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We present a deep learning and simulation-based method to measure cortical capillary
red blood cell (RBC) flux using Optical Coherence Tomography (OCT). This method
is more accurate than the traditional peak-counting method and avoids any user
parametrization, such as a threshold choice. We used data that was simultaneously
acquired using OCT and two-photon microscopy to uncover the distribution of
parameters governing the height, width, and inter-peak time of peaks in OCT intensity
associated with the passage of RBCs. This allowed us to simulate thousands of time-
series examples for different flux values and signal-to-noise ratios, which we then used
to train a 1D convolutional neural network (CNN). The trained CNN enabled robust
measurement of RBC flux across the entire network of hundreds of capillaries.
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INTRODUCTION

The microvascular bed is integral to the delivery of nutrients and oxygen to cerebral tissue, and
its dysfunction is implicated in a number of pathologies. To understand how various experimental
conditions impact microvascular flow, it is critical to be able to study a large number of capillaries
considering the heterogeneity of flow in capillaries. The ability to study blood flow in a network
of interconnected capillaries makes it possible to test a wide range of scientific hypotheses on how
microvascular flow is regulated in the brain in health and disease. For example, microvascular flow
has been studied in relation to neurovascular coupling (Rungta et al., 2018), stroke (Schaffer et al.,
2006) and Alzheimer’s disease (Gutiérrez-Jiménez et al., 2018).

However, it is not currently feasible to accomplish high-throughput flow measurements
using two-photon excitation fluorescence microscopy (TPEF), the gold standard for quantitative
microvascular imaging (Kleinfeld et al., 1998; Nelson et al., 2020; Shaw et al., 2021).
As an alternative, optical coherence tomography (OCT) has shown promising results
for the quantification of blood flow, as demonstrated by Doppler OCT for imaging
arterioles and venules (Munce et al., 2010; Srinivasan et al., 2010). Doppler OCT has
also shown some promise in quantifying red blood cell (RBC) speed (Tang et al., 2017),
although RBC flux may be more physiologically relevant as it more closely correlates with
oxygenation (Li et al., 2019). However, in comparison to larger vessels, the dynamics of
blood flow differ greatly in capillaries which are typically smaller than 10 µm and in
which RBCs flow discretely in single file, making it difficult to apply Doppler OCT to
determine RBC flux. This is because the fast A-scan rate defining Doppler OCT results in
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only 1–2 RBC passages being observed during a reasonable
acquisition period, which is insufficient to determine RBC flux.
Instead, OCT has been leveraged to quantify RBC flux in large
networks of capillaries, based on the observation that a passage
of a RBC through a voxel causes a transient increase in intensity
(Ren et al., 2012; Lee et al., 2013). The standard approach
is to count the number of peaks observed over a length of
time using some peak-finding algorithm, commonly based on
a threshold: i.e., peaks over this threshold are considered to be
peaks resulting from RBC passages (Li et al., 2016). However, this
approach is sensitive to noise, requires user parametrization, and
has been shown to underestimate RBC flux at high flux values
(over 80 RBC/s) (Marchand et al., 2020). Often, it is difficult
to manually distinguish noise from legitimate RBC passages,
making it difficult to assess whether a peak-counting algorithm
is working correctly or whether the threshold is appropriate.

To address this issue, we aimed to develop a robust and
accurate method of determining RBC flux from OCT data which
does not require any user parametrization. We exploited deep
learning to extract relevant features from OCT time-series data
using a 1D convolutional neural network (CNN). To train the
network, we collected RBC passage data using OCT and TPEF
simultaneously, where the TPEF data provided the true flux
value. We probed the CNN to understand which features were
important for classification of RBC flux, and then incorporated
these results to simulate many OCT time-traces for different RBC
flux and velocity values. This enabled us to produce hundreds of
thousands of training examples, which is especially important for
low and high flux values which are underrepresented in real data.
The result is a validated method for simulating OCT time-series
data, and a CNN that can be implemented to obtain accurate and
robust estimations of RBC flux in large networks of capillaries.

DATASET

As described by Marchand et al. (2020), a multi-modal platform
was designed for simultaneous in vivo imaging using OCT
and TPEF. TPEF imaging was performed at 920 nm and
FITC fluorescence was collected through an emission filtered at
520 nm. An objective lens with magnification of 10× (Mitutoyo)
was used to provide a lateral resolution <3 µm for TPEF imaging,
and 3.5 µm for OCT. The light source of the OCT system
operated at 1300 nm (LS2000C, Thorlabs) with an axial resolution
of∼ 3.8 µm in animal tissue.

