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Simple Summary: Monitoring pests is a labor-intensive and time-consuming task for agricultural
experts. This paper proposes a new approach to classifying and counting different categories of
crop pests. Specifically, we propose a multi-category pest detection network (MCPD-net), which
includes a multiscale feature pyramid network and a novel adaptive feature region proposal network.
The multiscale feature pyramid network is used to fuse the multiscale pest information, which
significantly improves detection accuracy. The adaptive feature region proposal network addresses
the problem of not aligning when region proposal network (RPN) iterating, especially for small pest
objects. Extensive experiments on the multi-category pests dataset 2021 (MPD2021) demonstrated
that the proposed method provides significant improvements in terms of average precision (AP) and
average recall (AR); it outperformed other deep learning-based models.

Abstract: Specialized pest control for agriculture is a high-priority agricultural issue. There are
multiple categories of tiny pests, which pose significant challenges to monitoring. Previous work
mainly relied on manual monitoring of pests, which was labor-intensive and time-consuming.
Recently, deep-learning-based pest detection methods have achieved remarkable improvements
and can be used for automatic pest monitoring. However, there are two main obstacles in the task
of pest detection. (1) Small pests often go undetected because much information is lost during the
network training process. (2) The highly similar physical appearances of some categories of pests
make it difficult to distinguish the specific categories for networks. To alleviate the above problems,
we proposed the multi-category pest detection network (MCPD-net), which includes a multiscale
feature pyramid network (MFPN) and a novel adaptive feature region proposal network (AFRPN).
MFPN can fuse the pest information in multiscale features, which significantly improves detection
accuracy. AFRPN solves the problem of anchor and feature misalignment during RPN iterating,
especially for small pest objects. In extensive experiments on the multi-category pests dataset 2021
(MPD2021), the proposed method achieved 67.3% mean average precision (mAP) and 89.3% average
recall (AR), outperforming other deep learning-based models.

Keywords: pest monitoring; deep learning; object detection; adaptive feature fusion

1. Introduction

Crop yields play an essential role in agricultural economic development. However,
agricultural pests significantly affect crop production. Traditional pest recognition usually
depends on manual observation by agricultural experts, whose work is subjective and labor-
intensive [1–3]. Therefore, it is essential to propose a method that can automatically monitor
pests and inform agricultural experts of the pest occurrence information timely. With the
advancements in light trapping device technology, numerous pest images with high spatial
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resolution can be obtained easily, which makes automatic monitoring of different categories
of pests possible. Therefore, using computer vision methods for pest recognition has
become one of the hottest research topics.

Previous studies on pest recognition focused on conventional machine learning meth-
ods. They used image processing and machine learning approaches to extract pest features
and then classify them. Gassoumi et al. [4] proposed a computer vision-based system
to recognize pests of cotton. Boissard et al. [5] presented a cognitive vision system that
combines knowledge-based techniques, image processing, and machine learning to detect
mature whiteflies on rose leaves. Ebrahimi et al. [6] incorporated the image processing
technique with the support vector machines (SVM) algorithm, successfully detecting thrips
on the crop canopy images with an error rate of less than 2.5%. However, these methods are
designed for classification based on manually designed features, which are time-consuming
and inefficient, especially for multiple categories of pests. Therefore, a new technique with
high accuracy should be presented for automatic pest detection.

Recently, some approaches based on deep convolution neural networks (DCNNs)
have shown excellent performance on various vision tasks, including image classification,
object detection, and object tracking. Object detection methods can be roughly divided
into one-stage methods and two-stage methods. One-stage methods, such as the single
shot multibox detector (SSD) [7], you only look once (YOLO) [8–10], RetinaNet [11], and
the fully convolutional one-stage object detector (FCOS) [12], do not have a separate
proposal generation stage. These methods usually consider all locations on the image
as potential objects, and try to classify each region of interest as background or a target
object. The typical two-stage methods include regions with convolutional neural network
features (R-CNN) [13], Faster R-CNN [14], path aggregation feature pyramid networks
(PAFPN) [15], and Mask R-CNN [16]. Those approaches divide the detection into two steps.
The first step is region proposal generation, and the second step is classification of these
region proposals. Although the above detection methods have superior performance on
the common datasets, it is difficult to apply them directly to detecting pest images.

The main limitations to its successful application are as follows: (1) The sizes of pests
are diverse; some large pests are hundreds of times larger than small pests (Figure 1b,c).
(2) Some categories of pests have physical similarities, and non-specialists are often unable
to distinguish between species (Figure 1a,c). (3) Pest images contain multiple categories
of pest objects that do not need to be detected, which makes the background complex
(Figure 1b).

