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Abstract: Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac
fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation
of extracellular matrix components. This is a physiological response to tissue injury. However,
uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac
dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently,
FBs were thought to play a secondary role in cardiac pathophysiology. This review article will
present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their
recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac
diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse
models. This study includes an update on the advancements in the generation of FB-specific mouse
models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways
that have been validated using FB-specific, in vivo mouse models. These pathways include the
TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo
signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis
may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the
diseased heart.
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1. Introduction

Fibrosis is characterized by the excessive accumulation of extra cellular matrix (ECM)
components. It is a physiological response to pathological stimuli that helps to confine
injuries. However, the prolonged activation of this process results in adverse tissue remod-
eling, which can ultimately affect the structure and function of organs (adverse remodeling).
Fibroblasts (FBs) are the major contributor to fibrosis. Previous studies report that the
epicardium, endothelial cells, bone-marrow-derived cells, and perivascular cells could be
the origins of activated FBs [1–8]. However, recent genetic lineage tracing experiments have
confirmed that most activated FBs in the heart originate from tissue-resident FBs [9–12].
In a normal heart, FBs are quiescent/resting/non-activated. However, in the injured
heart, FBs go through a continuum of transient intermediary states and contribute signifi-
cantly to the cardiac remodeling process [13–16]. For instance, when myocardial infarction
(MI) occurs, a range of stimuli activate resting FBs, giving rise to a new cell state known
as activated FBs/myofibroblast. Activated FBs are pro-inflammatory, hyper-secretory,
and hyper-migratory in nature. As the healing phase progresses towards scar formation,
activated FBs acquire anti-inflammatory and pro-angiogenic phenotypes. They secrete
cytokines, ECM components, and other necessary paracrine factors that are required for
wound healing. After scar maturation, FBs regress to the quiescent stage or acquire a
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specialized phenotype (matrifibrocyte) and remain in the matured scar [14,16]. A better un-
derstanding of the mechanisms underlying fibroblast activation and fibrosis may provide a
novel therapeutic target for managing adverse fibrotic remodeling in the diseased heart.

2. Studies of FB-Specific In Vivo Mouse Models

Recent advancements in the generation of FB-specific mouse models have evolved
the field of fibroblast biology. Table 1 lists proteins/markers that have been targeted to
create numerous mouse lines for FB-specific genetic manipulation and lineage tracing.
The major limitation associated with these models is non-specificity, as many of these
markers are expressed by cells other than FBs such as pericytes, vascular smooth muscle
cells (VSMC), endothelial cells, immune cells, and cardiomyocytes or show transient
expression in FBs. Several studies have employed fibroblast-specific protein 1 (FSp1)-Cre
and Col1a2-Cre for fibroblast-specific gene targeting [6,17]. However, in recent years, a
growing body of evidence has challenged the specificity of FSP1 and COL1A2 as fibroblast
markers [18,19]. Kong et al. [18] reported that the majority of FSP1+ cells in the infarcted
myocardium are identified as hematopoietic or endothelial cells; therefore, FSP1 is not a
specific marker for FBs in the heart. Consistently, in the pressure overload model, FSP1 was
primarily expressed by hematopoietic and vascular cells [18]. Multiple studies have raised
similar concerns regarding the specificity of Col1a2-Cre to fibroblasts, which also express
in many other parenchymal cell types, including epicardial cells and valvular interstitial
cells [9,12,20]. Taken together, multiple studies have raised significant concerns about the
specificity of FSP1 and COL1A2 as fibroblast markers. Due to these limitations, FSp1- or
Col1a2-driven gene deletion is of limited value in the dissection of the role of FBs in the
pathophysiology of cardiac diseases [18].

Table 1. List of proteins/markers that have been targeted in order to create mouse lines for FB-specific genetic manipulation
and lineage tracing.

Proteins/Markers Biological Role Expression in FB States Expression in Other Cells References

Periostin ECM protein Developmental stage,
activated FBs Epicardium [9,18,21–44]

TCF21 Transcription
factor

Resting FB, downregulate
in activated FBs Epicardium [9,20,22,23,31,37,41,43–49]

α-SMA Cytoskeletal
protein Activated FBs Pericytes, VSMC,

Epicardium [6,9,12,25,50]

Collagen I, III ECM protein Resting and activated FBs
Pericytes, VSMC,
Endothelial cells,
Cardiomyocytes

[12,20,22,25–27,45,51–62]

