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Abstract: Feed and food production are inter alia reasons for high greenhouse gas emissions.
Greenhouse gas emissions could be reduced by the replacement of animal components with plant
components in processed food products, such as pasta. The main components currently used for
pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the
substitution of whole egg with plant-based ingredients, for example from peas, in such a product
might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at
economically reasonable costs. The costs and carbon footprints of two pasta types, produced with
egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2

equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while
the cost of production increases by 10% to 3.00 €/kg pasta.
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1. Introduction

Feed and food production contribute substantially to the emissions of greenhouse gases, which
are known to cause global warming with serious environmental and economic threads [1]. The relevant
greenhouse gas fluxes affected by agronomic activities are the fluxes of carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O). In particular, livestock, causing 18% of the global greenhouse gas
emissions, has a major share [2,3]. Subsequently, food with animal protein components, such as
dairy (cheese: 8.8 kg CO2eq/kg cheese) and meat products (beef: 29.0 kg CO2eq/kg beef), show
high greenhouse gas emissions. Besides animal products, few vegetables and cereals (tomato: 5.3 kg
CO2eq/kg tomato; rice: 1.2 kg CO2eq/kg rice) are also generating high emissions. Greenhouse gas
emissions could be reduced by the replacement of animal with plant components in foods. It is
conceivable to use grain legumes, such as peas or beans, as such plant replacement components. Grain
legumes, such as peas with a carbon footprint of 0.49 kg CO2eq/kg pea, have been suggested as a
very efficient source of protein in terms of greenhouse gas (GHG) emissions per kg [4]. Pea-based
protein has proved to be very well suited for the fortification of pasta products and the improvement
of techno-functional and sensorial properties, and thus could very well substitute animal-based
ingredients of processed foods [5].

Besides the greenhouse gas mitigation effect of substituting animal protein with legume protein,
the integration of grain legumes in crop rotations has positive effects on soil fertility and soil
health [6]. Owing to the formation of taproots, grain legumes improve the soil structure and result in
a more diverse crop rotation. Furthermore, the plants form a symbiosis with bacteria of the family
Rhizobiaceae, which can bind atmospheric nitrogen in the soil and make it available for plants [6,7].
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An enrichment of grain legumes such as peas in foodstuffs has, in addition to the aforementioned
improvements in agriculture, positive effects on human health. They are rich in certain minerals and
vitamins [8]. The content of crude protein of 225 g per kg dry matter [9] qualifies peas to be used as
replacers for animal-derived proteins, contributing to enhancing the protein content of cereal-based
meals and to improving the nutritional status of cereal-based diets. Regarding amino acid composition,
especially combinations of cereal and legume proteins are beneficial. As cereal proteins are deficient in
certain essential amino acids, particularly lysine [8], legumes have been reported to contain adequate
amounts of lysine (15.7 g/kg of dry matter) [9]. Thus, thanks to their inherent botanical make-up
and the basis of the ingredients, grain legumes can increase the amount of protein in cereal-based
diets [8,9]. In addition, high amounts of protein, a low glycemic index and high fiber content are other
favorable factors for biological activities which are essential to human health. It has been reported
that grain legumes reduce the risk of cardiovascular diseases, diabetes or cancer, especially colon
cancer [10–12], which may also be a reason for the increased interest in using pea-based ingredients in
processed foods.

In contrast to the aforementioned health benefits, the consumption of proteins from grain legumes
compared to animal proteins is very low. This is inter alia due to a poor digestibility of legumes and the
presence of anti-nutritional substances in the plant [13,14]. In order to make better use of legumes in
processed foods, it is necessary to eliminate the aforementioned restrictive factors and to communicate
the benefits to the consumer. However, due to several ethical and personal reasons, nowadays, more
consumers are interested in replacing proteins of animal origin.