Figure 1. Examples of pest images in the MPD2021 dataset. (Ground truths indicated with the red
bounding boxes). (a) Example of densely distributed pests. (b) Example of complex background
image. (c) Example of tiny pests. (d) Example of normal pests.
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In this work, to address these problems, we propose a multi-category pest detection
network (MCPD-net). First, a multiscale feature pyramid network (MFPN) for feature
extraction is designed to obtain different scale information of pests. To obtain an enhanced
feature pyramid network, an adaptive channel fusion module (ACFM) and a global context
module (GCM) are introduced to capture recognizable multiscale contextual information to
improve the detection accuracy for pests with diverse sizes, especially small pests. Second,
an adaptive feature region proposal network (AFRPN) is proposed to obtain richer features
with detailed information of pests. To alleviate the disturbances from complex backgrounds,
a feature adaptation module (FAM) and a two-stage RPN method are introduced to correctly
locate and classify pests. Third, we created a large-scale dataset named the multi-category
pests dataset 2021 (MPD2021), containing 18,595 crop pest images with 26 categories and
125,700 specimens. Finally, with the MPD2021 dataset, extensive comparison experiments
showed that our new model achieves 67.3% mean average precision (mAP) and 89.3%
average recall (AR), which significantly outperforms other state-of-the-art methods.

To sum up, this work makes the following contributions:
(1) A large-scale dataset named MPD2021 was built, which will promote the effective-

ness of applications of new object detection approaches in intelligent agriculture.
(2) A end-to-end detection method named MCPD-net is presented to detect large-scale

pest images. The MFPN in MCPD-net can handle pests of various sizes, which significantly
enhances the detection performance for multiscale pests.

(3) The presented AFRPN is able to solve the problem of anchor and feature inconsis-
tency during the training iteration process, which benefits pest location and classification.

The rest of the paper is organized as follows: Section 2 describes the related works;
Section 3 presents the pest image dataset description and analysis; Section 4 introduces
the proposed method and technical details; Section 5 describes the experimental results;
conclusions are covered in Section 6.

2. Related Works
2.1. CNN-Based Crop Pest Detection Method

Some DCNN-based approaches have been developed to solve the pest detection
tasks [17–22]. Most of these pest detection methods are improvements on the object detec-
tion methods. To improve the detection performance, Deng et al. [18] detected ten categories
of pests using the natural statistics model. It had strong recognition performance—an
accuracy of 85.5%. Liu et al. [19] proposed PestNet, which can detect 16 categories of
pests. It contains a channel-spatial attention (CSA) module used for feature enhance-
ment and a position-sensitive score maps (PSSM) module to encode position information.
Rustia et al. [20] proposed an online semi-supervised learning method and applied it to an
automated insect pest monitoring system, thereby achieving a pseudo-labeling accuracy
of 96.3%. To accurately detect tiny and densely distributed pests, Li et al. [17] developed
a coarse convolutional neural network (CCNN) for searching aphid cliques and a fine
convolutional neural network (FCNN) for refining the regions in aphid cliques, combined
as a coarse-to-fine network (CFN) which detects tiny and densely distributed aphids. In re-
cent work, Li et al. [21] presented a DCNN-based pests detection framework to classify
ten categories of pests, which achieved excellent results. Wang et al. [22] developed a
novel region proposal network (S-RPN) for generating accurate object proposals and a
backbone network using an attention mechanism, which achieved 89.0% AR and 78.7%
mAP on 21 categories of pests. These methods improve the detection accuracy of small
pests through data augmentation strategies or enhanced network structure. However,
the aspect of enhanced feature fusion has not been considered, which is necessary for the
detection of pests with high inter-category similarity.

2.2. Feature Pyramid Network

FPN-based object detectors fuse multiscale features in a top-down and lateral con-
nection manner to build a feature pyramid [23–25]. They have achieved great success on
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general datasets—e.g., MS COCO [26] and PASCAL VOC [27]. To integrate the balanced
feature information from each resolution, Libra R-CNN [28] proposed a balanced feature
pyramid (BFP) that integrates multi-level features using lateral connections and then refines
balanced semantic features to reduce the imbalance between feature maps. EfficientDet [29]
developed a BiFPN allowing efficient, bidirectional cross-scale connections. Some recent
works have focused on adaptive feature fusion to improve the FPN’s ability. Adaptive
spatial feature fusion (ASFF) [30] predicts the feature map’s weight factor from different
layers during feature fusion via a self-adaptive mechanism. AugFPN [31] narrows the
semantic gaps between features of different scales through consistent supervision. How-
ever, the aforementioned feature pyramid models mostly use the weighted fusion of upper
and lower features and do not consider the channel-wise and global context view, which
contains useful information. We introduced this information by using ACFM and GCM
in MFPN.

