptosis-Related Gene Signature Is a Novel Prognostic Biomarker for Sarcoma Patients
	1. Introduction
	2. Materials and Methods
	2.1. Datasets
	2.2. Identification of PRG Signatures and Development of Risk Model
	2.3. Development of Independently Prognostic PRGs
	2.4. Survival Investigation of Risk Model
	2.5. Gene Ontology (GO) Annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) Pathway Enrichment Analyses of PRG with Independent Prognosis
	2.6. Analysis of Immune Cell Infiltration in TIME
	2.7. Statistical Analysis

	3. Results
	3.1. Construction of Risk Model for PRG Signature and Assessment of Prognostic Predictive Capability
	3.2. Prognostic Significance of Individual Six-PRG Signature
	3.3. Development and Validation of Five-PRG Nomogram Model
	3.4. Enrichment Analyses of Five Differentially Expressed PRGs in Two Risk Subcohorts
	3.5. Immune Cell Infiltration Analysis

	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