CD90 Cell-cell
interaction Resting and activated FBs Pericytes, VSMC, immune

cells, Endothelial cells [12,27,45,51–53]

DDR2 Cell-ECM
interaction Resting FBs Epicardium [22,25,63–65]

FSP1 Calcium binding
protein Resting and activated FBs Pericytes, VSMC, Immune

cells, Endothelial cells [9,18,19,22,23,25,66,67]

Fibronectin ECM protein Resting and activated FBs Endothelial cells [22,68–70]

PDGFRα Tyrosine kinase
receptor Resting and activated FBs Cardiac progenitor cells [9,12,22,25,71–73]

Stem cells
antigen-1 Stem cell antigen Resting and activated FBs Cardiac progenitor cells [22,74–76]

Vimentin Cytoskeletal
protein Resting and activated FBs Pericytes, VSMC,

Endothelial cells [22,25,77–80]

Presently, a growing consensus supports the notion that inducible transcription
factor 21 (Tcf21)-MerCreMer (MCM) and periostin (Postn)-MCM mouse lines are the most
reliable tools for fibroblast- or myofibroblast-specific gene targeting. Indeed, both the
Postn-MCM and Tcf21-MCM are inducible; hence, gene deletion will only start once mice
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are subjected to Tamoxifen. Therefore, these new models avoid any unwanted confound-
ing developmental effects. Periostin is a matricellular protein secreted by FBs. Periostin
expression is negligible in the normal heart, while in the injured myocardium, periostin
starts expressing in the FB population. Molkentin et al. [9] created a knock-in mouse
(Postn-MCM), in which tamoxifen-inducible Cre recombinase expression cassette was in-
serted into the Postn gene locus. Their elegant report demonstrated that the Postn-MCM
system could trace all the activated FBs/myofibroblasts in the injured heart, thus making
this mouse line a valuable tool for myofibroblast-specific gene targeting. In addition to this
targeted periostin knock-in model, a transgenic Postn-CreER2 was reported as well [21]. The
key difference between the transgenic Cre driven by a fragment of the periostin promoter
and knocking the Cre cassette into the periostin locus is that the expression of the Cre in
the knock-in model represents the true endogenous regulation of periostin gene expression;
whereas, the periostin-promoter-driven transgenic Cre may not have a complete set of
regulatory information for that locus and thus does not fully represent the endogenous
regulation. Since periostin expression is negligible-to-none in quiescent FBs, these animals
are of limited value for FB-specific gene targeting in the healthy heart. This hurdle is
overcome by the inducible Tcf21-MCM mouse model. TCF21 is a member of the bHLH
(basic helix–loop–helix) family of transcription factors. It is expressed extensively during
embryogenesis and it is essential to the development of cardiac FBs [20]. Importantly, in a
healthy heart, a large number of resident fibroblasts are found to be TCF21+. Moreover,
lineage-tracing experiments confirmed that TCF21+ cells are the primary source of my-
ofibroblasts in the injured heart [9]. Taken together, these features enable the Tcf21-MCM
system to target genes before cardiac injury and in all transient forms of FBs post-injury.

As noted above, traditionally, most of the research on fibroblast activation and fibrosis
was centered on the canonical TGF-β signaling pathway [81–83]. However, the recent
emergence of these conditional FB-specific mouse models has facilitated the identification
of several additional novel pathways that are critical to fibroblast activation and fibrosis.
Studies carried out with FB-specific, genetically manipulated mouse models are listed in
Table 2. These pathways may operate independently or in co-ordination with TGF-β sig-
naling. On the other hand, these updated tools have helped to redefine several hypotheses
and concepts that exclusively relied on isolated culture models or mouse models that were
later identified as non-specific. These included the views regarding the sources of FBs
in the failing heart and the ability of activated fibroblasts to revert to the quiescent stage.
Specifically, in complete disagreement with traditional beliefs, the new genetic models
identified that most activated fibroblasts in the failing heart originate from existing resident
fibroblasts, and activated fibroblasts can revert to the quiescent stage, once the stress is
released [9,14]. These findings have enormous implications for human health; for example,
the latter condition is directly comparable to that of patients with ventricular assistance
devices (VAD). Furthermore, the discovery of fibroblast’s ability to revert to the quiescent
stage opens the door to the potential reverse remodeling of fibrotic hearts.

Table 2. Studies carried out with FB-specific, genetically manipulated mouse models.