2.3. Region Proposal Network

Region proposal networks (RPN) are frequently used in two-stage detectors. They
are used to generate a sparse set of proposal boxes by adjusting the anchors. Traditional
methods adopt selective search (SS) [32] and EdgeBoxes [33] approaches to generate pro-
posal boxes. In this process, the imbalance between the foreground and background is
increased due to the dense sampling of anchor boxes, which requires huge computations
and leads to performance degradation. To address these problems, Faster R-CNN [14]
was used in RPN to replace SS for object proposal generation, which is then refined and
classified by R-CNN. Based on this, some improved solutions were developed to enhance
the RPN’s proposal box generation. Vu et al. [34] proposed multi-stage refinement of the
anchor box in each position, followed by using adaptive convolution to align the features
and the anchors. In the dimension-decomposition region proposal network (DeRPN) [35],
an anchor string mechanism is used to automatically match object shapes, which is less
sensitive to variant object shapes. Besides, to avoid small objects being overwhelmed by
larger objects, DeRPN [35] designed a novel scale-sensitive loss that addresses the problem
of imbalanced loss computations for different scaled objects. As to improvement of the
RPN to address the pest detection tasks, recently, an end-to-end deep learning approach
(PestNet) [19] directly used the RPN module to search for potential region proposals for
objects. Karar et al. [36] proposed a mobile application that utilizes RPN as an object bounds
predictor for detection and classification of crop pests. A channel recalibration feature
pyramid network (CRA-Net) [37] proposed an adaptive anchor (AA) module used in the
RPN iteration to effectively correct the mismatch between the anchor and ground truth
boxes. Therefore, we introduce AFRPN, combining the advantages of the above methods
through FAM and a two-stage RPN method to align features with anchor boxes.

3. Materials
3.1. Light Trapping Device for Pest Monitoring

The appearance and main internal structure of the light trapping device for pest
monitoring are shown in Figure 2a,b. This equipment was designed by Jia Duo Co., Ltd.
(Hebi, China) [38]. It can be placed in fields of vegetables, rice, corn, wheat and other
major crops to monitor pests. This equipment has the functions of pest trapping and
photography, environmental information collection, data transmission, data analysis, etc.
In addition, using the proposed pest detection method can achieve pest classification and
counting results. The statistical results are reported in real-time for automatic monitoring
of pests. The multispectral light trap emits light to attract multiple categories of pests,
the wavelength of which is changed with time according to pests’ habits. The collected
pests are then dropped onto the collection plate at the bottom. Meanwhile, the HD camera
above the tray is programmed to take photos every 15 min. The pests are swept away from
the pest collection plate after being photographed to avoid gathering and overlapping.
The collected images are saved with a resolution of 2592 × 1920 pixels. These pest images



Insects 2022, 13, 554 5 of 17

are sent to a cloud server, which recognizes the species and numbers of pests by a deep
learning-based detection method.

Figure 2. Pest image acquisition equipment. (a) Appearance of the device. (b) Inside structure.
(c) Pest image examples.

3.2. Multi-Category Pest Dataset 2021 (MPD2021)

To promote the development of the field of automatic pest monitoring, some open
datasets have been published so researchers can train models, such as IP102 [39] and the
open access repository [40]. However, these datasets are mainly used for recognition,
which does not meet the purpose of detecting multiple categories of pests in one image.
In addition, the models trained using these datasets are also difficult to apply to pest
images with complex scenes. To meet practical application requirements and train the
detection model, a multi-category pest image dataset was built for pest detection tasks.
Images of multiple categories of pests in the dataset were collected from a pest monitoring
device. Each pest in the image was annotated as a bounding box using LabelImg software
by several agriculture experts. Each bounding box has information about the upper left
point, height, width, and pest category. The dataset was made in PASCAL VOC data
format (an image dataset that contains 20 categories of objects; all objects are classified and
annotated) [27], which uses XML files to record the pest labeling information. In summary,
125,700 labeled pests in 26 categories were annotated from 18,595 images. Based on this,
a new dataset named MPD2021 was created.

Table 1 shows the statistics for each pest species, including the number of specimens,
the average relative scale, and the average width and height of the labeled boxes. The num-
ber of specimens per species is from 241 to 24,694, for Spodoptera frugiperda (category 26)
and Proxenus lepigone (category 7), respectively. The average width of pests ranges from 37
to 215 pixels, and the average height ranges from 35 to 211 pixels. All categories have a
relative scale of less than 0.9%; the smallest average relative scale is only 0.0282%. As the
MPD2021 dataset has a large number of small objects with poor feature information, this
will cause significant challenges for network localization and accurate recognition.