One possible food product in which ingredients of animal origin could be replaced by plant
components is pasta. The currently used main components of pasta are semolina (made of wheat) and
water. Furthermore, eggs in the form of raw or pasteurized whole egg can also be added [6,15–18].
This paper analyzes the use of two different pasta products, with and without animal ingredients,
which differ in costs and product-specific GHG emissions.

2. Materials and Methods

2.1. Modeling the Value Chain of Two Pasta Products Based on Protein from Egg and Peas

For the environmental and economic analyses, the first step is to analyze the value chain of pasta
production. A typical value chain of pasta production consists of the main process steps: “raw material
production”, “food production”, “packaging”, “distribution” and “consumer”. This includes the
corresponding sub-processes (Figure 1).

Typically, for one kg of pasta enhanced with protein from hens’ eggs (Pastaegg), 0.8 kg semolina,
0.2 kg whole egg powder and 0.3 L water are needed [17,19]. For comparison, we calculated costs
and greenhouse gas emissions of a pasta product (Pastapea) which consists of 0.2 kg pea protein flour
instead of whole egg powder, based on data provided by Nielsen et al. [5].

Input and output data for the main process step of “raw material production” were taken from
available databases on agricultural production [20–24]. The production data of pea protein flour
are given by the company “GEA Westfalia Seperator Group” [25] and available data from scientific
literature [26,27]. Data on spray-dried whole egg powder and on the whole process of dry pasta
production (pasta production, packaging, distribution and consumer) were gathered from available
data from pasta producers and scientific literature [17,19,24,28,29].

2.2. Cost Analysis of the Pasta Products Based on Protein from Egg and Peas

For the cost analysis, costs of the ingredients and the production, as well as the sale price for
the wholesale and retail trade, were gathered from available data sources. The purchase prices of the
ingredients, semolina (0.50 €/kg dry matter), whole egg powder (1.90 €/kg dry matter) and pea protein
flour (2.50 €/kg dry matter), were based on the expert judgment of a project partner [30]. A water
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price of 2.60 €/m³ was assumed [31]. During processing, 0.3 L of water per kg pasta was accounted for,
which in part was removed with the drying to a water content of 12.5% for both pastas [19].

According to Panno et al. [32], the costs of the process step of “pasta production” consist of the
costs of raw materials (77%), labor (14%), electric and thermal energy (6%) as well as packaging (3%).
For the Pastapea, the calculated values for labor, electricity and thermal energy of the Pastaegg were
used. The price calculations for the wholesale and retail trade are determined by the procurement
costs, the handling costs and the mark-up, according to calculation templates of the Federal Ministry
for Economic Affairs and Energy [33]. Reference costs include the costs for shipping or the delivery of
products. The handling costs include, for example, the costs for administration or sale negotiations.
For the calculation of the wholesale price and retail trade for Pastaegg and Pastapea, handling costs of
35% and a mark-up of 10% were used.

Foods 2016, 5, 17 3 of 8 

 

According to Panno et al. [32], the costs of the process step of “pasta production” consist of the 

costs of raw materials (77%), labor (14%), electric and thermal energy (6%) as well as packaging (3%). 

For the Pastapea, the calculated values for labor, electricity and thermal energy of the Pastaegg were 

used. The price calculations for the wholesale and retail trade are determined by the procurement 

costs, the handling costs and the mark-up, according to calculation templates of the Federal Ministry 

for Economic Affairs and Energy [33]. Reference costs include the costs for shipping or the delivery 

of products. The handling costs include, for example, the costs for administration or sale 

negotiations. For the calculation of the wholesale price and retail trade for Pastaegg and Pastapea, 

handling costs of 35% and a mark-up of 10% were used. 

 

Figure 1. The value chain of the pasta production for Pastaegg and Pastapea. 