For in vivo imaging of the cerebral cortices of C57BL/6
mice, we performed craniotomies with approval from the ethics
committee of the research center of the Montreal Heart Institute.
For the craniotomy performed at Brown University, experimental
procedures were reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) of Brown University
and Rhode Island Hospital. Cranial windows were installed to
gain optical access to the cerebral cortex, according to the widely
adopted protocol described by Mostany and Portera-Cailliau
(2008).

To obtain the simultaneous time-courses using OCT and
TPEF, we performed imaging in the awake state. Firstly, we

selected a capillary through the TPEF channel, since only a single
capillary can be analyzed at a time using TPEF. Line-scanning
was performed at a rate of 800 Hz along the longitudinal axis of
the capillary for approximately 60 s along a line of 11.7 µm. At
the same time, B-scans were acquired using the OCT to capture
the intensity time-course of the same vessel. These B-scans were
repeated over a time of 0.768 s at a rate of 665 Hz, resulting in a
temporal resolution of 1.5 ms. Each B-scan consisted of 60× 2048
pixels, spanning 100 µm laterally, resulting in a lateral pixel size
of 1.7 µm. The TPEF time-course was then downsampled to the
same frequency as the OCT. Overall, 9441 time-courses of RBC
passages were obtained from a total of 3 mice and 119 capillaries.

We performed additional OCT imaging to demonstrate our
method on a large network of capillaries, which we performed
using a commercial SD-OCT system (Telesto III, Thorlabs)
with center wavelength of 1310 nm and bandwidth of 170 nm.
This imaging was performed on one C57BL/6 mouse under 2%
isoflurane anesthesia. As before, we used a 10× objective lens
(Mitutoyo) with transverse resolution of 3.5 µm. To image the
network of capillaries, we scanned a region with a field of view
of 256 × 256 × 70 pixels (x, y, z) corresponding to a size of
768× 768× 245 µm (x, y, z). We did so by repeatedly performing
B-scans at a rate of 714 Hz at each y position for over a time of
0.72 s, yielding a temporal resolution of 1.4 ms. We believe these
imaging parameters to be appropriate for the intended purpose
of measuring RBC flux in a network of capillaries, because
the resolution is sufficient to observe individual capillaries and
individual passages of RBCs, yet also balances the trade-off
between resolution, dataset size, and acquisition time.

TRAINING 1D CONVOLUTIONAL
NEURAL NETWORK ON EXPERIMENTAL
DATA

We acquired 9441 time-traces of RBC passages using OCT and
TPEF as described by Marchand et al. (2020), consisting of 512
time-points at a temporal resolution of 1.5 ms. TPEF is often
regarded as the gold standard for RBC flux measurements, since
the TPEF time-traces exhibit high signal-to-noise ratio and are
not plagued by speckle noise like the OCT data, allowing us
to obtain the “ground truth” for the RBC flux. To confirm
the higher signal-to-noise ratio, we determined the standard
deviation of the normalized OCT and TPEF time-courses, and
found a statistically higher signal-to-noise ratio as defined by the
coefficient of variation for the TPEF time-courses (p < 0.001;
paired t-test). Thus, we trained a 1D CNN, using the OCT time-
traces as the training data and the RBC flux values obtained using
TPEF as the labels. We augmented this dataset by reversing the
time of the time-traces, and then split the augmented dataset into
training, validation and testing with proportions of 70, 20, and
10%, respectively.

We adopted the state-of-the-art architecture for time-series
classification, InceptionTime (Ismail Fawaz et al., 2020). The
CNN consists of an input layer of size 512 (corresponding to
0.75 ms), 3 inception modules, a global averaging layer, and a
fully-connected layer which results in 2 outputs: the RBC flux
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FIGURE 1 | Red blood cell fluxestimation accuracy as a function of acquisition time for the traditional peak counting method (top row) versus the presented deep
learning-based method (bottom row).

prediction and its associated uncertainty. The inception module
consists of a bottleneck layer, which feeds into 3 convolutional
layers of kernel size of 10, 20, and 40. At the same time, the input
of the inception module is also fed through a max-pooling layer
of kernel size 3, and then a bottleneck layer. The output of the
bottleneck layer and the convolutional layers are concatenated
channel-wise and form the input of the next inception module.