To further analyzing the distribution of specimens in MPD2021, the distribution of
specimens and relative scales are shown in Figure 3a. The distribution of the pest specimen
numbers in the MPD2021 dataset varies greatly. The overall trend shows a long-tailed
distribution for the number of specimens in each category, and the number of specimens in
the most plentiful category is 102 times greater than that in the rarest category. For example,
there are only 306 and 241 object specimens for Pleonomus canaliculatus (category 23) and
Spodoptera frugiperda (category 26). To further analyze the scale problem, we analyzed the
distribution of pest objects’ relative scale, as reported in Figure 3b. The relative size of
the most pests in MPD2021 is comparatively small, mainly 0.15–0.5%. These collected
pest images were randomly divided into a training set and a test set (4:1) to train the
DCNNs models.
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Table 1. The statistics of the MPD2021 dataset.

Pest ID Scientific Names Specimens Average Width (Pixel) Average Heigth (Pixel) Relative Size (%)

1 Nilaparvata lugens 3045 37.8 35.4 0.0282
2 Cnaphalocrocis medinalis 2901 78.2 77.6 0.1223
3 Chilo suppressalis 1831 101.4 103.9 0.2086
4 Mythimna separata 5094 140.9 141.5 0.4122
5 Helicoverpa armigera 15,392 118.7 119.2 0.2945
6 Ostrinia furnacalis 9053 107.8 109.1 0.2400
7 Proxenus lepigone 24,694 83.8 85.0 0.1457
8 Spodoptera litura 2253 151.0 149.3 0.4523
9 Spodoptera exigua 5942 86.5 86.1 0.1497

10 Sesamia inferens 1740 123.0 123.1 0.3045
11 Agrotis ipsilon 3203 166.7 168.6 0.5768
12 Plutella xylostella 736 51.3 52.2 0.0545
13 Mamestra brassicae 2150 145.4 144.6 0.4300
14 Hadula trifolii 4725 130.9 130.8 0.3488
15 Agrotis segetum 981 145.4 145.5 0.4347
16 Agrotis tokionis 331 174.8 175.5 0.6269
17 Agrotis exclamationis 357 162.2 159.9 0.5192
18 Xestia cnigrum 446 140.9 139.4 0.4023
19 Holotrichia oblita 599 126.4 126.3 0.3195
20 Holotrichia parallela 6896 119.3 119.7 0.2900
21 Anomala corpulenta 23,523 109.2 109.6 0.2462
22 Gryllotalpa orientalis 3919 215.6 211.8 0.8993
23 Pleonomus canaliculatus 306 124.4 125.2 0.3230
24 Agriotes subrittatus 4893 80.7 82.2 0.1308
25 Melanotus caudex 532 74.6 74.0 0.1194
26 Spodoptera frugiperda 241 96.4 95.6 0.1886

Figure 3. (a) Distribution of the number of pest specimens. (b) Relative scale distribution of the
MPD2021 dataset .

4. Proposed Method
4.1. MCPD-Net Construction

The overall architecture of MCPD-net is shown in Figure 4. We propose a unified
framework named MCPD-net, which consists of four parts: (1) The pest images are first
collected from the image acquisition equipment and then fed into the backbone networks.
(2) A multiscale feature pyramid network (MFPN) for multiscale features with different
spatial resolutions. (3) An adaptive feature region proposal network (AFRPN) for producing
high-quality object proposals. (4) Two subnets for multi-category pest classification and
box regression. The details are described in the following subsections.
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Figure 4. The technical pipeline of MCPD-net.

4.2. Multiscale Feature Pyramid Network (MFPN)

Some researchers developed detection approaches to address the challenges of multi-
scale features with different spatial resolutions. Following the setting of FPN [23], features
used to build feature pyramid are denoted as {C2, C3, C4, C5}, which correspond to the
feature maps with upsampling {4, 8, 16, 32} strides of the input images. Feature maps of
{P2, P3, P4, P5} construct the feature pyramid networks. On the one hand, the low-level
feature maps are enhanced by the high levels of semantic information; thus, the features
will have diverse context information. On the other hand, there will be information loss
from C ∈ [C2, C3, C4, C5] to P ∈ [P2, P3, P4, P5 ] because of the reduction in feature channels
and the decrease in the scale of the feature map, which leads to global semantic information
loss. Pest images contain many small specimens that feature information usually sup-
presses due to complex background information and other large specimens. To address the
problem of poor accuracy when detecting small objects, the typical approach only obtains
the spatial information of multiscale feature maps to enhance the accuracy of small object
detection. We argue that the information between feature channels and the global context
is also essential for small objects. Thus, we designed MFPN to achieve accurate detection
of multiple categories of pests. The overall framework of MFPN is shown in Figure 5. Two
components of MFPN are discussed in the following subsections.

Figure 5. The network architecture of the proposed MFPN.