2.3. Carbon Footprint of the Pasta Products Based on Protein from Egg and Peas 

The carbon footprints of the two pasta products were based on the estimated fluxes of all 

relevant GHGs, mainly CO2, CH4 and N2O, according to their global warming potential for a 

100-year time frame [34] and expressed in CO2 equivalents (CO2eq) per kg pasta product, based on a 

life cycle assessment approach. Accordingly, CO2eq emissions from the production taking into 

Energy

Raw material 

production
Production of eggs

Stables             Energy

Feedstuff               Hens

Cull hens       Feces

Emissions        WaterEggs

Cultivation of wheat

Fertilizer             Energy

Plant protection   Seed

Emissions                        Water

Wheat

Cultivation of pea

Fertilizer               Energy

Plant protection       Seed

Emissions                      Water

Pea

Pea protein 

flour 

Food 

production

Pasta production

Pastapea

Energy

Water

Emissions                     Water

Pastaegg

Pasta production
Energy

Water

Emissions                       Water

Raw material processing 

– semolina –

Energy

Semolina

Residual material

Water              Emissions to air

Raw material processing 

– pea protein flour –

Energy

Residual material

Emissions to air              Water

Raw material processing 

– whole egg powder–

Energy

Water

Wastes           Emissions to air

Whole egg 

powder

Packaging
Packaging & loading

Energy
Packaging material 

Emissions Packaging 

wastesPacked product on pallets
(Pastapea & Pastaegg)

Pallets

Distribution
Transportation to wholesale & retail trade Diesel

Emissions Packaging 

wastesPasta packages
(Pastapea & Pastaegg)

Consumer Product purchase Water

Emissions Packaging 

wastesCooked pasta

Inputs        Outputs 

Figure 1. The value chain of the pasta production for Pastaegg and Pastapea.

2.3. Carbon Footprint of the Pasta Products Based on Protein from Egg and Peas

The carbon footprints of the two pasta products were based on the estimated fluxes of all relevant
GHGs, mainly CO2, CH4 and N2O, according to their global warming potential for a 100-year time
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frame [34] and expressed in CO2 equivalents (CO2eq) per kg pasta product, based on a life cycle
assessment approach. Accordingly, CO2eq emissions from the production taking into account all
relevant pre-chain emissions were estimated for the carbon footprint of the pasta products according to
the relevant products and processes involved in the different value chains (Table 1). The GHG emissions
of the production of wheat, pea, egg and water were downscaled to the amounts correspondingly
required for the pasta product [4]. These were 0.8 kg semolina, 0.3 L water and 0.2 kg whole egg
for the production of one kg dry Pastaegg and 0.8 kg semolina, 0.3 L water and 0.2 kg pea protein
flour for the production of one kg Pastapea. The emissions for the whole egg powder production were
calculated according to a steam-drying process, using a vibro-fluid bed dryer [35]. The process data
were translated into GHG emissions for the respective whole egg powder using data provided by the
Ecoinvent database [36].

Table 1. Relevant greenhouse gas (GHG) emission fluxes for the products and processes of the
considered value chains.

Reference Unit GHG Emissions (kg CO2eq
1) Source

Products

Pea protein flour kg protein 0.94 [36]
Wheat kg wheat 0.58 [4]
Egg kg egg 3.00 [4]
Water kg water 3.19 ˆ 10´4 [36]

Processes

Egg drying kg egg 0.78 [35]
Semolina milling kg wheat 0.06 [37]
Pasta production kg pasta 0.27 [37]
Packaging kg pasta 0.13 [37]
Transport and
Distribution kg pasta 0.11 [37]

1 CO2 equivalents.

For the pea protein flour production and water, data provided by the Ecoinvent database [36]
were used. Data for the milling process of wheat, pasta production, packaging and distribution were
taken from Ruini and Marino [37].