Target Gene Promoter Used for
Cre Expression Major Findings References

Tgfbr1/2, Smad2,
Smad3 Postn

FB-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced
fibrosis in pressure-overloaded mouse hearts as well as fibrosis mediated

by heart-specific, latency-resistant TGF-β mutant transgene.
[33]

Smad3 Postn In pressure-overloaded hearts, the protective actions of the myofibroblasts
were mediated through Smad3-dependent matrix-preserving program [38]

Smad3 Postn FB-specific Smad3 loss impaired scar remodeling and increased the
incidence of late rupture post-MI [35]

Tgfbr2 Postn Tgfbr2 ablation in the myofibroblast prevented fibrosis and cardiac
dysfunction in mouse model of cMyBP-C-induced cardiomyopathy [36]
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Table 2. Cont.

Target Gene Promoter Used for
Cre Expression Major Findings References

Gsk3b Postn
FB-specific deletion of GSK-3β lead to the hyperactivation of SMAD-3,
resulting in excessive fibrotic remodeling and cardiac dysfunction after

myocardial infarction.
[26]

Gsk3a Tcf21 and Postn
In pressure-overloaded hearts, FB-specific GSK-3α mediated pro-fibrotic

effects through an ERK-IL-11 circuit that operated independently of
TGF-β/SMAD3 signaling

[44]

Ctnb1 Tcf21 and Postn Loss of β-catenin in fibroblasts attenuated pressure-overload-induced
cardiac fibrosis [43]

p38 Tcf21 and Postn
FB-specific deletion of p38 attenuated myofibroblasts transformation and
fibrosis. Conversely, transgenic mice expressing constitutively active p38

in FB specific manner develops fibrosis in multiple organs.
[37]

p38 Postn Spatial variations in collagen organization regulated cardiac fibroblast
phenotype through the mechanical activation of p38-YAP-TEAD signaling [30]

Grk2 Postn
Ablation of GRK2 in activated fibroblasts significantly reduced

myofibroblast transformation and fibrosis and showed cardiovascular
protection post-I/R injury

[42]

Lats1/2 Tcf21 FB-specific deletion of Lats1 and Lats2 initiated a self-perpetuating fibrotic
response in the uninjured adult heart that was exacerbated by MI [47]

Yap Tcf21 FB-specific deletion of YAP prevented MI-induced cardiac fibrosis and
dysfunction through MRTF-A inhibition. [46]

Htr2b Tcf21 and Postn Deletion of 5-HT2B receptor signaling in fibroblast prevented border zone
expansion and improved microstructural remodeling after MI [41]

Hsp47 Postn Myofibroblast-specific ablation of Hsp47 blocked fibrosis in mouse models
of pressure overload, MI and, muscular dystrophy [34]

Sox9 Postn FB-specific deletion of Sox9 ameliorated MI-induced left ventricular
dysfunction, inflammation, and myocardial scarring [39]

Kcnk2 Tcf21 FB-specific deletion of TREK1 prevented pressure-overload-induced
deterioration in cardiac function [48]

Rock2 Postn Deletion of ROCK2 in fibroblast attenuated cardiac hypertrophy, fibrosis,
and diastolic dysfunction in mice subjected to chronic Ang-II infusion [40]

Fn1 Tcf21 FB-specific fibronectin gene ablation ameliorated adverse cardiac
remodeling and fibrosis post I/R [49]

Prkaa1 Postn AMPKα1 deletion in myofibroblasts exacerbated post-MI adverse fibrotic
remodeling [32]

Sptbn4 Postn FB-specific deletion of βIV-spectrin aggravated Ang-II induced fibrosis
and cardiac dysfunction. [84]

Pmca4 Postn FB-deletion of PMCA4 reduced TAC-induced hypertrophy and cardiac
dysfunction [24]

Mbnl1 Tcf21 and Postn Deletion of MBNL1 impaired the fibrotic phase of wound healing in mouse
models of MI. [31]

Klf5 Postn FB–specific KLF5 deletion ameliorated TAC-induced cardiac hypertrophy
and fibrosis [27]

Postn Tcf21 and Postn Ablation periostin expressing FBs reduced collagen production and scar
formation after MI. [9]

Postn Postn
Ablation of periostin expressing FBs reduced fibrosis and improved

cardiac function in mice subjected to chronic Ang-II infusion as well as in
mice after MI

[21]
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In summary, the field of cardiac fibroblast and fibrosis research is going through
a transition process. Traditional beliefs are being challenged, and novel pathways are
being identified, leading to new and emerging concepts. This revolutionary transition
is primarily driven by the emergence of newly developed, inducible, FB-specific mouse
models. In the following sub-sections of this review article, we will specifically focus on
the mechanisms of fibrosis that have been validated by multiple studies with FB-specific,
in vivo mouse models.