Adaptive Channel Fusion: To appropriately achieve feature fusion, we fully leverage
the relationships between the feature maps. Let Ci represent the i-th C ∈ [C2, C3, C4, C5].
We compress the Ci spatial information into the channel descriptors. Specifically, the 1× 1
convolutional kernel is used for the high-level feature map to make uniform the number of
channels, which can be expressed as:

gc =
1

H ×W

H

∑
x=1

W

∑
y=1

Fc(x, y) (1)

where gc denotes the channel feature descriptor obtained by compressing, Fc(x, y) indicates
each pixel point (x, y) in the feature map, and H ×W are the spatial dimensions of the
feature map. We compute the relationships across channels using adaptive global aver-
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aging pooling (AGAP) and adaptive max-pooling (AMP) for a given channel descriptor
gc ∈ RH×W×C. The subsequent operations can be described as:

AC = σ(A1(gc) + A2(gc)) (2)

where σ represents the sigmoid activation function. Firstly, we split the operation into two
branches, one branch for feature plane gc ∈ RH×W×C using AGAP for the high-level feature
map F1 ∈ RH×W×C extracted, and the other branch for adaptive max-pooling for the feature
plane gc ∈ RH×W×C to obtain F2 ∈ RH×W×C. Secondly, convolution with kernels implement-
ing 1× 1 operations is conducted on the obtained channel descriptor, and then we obtain
channel descriptors F1

′ = f1D(F1) ∈ RH×W×C/8 and F2
′ = f1D(F2) ∈ RH×W×C/8. Thirdly,

the two channel descriptors F1
′ and F2

′ are computed by the Relu activation function and
Conv1D operations to get F1

′′ = f ′1D(Relu(F1
′)) ∈ H×W×C, F2

′′ = f ′1D(Relu(F2
′)) ∈ H×W×C,

respectively. Finally, the two channel descriptors F1
′′ and F2

′′ are summed to get the final
channel descriptors AC ∈ H×W×C. Then, AC is activated by the sigmoid function, and the
hadamard product operation is performed with the original high-level feature map to
obtain MC ∈ H×W×C. The whole computation process can be summarized as follows:

A1 = f ′1D(Relu( f1D(AvgPool(yc)))) (3)

A2 = f ′1D(Relu( f1D(MaxPool(yc)))) (4)

MC = Had(Acgc) (5)

where AvgPool(yc) and MaxPool(yc) denote the AGAP and AMP operations for each
input feature map. f 1D and f ′1D denote the one-dimensional convolution operations with
kernel sizes of 1 to decrease the number of channels and increase the number of channels,
respectively. The function Relu denotes the rectified linear unit activation function. Had
denotes hadamard product operation.

Global Context: Detection performance and stability can be improved by exploiting
global context information. Therefore, a global context module is introduced to strengthen
MFPN. This module is integrated after the ACFM, as shown in Figure 5. Specifically,
the GAP operation is first employed to extract the global information and then integrate
information across channels by 1× 1 convolution. Finally, the output features are added to
the main information stream.

4.3. Adaptive Feature Region Proposal Network (AFRPN)

The detection problem is formulated in Faster R-CNN as a two-step procedure.
The RPN is first used to generate a sparse set of proposal boxes by adjusting a set of
anchors. The proposal boxes generated by the RPN are then refined and classified by a
regional CNN detector. RPN is designed to extract high-level features and predict propos-
als in an end-to-end way. For a feature map Fi of size w× h, a group of anchor boxes is
initialized uniformly over the corresponding image. Each anchor box a consists of a set of
four-dimensional information a = (ax, ay, aw, ah), where (ax, ay) denotes the center loca-
tion of the anchor and (aw, ah) is the width and height. The regression branch will predict
the transformation value σ from the anchor box a to the ground-truth box g, as follows:

ax = σxaw + ax, ay = σyah + ay,

aw = aw exp(σw), ah = ah exp(σh).
(6)

The regressed anchors A = {a} are then filtered by non-maximum suppression
(NMS) [41] to generate the sparse proposal boxes. However, in traditional RPN, each group
of anchor boxes with different scales and aspect ratios is selected for positive samples
based on the intersection of union (IoU) threshold with the label object. In this process,
for small objects, the IoU values are usually too small to reach the set threshold. Therefore,
most small object samples will be ignored as negative samples during the training process.
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Additionally, the anchor dense sampling will promote the imbalance between foreground
and background, leading to module performance degradation. We propose an approach
called AFRPN to systematically solve the aforementioned problem produced from the
anchors and align features with anchor boxes. The pipeline of AFRPN is shown in Figure 6.
During training iteration, AFRPN uses the conventional convolution to maintain the spatial
features in the first stage and then adapts the proposed FAM to compute the regression
prediction in the second stage to achieve high performance.

Figure 6. Illustration of AFRPN.