We designed our CNN to provide an estimate of uncertainty
in its prediction, which serves as a signal that a prediction may
not be trusted. This is important because there is ambiguity in
what constitutes the passage of a RBC, even when assessing the
data manually. To provide a measure of uncertainty we adapted
the loss function as shown in Eq. 1 to maximize the probability of
a given prediction y, assuming this prediction is derived from a
normal probability distribution with mean equal to the ground
truth, G, and standard deviation, σ. The standard deviation,
which is learned by the network, thus serves as an indicator of
uncertainty in the predicted value. The network thus provides a
continuous prediction for RBC flux, along with its continuous
predicted uncertainty. We trained our network using the Adam
optimizer, with a learning rate of 8e-4 for 50 epochs, and a
gradient threshold of 500 which was necessary given our adapted
loss function.

loss = − log

(
1

σ
√

2π
exp

((
G− ŷ

)2

2σ2

))
(1)

We tested the performance of the CNN on the test data,
which was unseen to the CNN during training, and observed
more accurate results compared to peak-counting as assessed
by the slope being closer to 1, and the R2 value higher
(Figure 1). Therefore, the CNN provides the possibility to filter

the predictions to include data with the highest confidence. We
then tested the same network architecture trained on different
input sizes to understand the trade-off between acquisition
time and accuracy (Figure 1). It is important to note that
increasing the acquisition time does improve the R2 value of
the peak-finding estimations, the slope is consistently less than
1, indicating a systematic bias against high-flux capillaries. On
the other hand, the CNN can provide accurate predictions even
for short acquisition times. We also tested this loss function in
comparison to a conventional mean-squared loss, which does
not provide a measure of uncertainty in its prediction. To do
so, we trained a separate CNN with this mean-squared loss
to perform regression on the same dataset as previously, and
found that these results were still better than traditional peak-
fitting (slope = 0.98, R2 = 0.85), although it is not possible to
weight predictions based on uncertainty like afforded by the loss
function described in Eq. 1.

SIMULATING OPTICAL COHERENCE
TOMOGRAPHY TIME-SERIES DATA

A significant benefit of knowing the ground truth for flux
values is to enable determination of the underlying distributions
of parameters describing the OCT time-series data: the shape,
width, height and spacing of the peaks. We firstly identified likely
RBC passages within a time-trace by identifying all peaks, sorting
these peaks by peak prominence, and selecting the number of
peaks corresponding to the true flux in order of descending
peak prominence (Figure 2A). We used these peaks to assess the
distributions of the parameters. We found that normalized time-
traces with flux values between 20 and 80 RBC/s had peaks which
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FIGURE 2 | Detecting RBC passages from OCT time-series data and characterizing the distributions of parameters describing these RBC passages. (A) RBC
passages were identified using the known value of flux (obtained by TPEF) and sorting peaks based on peak prominence. Orange lines describe peak position and
heights, and the yellow line is the full width half maximum (FWHM), describing the width. (B) The distribution of all peak heights (C) peak widths and (D) inter-peak
times for varying ranges of flux values. (E) Mean peak height decreases with increasing flux (left). Mean peak height over all time-traces for each flux category is
described by a beta distribution (middle) as shown using 50 RBC/s as an example, and the peak heights within a time-trace given the mean peak height are also
described by the beta distribution (right). Shaded areas show the standard deviation about the mean.

had mean heights closer to 1 after normalization of each time-
trace (Figure 2B), indicating that these peaks are likely to be
detected by the traditional threshold-based methods. However,
time-traces with higher flux values tend to have more peaks
with smaller heights which may explain why the traditional
methods tend to severely underestimate high RBC flux passages.
This highlights the inherent difficulty in choosing an appropriate
threshold to be sensitive to capture RBC passages in high flux
capillaries while minimizing false positives in low flux capillaries.
After having characterized the distribution of mean peak heights