3. Results

3.1. Costs of Pasta Production

The total production costs for one kg Pastaegg with a content of 0.8 kg semolina, 0.3 L water and
0.2 kg whole egg sum to 1.00 €/kg dry pasta (Figure 2). In comparison, production costs for one kg
Pastapea with 0.2 kg pea protein flour instead of whole egg sum to 1.10 €/kg dry pasta. Including
assumptions on the wholesale process results in prices of 1.65 €/kg pasta Pastaegg and 1.85 €/kg pasta
for Pastapea. The calculated retail price which has to be paid by the consumer is 2.70 €/kg for the
Pastaegg and 3.00 €/kg pasta for the Pastapea. Thus, the Pastaegg has an estimated 0.30 €/kg pasta
lower price than the Pastapea.
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Figure 2. Price calculation for Pastaegg and Pastapea.

Decisive factors for the retail price are the costs of ingredients and the production process. The pea
protein flour has a purchase price of 2.50 €/kg dry matter more expensive than the whole egg (purchase
price of 1.90 €/kg dry matter). Accordingly, the Pastaegg has a higher retail price.

3.2. Carbon Footprint of Pasta Production

The CO2eq emissions for the whole production of the two pasta types (from the agricultural steps
to the final product) are 1.79 kg CO2eq/kg dry pasta for the Pastaegg and 1.22 kg CO2eq/kg dry pasta
for the Pastapea (Figure 3).
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Figure 3. Carbon footprint of different pasta types.

The difference between the emissions stems from the high emissions of the whole egg powder
production. The production of the pea protein flour requires a high amount of energy for the processes
of grinding as well as air classification. Anyhow, in comparison to the egg production, the total
emissions of pea flour production are much lower than the production of the whole egg powder.

4. Discussion

The production costs of the two pasta products differ a little (0.30 €/kg pasta), and this is
mainly determined by the higher costs of pea protein flour extraction compared to the costs of egg
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pasteurization. This finding is in accordance with others [24,27]. In the case of pea protein flour,
one possible reason for the higher protein price may be the limited demand of pea protein flour
compared to whole egg. However, the protein concentration of the pasta based on whole egg is slightly
lower (204 g/kg dry pasta) compared to the pasta based on pea flour (212 g/kg dry pasta). Taking
this difference into account with a protein-corrected composition of the two pastas, however, only
marginally affects the cost difference of the two pastas (0.29 €/kg pasta).

The techno-functional and sensory quality of a new product is also an important criterion for the
consumer. The aspects of sensory attributes such as the taste or the overall impression of a pea-rich
pasta product were analyzed by Linsberger et al. [16]. The pasta products of their study consisted of
50% pea flour and 50% durum flour or 100% pea flour. With regard to the techno-functionality, it was
found that an increase of legumes causes a higher cooking loss. Furthermore, the taste, structure and
color of legume-rich pasta products were judged inferior, especially for durum flour pasta. A reduction
of the legume flour to 20% pea protein flour in the product has been proven to achieve much better
results in such a sensorial test [5].

In comparison to the reference pasta product (Pastaegg), Pastapea was shown to emit 35.5% (0.42 kg
CO2eq/kg product) less GHGs over the whole value chain. The difference between the emissions
stems from the high emissions of whole egg powder production and the pre-chain emissions due
to feed and husbandry of the hens. The production of the pea protein flour also requires a high
amount of energy for the processes of grinding as well as air classification, resulting in high GHG
emissions. However, in comparison to the egg production, the total emissions of pea-based pasta are
still low [15,27]. This finding is in accordance with other studies, which show the potential impact of
changed diets on the environment and especially on greenhouse gas emissions [4,38,39].

Compared to the small change in the ingredients of the product, the impact on the carbon footprint
is substantial. Mainly due to higher costs of the pea protein flour, the calculated selling price would
be increased 10% (0.30 €/kg pasta). It can be imagined that a communication of the impact on the
carbon footprint to the consumer could be a strong selling argument, which justifies the higher price.
Furthermore, the positive effects of pea cultivation for agriculture, and the likewise positive effects for
human health, may be a benefit for the consumer and society as a whole.
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