Feature Adaptation: The previous method adopts standard two-dimensional convo-
lution to sample the feature map F in a regular grid C =

{
(cx, cy)

}
, and then sum up the

samples with the weight wc. The grid size is defined by the convolution kernel size and
the dilation factor. For instance,

C =

 (−1,−1) (−1, 0) (−1, 1)
(0,−1) (0, 0) (0, 1)
(1,−1) (1, 0) (1, 1)


corresponds to kernel size 3× 3 and a dilation factor of 1. Then have y[l] = ∑

c∈C
w[c] · F[l + c]

for each location l on the output feature y. However, in AFRPN the offset field O is directly
inferred from the deformable convolution [42] that replaces the regular grid C. The output
feature y will be y[l] = ∑

o∈O
w[o] · F[l + o]. By learning the offset, the deformable convo-

lution improves the spatial sampling location and ensures alignment between the anchors
and features.

Two-stage RPN: A two-stage process is proposed to align anchors to features in the
RPN stage. That is, the conventional convolution is used to maintain the spatial features in
the first stage. In the following stages, the offset oκ of input anchor aκ on the feature map
is computed by FAM. Then the regression prediction γκ = f κ(x, oκ) and regressed anchor
aκ+1 from γκ are computed using Equation (6). In the end, the object scores are calculated
by the classifier and then filtered by NMS processing to generate region proposals.

5. Results

This section has a brief description of the evaluation metrics, training parameters,
experimental details, and results of experiments on the constructed MPD2021 dataset.

5.1. Evaluation Metrics and Parameter Settings

Several evaluation metrics are used to evaluate the effectiveness of different ap-
proaches in the multi-category pest dataset. Average precision (AP) and mAP are used
as the main evaluation metrics. AP is the area bounded by the precision–recall curve.
In addition, AP50 (IoU = 0.5), AP75 (IoU = 0.75), average recall (AR), AR50 (IoU = 0.5),
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number of models parameters, and FLOPs—auxiliary evaluation metrics—are used to
demonstrate the ability of MCPD-net. The calculation formulas are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)dR (9)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively.
In MCPD-net, the backbone network is Resnet-50, which was pretrained on the Ima-

geNet [43] dataset. The images were resized to 1333× 800 pixels during the training and
validating stages. Moreover, the model was optimized during the training phase using the
stochastic gradient descent (SGD) method. Specifically, the learning rate was 2.5× 10−3 for
the first eight epochs and then decayed with step policy for the following epochs, and the
momentum and the weight decay values were 0.9 and 0.0001, respectively. The batch size
was 4. We applied the NMS with the IoU threshold of 0.5 per category during the validating
and testing stage. The code was developed based on the MMDetection toolbox [44]. All
experiments were run on Dell Precision T3630 workstations equipped with Intel Core I9
9900K CPU, NVIDIA RTX 2080Ti (24-GB memory) GPU, and the software environment
was Ubuntu 18.04, CUDA10.1 and CuDNN7.6, python 3.7.

5.2. Quantitative Analysis

In this section, the performance of MCPD-net is first compared with those of the
state-of-the-art object detectors. Then, extensive ablation experiments on the MPD2021
dataset are reported to validate the effectiveness of the proposed module in MCPD-net.
The testset in the MPD2021 dataset contains 3719 pest images. Table 2 presents the compar-
ison between the AP and AR of MCPD-net and other CNN models. MCPD-net yielded
38.3% mAP detection accuracy, which surpasses all compared detectors. Our proposed
method outperformed the detection performances of SSD (one-stage) and FCOS (anchor-
free), achieving 6.4% and 5.2% mAP improvements, respectively. Compared with PAFPN
and Mask R-CNN (multi-stage), our method achieved 3.2% and 3.6% AP improvements,
respectively. Given these results, our method has the best performance. Compared to other
IoU thresholds, our method achieved 67.3% AP50 and 40.4% AP75, which are higher than
those of other detection approaches. Additionally, our method had a 55.4% AR, which
indicates that it is more precise in object localization.

Table 2. Different detection framework result (unit: %).

Method Backbone AP AP50 AP75 AR

SSD(512) VGG16 31.9 57.1 33.0 51.1
FCOS ResNet-50 33.1 57.2 35.4 55.0

PAFPN ResNet-50 35.1 61.5 37.2 49.8
Mask R-CNN ResNet-50 34.7 60.9 36.4 49.9

Ours ResNet-50 38.3 67.3 40.4 55.4

There are significant differences in the results for specific categories, as shown in
Table 3. Our proposed approach significantly outperformed other detection methods
in most pest categories. Nilaparvata lugens (category 1) seemed to be the most difficult
to detect and had the lowest AP, 28.8%. Almost all models could successfully detect
Gryllotalpa orientalis (category 22) with 94.0% AP. This is because tiny pests make it more
difficult to extract effective features than larger pests. Furthermore, about 12 categories had
over 70% detection accuracy, and the accuracy of almost all pest categories increased by
using MCPD-net. The detection results for small pests Nilaparvata lugens, Plutella xylostella,
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Cnaphalocrocis medinalis, and Melanotus caudex (categories: 1, 2, 12, 25) showed different
degrees of improvement.