for each flux, we sought to describe the distribution of peak
heights for a given flux and mean peak height within each time-
trace, as shown in Figure 2E. For example, we find the mean peak
height across all time-traces for a given flux is described by a
beta distribution. Now, for a given mean peak height and flux,
the height of intensity peaks within those time-traces are also
described by a beta distribution, but with different parameters.
Thus, for each flux and mean peak height, there is a unique beta
distribution describing the peak heights within each time-trace,
which is also true for peak width.
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As expected, lower flux values are associated with larger peak
widths considering the relationship between peak width and RBC
speed (Figure 2C). The mean peak width for each flux value was
well captured by the gamma distribution. For a given mean width,
the gamma distribution also described well the distribution of
peak widths within a time-trace. We also verify that the standard
deviation of the average peak width decreases with increasing flux
since large flux values can only be accomplished with higher RBC
speeds (due to the finite size of the RBC) whereas low flux can be
accomplished with low or high-speed RBCs. We also assessed the
relationship between mean peak width and peak width variability,
especially in the context of RBC speed, which was approximated
as the reciprocal of the peak width. For example, we tested
whether low RBC speed time-traces (i.e., high mean peak width)
was also associated with greater variability in RBC speed, but we
did not observe any relationships between mean RBC speed and
RBC speed variability.

Next, we looked to describe the spacing between RBC peaks,
or the inter-peak time (Figure 2D). As expected, the mean
inter-peak time is inversely proportional to the flux – only
the lowest flux category (<10 RBC/s) vastly deviated from
this relationship by exhibiting lower mean inter-peak time
than expected, likely an artifact due to the small number
of RBCs observed during duration of each time-trace. We
expected the distribution of inter-peak distances to follow a
Poisson distribution with mean equal to the mean inter-peak
distance. However, we found that the experimental standard
deviation was greater for low flux values than predicted
by a Poisson distribution (i.e., greater than the square root
of the mean), only approaching a Poisson distribution for
high flux values.

Having characterized the parameter distributions describing
how RBC passages appear in OCT data across all flux ranges,
we were able to use this information to simulate RBC passages
computationally for OCT imaging specifications similar to those
described in the section Dataset. This will allow us to produce
many more training examples of low and high flux time-traces
for further training of our CNN, which were underrepresented
in the experimental data. This also allowed us to produce many
more training examples of rare but physiological instances,
such as low-flux, high-speed time-traces. We first replicated our
experimental data by simulating RBC passages as Gaussian pulses
with identical mean height, width, and inter-peak distances.
We then had the CNN of Figure 1 predict flux values from
this set of noiseless, simulated training time-traces. Importantly,
we discovered that the CNN overestimated low flux values
and underestimated high flux values, implying that noise is an
essential feature for the prediction of RBC flux.

IMPROVING OPTICAL COHERENCE
TOMOGRAPHY TIME-SERIES
SIMULATIONS

We hypothesized that OCT-specific noise and slow-varying
components are critical features that were omitted in the
simple simulation above. Thus, we modeled OCT-specific noise

and added the noise as well as slow-varying components,
and then tested if the improved simulation improves
prediction by the CNN.

We modeled OCT-specific noise as described in Uribe-
Patarroyo et al. (2020). Here noise, N, is a random variable
described by a zero-mean complex circular Gaussian
distribution, which will be added to the signal, S, like so,

I = S+ N2
+ 2
√
S|N| cos φ (2)

Where ϕ is the relative phase between S and N and is
modeled by a uniform distribution. Before incorporating noise
into our simulations, we first tested whether the noise would
affect the width of the simulated peaks. In detail, we added
noise to the noiseless, simulated signals described above, while
varying the amplitude of noise to achieve a range of signal-
to-noise ratios from 1 to 10. We applied a gaussian filter
with sigma = 1.5 ms, while taking into account the effect
of filtering on peak width. As expected, increasing noise
resulted in an increased peak width, eventually reaching a
plateau (Figure 3B). Furthermore, the fractional increase in
peak width was independent of the original peak width. This
corruption of peak width by noise may help explain the
inaccuracy of estimation of RBC speed using OCT time-traces
(Marchand et al., 2020).