Table 3. AP50 of all pest categories with different detection methods (unit:%).

Pest ID SSD 512 [7] FCOS [12] PAFPN [15] Mask R-CNN [16] Ours

1 5.3 8.9 16.1 15.3 28.8
2 49.6 55.3 57.0 59.4 66.7
3 60.6 66.6 68.1 67.6 73.9
4 62.3 67.3 67.1 66.3 70.7
5 82.5 86.3 83.5 84.1 85.5
6 64.5 70.4 68.7 68.2 73.4
7 67.7 73.0 72.0 72.0 74.0
8 56.0 60.9 61.9 59.9 66.4
9 44.0 45.8 47.8 47.5 52.7
10 67.8 70.8 71.4 70.4 76.9
11 74.6 78.4 77.1 78.0 79.5
12 12.6 14.0 29.5 27.4 35.6
13 43.8 54.0 54.9 54.3 57.1
14 56.8 61.6 63.3 63.2 66.5
15 40.1 23.9 42.3 40.4 47.6
16 45.2 25.9 42.6 40.8 60.6
17 69.5 60.5 63.2 62.5 69.3
18 51.8 47.5 55.5 54.6 59.5
19 51.2 63.9 55.7 52.6 68.6
20 85.1 83.8 82.0 81.4 84.0
21 91.9 90.8 88.7 88.4 89.5
22 93.7 93.5 92.6 93.2 94.0
23 54.0 58.5 53.0 53.5 62.6
24 71.1 73.7 72.7 73.4 76.9
25 44.2 4.8 42.1 44.1 58.0
26 56.4 59.7 70.2 65.9 65.9

AP 57.8 57.7 61.5 60.9 67.3

Ablation Experiments

(a) Baseline setup: The baseline network is driven by Faster R-CNN with the back-
bone ResNet-50. It can be seen in Table 4 that the Faster R-CNN can quickly detect pest
images at 22 FPS. However, the detection performance for small pests was not satisfying.
For example, the mAP of the Nilaparvata lugens (category 1) was only 16.5%.

(b) Effect of MFPN: It can be seen in Table 4 and Figure 7 that the detection results
were improved by adding the MFPN module. The detection AP of small pests showed
significant improvements with the MFPN module. For instance, the detection results of
tiny pests (categories 1 and 12) were improved by about 12.3% and 7.6% AP. The detection
results of highly similar-in-appearance pests (categories 8, 11, 23) were also greatly en-
hanced. Additionally, our method achieved 64.9% AP50 and 80.7% AR50, which indicates
that it is more precise in detection and more accurate at object localization. The detection
results presented in Figure 7a were acquired by a multiscale structure from both high-level
and low-level layer fusion, which proves that the MFPN is powerful.

(c) Effect of AFRPN: There are many easy negative samples during the training stage,
which can lead to poor results. The AFRPN was proposed to solve this problem. As shown
in Table 4, we achieved 87.8% AR50 after adding the AFRPN, which is a significant en-
hancement over the baseline. Figure 7 presents the efficiency of adding the AFRPN module,
particularly concerning small pests. As a result, the overall detection accuracy slightly
increased to 61.8% AP50. Finally, the whole detection framework (+ MFPN + AFRPN) can
achieve the best pest detection result at 17 FPS. Although the inference speed is slightly
slower than the baseline (22 FPS), the detection framework is suitable for accurate pest
detection in real-world application scenes.
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Table 4. Comparison of the performance with and without the proposed module.

Method AP (%) AP50 (%) AR50 (%) Params(M) FLOPs(G) FPS

Baseline 34.8 61.5 79.1 41.24 206.78 22
+MFPN 37.6 64.9 80.7 41.27 207.03 21

+AFRPN 35.5 61.8 87.8 41.53 206.84 18
+MFPN+AFRPN 38.3 67.3 89.3 42.12 207.70 17

Figure 7. Detection results of our method on the MCPD2021 dataset. (a) Results of adding our
proposed module. (b) Growth ratio of each category between our final result and baseline.

5.3. Visualization Analyses

Some visualization analyses were conducted to evaluate the proposed MCPD-net.
As shown in Figure 8, MCPD-net has promising detection performance for tiny pests.
Additionally, the detection and visualization results of different approaches on the MPD2021
dataset are shown in Figure 9. The visualizations of feature maps were obtained with the
Grad-Cam [45] method. As presented in Figure 9a,b, the context information learned with
the SSD method was not sufficient to accurately identify the pests. Figure 9c,d shows that
MCPD-net obtains more pest feature information. Figure 9e,f shows the pest detection
results in a complex background. As shown in Figure 9g,h, the contextual information of
the pests is much richer, which indicates that the MCPD-net predicts more accurately and
misses fewer pests.

The positive anchor samples in AFRPN are illustrated in Figure 10. The anchor boxes
(colored) can cover the ground-truth boxes (white) by the learning of AFM in AFRPN. In
addition, the shapes of anchor boxes are close to those of the ground-truth boxes. This shows
that our method improves the anchor prediction performance, so the localization capability
is enhanced. The detection results for some typical images on the MPD2021 dataset are
shown in Figure 11. Our method addresses the problems of a complex background, and
small and dense pest distribution well. The detection results of rows 1, 3, and 5 are
ground-truth boxes (red boxes). Row 2 of Figure 11 shows the detection results with
multiple pest specimens in each image. MCPD-net can detect almost all of the labeled
boxes. The detection results with complex backgrounds and dense pest distribution are
shown in rows 4 and 6. The fine-grained information of multiple categories of pests is more
distinct with our method, and the regression of pest boxes is more accurate. Therefore, we



Insects 2022, 13, 554 13 of 17

have demonstrated the generalization performance of MCPD-net for multi-category pest
detection tasks on large-scale pest images.

Figure 8. Detection results for tiny pests, Nilaparvata lugens (ID:1) and Hadula trifolii (ID:14).

Figure 9. Visualization of detection results of different methods. (a,b) Results of the SSD method;
(c,d) results of the proposed MCPD-net method; (e,f) results of the SSD method; (g,h) results of the
proposed MCPD-net method.
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Figure 10. Illustration of the positive anchor samples (colored) in AFRPN and ground-truth boxes (white).

Figure 11. Detection results for each category on the MPD2021 dataset. Row 1, 3, and 5 are labeled
boxes (red boxes); row 2 represents detection results of multi-category pest specimens per image; row
4 represents detection results in complex background images; row 6 represents the detection results
of dense distribution images.

5.4. Discussion

China is a large agricultural country. The main crops grown include rice, wheat,
corn, etc. However, these crops are prone to reduced quality and yield of products due to
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crop pests. The widespread application of chemical pesticides has become an important
means to prevent and control crop pests. However, farmers often tend to blindly use
pesticides in large quantities when they cannot accurately identify pests, which can cause
ecological environmental pollution and soil contamination. Thus, agricultural experts
with professional knowledge are badly required to help them recognize pests. However,
traditional pest recognition is usually labor-intensive and time-consuming. Intelligent light
trapping devices can automatically attract many species of pests and capture images, which
greatly reduces the workload of these experts. Although in practical applications, light
trapping devices also attract trap pollinators and beneficial insects, the number of devices
deployed is not large, so it will not have a huge impact on the environment. The collected
images will be sent to a cloud server for analysis and monitoring. We proposed an object
detection method named MCPD-net to automatically monitor multiple categories of pests
to replace the manual observation method.

The proposed detection method can detect 26 categories of widespread agricultural
pests (see Figure 1). When compared with other deep learning-based methods, the proposed
MCPD-net achieved the highest detection accuracy, as shown in Table 3. The advantages
of MCPD-net have been verified as follows. First, similar pests in images with complex
backgrounds can be successfully detected. Second, MCPD-net is suitable for real-time
detection of crop pests without prior knowledge of the acquired images about pest species.
The proposed MFPN and AFRPN significantly improve the detection accuracy from the
perspective of enhanced feature extraction, as shown in Figures 5 and 6.

Our next research goal will be to further extend the number of pest categories in the
dataset. This will support farmers to precisely apply chemical pesticides to protect the field
from further damage. Although MCPD-net has achieved excellent experimental results,
it still needs to be improved. For example, for Nilaparvata lugens (category 1) and Plutella
xylostella (category 12), the detection results were only 28.8% AP and 35.6% AP, which are
worse results than for other categories. They are too small, occupying only 0.0282% and
0.0545% pixels of the entire image. Our future work will aim to improve the detection
accuracy for tiny pests.

6. Conclusions

In order to replace manual recognition methods with computer vision methods for
automatic monitoring of pests in crop fields, we proposed a novel end-to-end method
named MCPD-net that can be applied to detect 26 species of crop pests. MCPD-net consists
of an MFPN for obtaining multiscale pest features, and the novel AFRPN makes the anchor
box and features consistently. Extensive experiments were conducted on the MPD2021
dataset. MCPD-Net achieved 67.3% AP and 89.3% AR, surpassing other state-of-the-
art methods.
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