Next, we wanted to investigate whether noise amplitude
was flux-dependent in the experimental data, and whether
adding noise could improve the CNN predictions of our
simulated data – i.e., is noise a critical feature needed for the
classification of flux by our CNN? To answer these questions,
we performed a grid search over different noise amplitudes
(SNR ranging from 1 to 10) while correcting for the effect of
noise on peak width. We found the optimal noise amplitude
for each time-trace and assessed these results as a function
of flux (Figure 3A). For high flux values (>100 RBC/s), we
found better predictions were obtained with greater noise
amplitudes, whereas for mid-range fluxes (∼50–100 RBC/s),
a wide range of noise amplitudes yielded optimal predictions.
On the other hand, predictions of low flux values were almost
always hindered by the addition of noise. This result suggests
that there is a positive correlation between RBC flux and
noise, which should be taken into account when designing
algorithms for the simulation of OCT time-traces and the
estimation of RBC flux.

We simulated noisy data using the average optimal noise
amplitude for each flux range and verified that the number
of peaks detected (using the previously determined peak
prominence) was the same before and after the addition of
noise. The CNN predictions from this noisy simulated data were
improved in comparison to those from the noiseless data, except
for very low flux values (<15 RBC/s) which were overestimated.

In addition to noise, OCT time-series can include a slow-
varying component due to static scattering (Srinivasan et al.,
2012). Therefore, we tested whether including a slow-varying
component would improve the CNN predictions in a similar
manner. We simply modeled this component as a sine wave
with unknown amplitude and frequency and added it to the

Frontiers in Neuroscience | www.frontiersin.org 5 February 2022 | Volume 16 | Article 835773

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-835773 February 11, 2022 Time: 16:30 # 6

Stefan et al. Capillary RBC Flux Estimation

FIGURE 3 | Incorporating noise and a slow-varying component improves predictions of CNN on simulated data. (A) Optimal noise amplitudes to maximize CNN
prediction accuracy as a function of flux. (B) Including noise has the effect of increasing peak width as a function of the noise amplitude, reaching a plateau at
around 17%. (C) Low flux value time-traces are predicted with greater accuracy when including a slowly-varying component with low frequency, whereas all other
flux values show greater variability in the optimal parameters of the slow-varying component. (D) An example showing how incorporating noise and a slow-varying
component results in more accurate CNN predictions.

noisy simulated signals. Like above, we performed a grid
search to determine the optimal parameters as a function of
flux (Figure 3C). Interestingly, the predictions for low flux
values (<15 RBC/s) were greatly improved by incorporating
a slow-varying component, in the form of a sine wave with
frequency 1.5 Hz and amplitude of 0.3. But predictions for
higher flux values were improved by a much lesser extent.
Based on these findings, we again modeled RBC passages as
Gaussian pulses with height, width and inter-peak time using
the uniform distribution as well as the distributions found
above. To secure a sufficient number of training samples of rare
instances, such as low flux capillaries with high RBC speed, we
sampled parameters from uniform distributions describing the
mean height, width, and inter-peak time. For example, for a
given flux, we sampled from a uniform distribution describing
mean peak height. Now given this mean peak height, we
sampled from the experimentally-determined beta distribution
to obtain the peak heights of all peaks within the time-trace
(Figure 2E). We followed a similar procedure for peak widths
and inter-peak times, which have variability within each time-
trace as described by gamma distributions. We found these
parameters to be independent, allowing us to sample from

each distribution independently. We then added noise (Eq. 2)
with varying amplitude from 0 to 1, and sine waves with
frequencies from 0 to 16 Hz and amplitudes from 0 to 0.5. We
incorporated these elements by sampling from the distributions
describing noise amplitude and static components as a function
of flux (Figure 3).

TRAINING OF THE CONVOLUTIONAL
NEURAL NETWORK ON SIMULATED
DATA

Having simulated OCT time-traces of RBC passages much
more realistically by adding the modeled noise and slow-
varying components, we further trained the CNN of
Figure 1 with these realistic simulated signals, the number
of which is much larger than the experimental data.
We added these simulated signals to the experimental
signals, producing a training sample of 10,000 training
examples for each flux category, resulting in 1,20,000 total
training samples.
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FIGURE 4 | Convolutional neural network trained on simulated data is more robust to different RBC speeds (peak widths) than the CNN trained only on experimental
data and can be utilized to extract RBC flux in a network of capillaries. (A) Simulated time-traces with the smallest (left) and largest (right) mean peak widths that
were observed experimentally. (B) Results of the CNNs trained on experimental data and simulated data, respectively, with the input are time-traces like those shown
in (A). (C) The CNN predicts flux values with low uncertainty for voxels corresponding to capillaries. (D) The 3D RBC flux of the capillaries shown in the red square in
(C).

With this data, we continued training the CNN described
previously and found a modest improvement in the resulting
accuracy as determined by testing the network on the
experimental test data (R2 value increased from 0.88 to 0.91,
slope = 1). However, this network is more robust to different noise
levels, and different RBC speeds for any given flux value, as shown
in Figure 4. The network trained solely on experimental data
systematically overestimates fluxes of simulated time-traces with
smaller peaks widths, which is correlated with higher RBC speed
(Figure 4A), even when the RBC speed is within a physiological
range. Similarly, this CNN underestimates flux from time-traces
with larger peak widths than average (Figure 4B). Simulating

time-traces allows for more balanced training data, which serves
to eliminate this bias.

RED BLOOD CELL FLUX OF CAPILLARY
NETWORK

We applied our CNN to 4D data (x, y, z, t) of the murine cortical
vasculature to estimate RBC flux in an interconnected network
of capillaries, which was unseen to the CNN during training.
The data was collected over a FOV of 0.768 mm × 0.768 mm
× 0.25 mm (x, y, z), and for a duration of 716 ms with temporal
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resolution of 1.4 ms. As a sign of confidence in our method, we
observed that voxels corresponding to capillaries were associated
with lower uncertainty as predicted by the CNN (Figure 4C). We
applied our previously-developed toolbox for the segmentation
of OCT angiograms to obtain the centerlines of each vessel
(Stefan and Lee, 2020). We then applied the CNN to the time-
trace of each of the voxels within the centerline of a vessel and
averaged the predicted flux values for the vessel while weighting
the predictions by their associated uncertainties. Repeating this
prediction and averaging for every vessel in a capillary network
produced a map of RBC fluxes (Figure 4D). While Marchand
et al. used a masking technique to identify the best voxel choice,
we recentered the vessel skeleton using the algorithm described
in Stefan and Lee (2020) to align the centerline with the voxels of
lowest uncertainty.

DISCUSSION

It is useful to obtain high-throughput estimations of RBC flux,
as it allows for the study of capillary network dynamics with
greatly improved statistical power. OCT has been shown to be
a promising tool for this purpose, considering that OCT can
detect individual RBC passages due to the transient increases in
intensity as the RBC passes through the imaging voxel. However,
it is still unclear on how to identify these RBC passages from
OCT time-traces. Basic peak-finding algorithms were an obvious
starting point but have recently been shown to systematically
underestimate high flux values.

By investigating time-traces obtained using OCT and TPEF
simultaneously, we have uncovered the distributions governing
the height, width and inter-peak time of those intensity peaks
representing the passage of RBCs. Our findings reveal that
time-traces of high flux capillaries tend to have lower mean
peak height, which explains why the traditional peak-counting
methods underestimate RBC flux for these capillaries. Our
findings also indicate that time-traces of high flux capillaries
tend to have greater noise, which in turn may impact peak
detection and peak width measurement. Adding noise increased
the peak width by up to 17%, which may contribute to error when
estimating RBC speed. We also found that the incorporation of
slowly-varying components was critical to the accurate prediction
of RBC flux, in particular for low flux values, suggesting that
this may be a common component of time-traces of low-flux
capillaries. These insights may serve to form a foundation for
how researchers may simulate OCT time-traces and also some of

the challenges that need to be overcome. Subsequent studies may
also study the effects of multiple-scattering, lateral resolution,
and the orientation of the capillary (specifically, nearly-vertically
oriented capillaries). Furthermore, we believe this work extends
to other mammals considering that the variation of RBC size is
small (Hawkey et al., 1991), capillaries are of similar diameter
(Karbowski, 2011), and RBC velocity appears to be independent
of body mass (Unekawa et al., 2010).

We utilized these findings and empirical distributions to
simulate OCT time-traces for a wide range of RBC fluxes and
speeds, as well as noise amplitudes. This novel simulation strategy
which better mimics real OCT time-traces has enabled us to
develop a more balanced training set than the one acquired
experimentally as well as thousands of more training examples,
thereby improving the robustness of the network. We make the
code freely available for researchers to implement our trained
CNN directly to their data without any user parametrization, as
well as code for simulating OCT time-traces and training their
own networks with any input size.
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