2.1. TGF-β1 Signaling Pathway in Myocardial Fibrosis

The transforming growth factor-β (TGF-β) is a superfamily of 30 ligands that belongs
to three main subfamilies: (1) TGF-β; (2) activins/inhibins/Nodal; and (3) bone morpho-
genetic proteins (BMPs). Among these, the TGF-β pathway has been considered a key
mediator of fibroblast activation and fibrosis in the diseased heart [81,85]. There are three
isoforms of TGF-β ligands: TGF-β1, TGF-β2, and TGF-β3. Despite having a remarkable
homology, these ligands demonstrate distinct biological functions. In the canonical TGF-β
signaling pathway, TGF-β ligands bind to Type II serine/threonine kinase receptors, which
further trans-phosphorylate the Type I receptor’s kinase domain. These receptor kinases
activate receptor-associated SMADs (R-SMADs), specifically SMAD2/3. Activated SMADs
form a heteromeric complex with Co-SMAD, i.e., SMAD4. This complex translocates into
the nucleus, binds to SMAD binding elements (SBE), and regulates the transcription of
target genes. TGF-β signaling is negatively regulated by inhibitory SMADs (I-SMADs),
namely SMAD6 and SMAD7. I-SMADs competitively inhibit R-SMADs activation at the
Type I receptor or prevent the formation of the effector R-SMAD-Co-SMAD complex.
Furthermore, I-SMADs are involved in the ubiquitination and degradation of Type I recep-
tors [86,87]. In addition to the classical SMAD-dependent (canonical) pathway described
above, TGF-βs act in a SMAD-independent manner (non-canonical) through non-canonical
mediators, such as TGF-β-activated kinase 1 (TAK1), tumor necrosis factor (TNF), MAP
kinases (ERK, p38, and JNK), Rho kinase, phosphoinositide 3-kinase (PI3K), AKT, and
nuclear factor-κB (NF-κB) [88–92].

In order to investigate the fibroblast-specific role of canonical TGF-β signaling in the
diseased heart, Khalil et al. [33] selectively deleted Tgfbr1/2, Smad2, or Smad3 using fibrob-
last specific Cre drivers. These authors observed that the fibroblast-specific double deletion
of Tgfbr1/2 or Smad2/3 protected from TAC-induced myocardial fibrosis. Interestingly, the
deletion of Smad2 alone did not affect adverse myocardial fibrosis, while Smad3 seemed to
be indispensable to the pressure-overload-induced fibrotic response. Moreover, cardiac
dysfunction and maladaptive hypertrophy were prevented in Tgfbr1/2 KOs, but deletion of
Smad2, Smad3, Smad2/3 did not alter the ultimate decompensation of pressure-overloaded
hearts. In contrast to this observation, Russo et al. [38] found that Smad3 deletion from
activated fibroblast accelerated early systolic dysfunction after pressure overload. A differ-
ence in experimental design could explain this disparity between the cardiac phenotypes
observed. Specifically, Russo et al. noticed cardiac dysfunction in Smad3 KOs during the
adaptive phase of injury, when the SMAD3-dependent matrix preservation program is
critical to protect the heart from injury. Khalil et al. missed this difference as they examined
the effect of gene deletion at a later time point, i.e., during the advanced stage of cardiac
disease. In the case of MI, myofibroblast-specific Smad3 deletion reduced collagen content,
impaired scar organization, and increased the incidence of scar rupture and mortality [35].
In a transgenic mouse model of slow progressive genetic cardiomyopathy, myofibroblast-
specific Tgfbr2 ablation at the early stage of disease progression reduced myocardial fibrosis,
alleviated cardiac hypertrophy, improved cardiac function, and extended the lifespan of the
diseased mice [36]. All these studies indicate that the FB-specific TGF-β signaling response
varies considerably depending on context and plays a diverse role in the pathophysiology
of cardiac diseases.
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2.2. Co-Operation between Canonical Wnt/β-Catenin and TGF-β1-SMAD3 Signaling in Fibrosis

Glycogen synthase kinase-3 (GSK-3) is a family of ubiquitously expressed serine/threonine
kinases. It was first identified in 1980 for its role in regulating glycogen synthase, the
rate-limiting enzyme in glycogen synthesis [93]. The GSK-3 family consists of two iso-
forms, α, and β. These isoforms share a 98% homology in their kinase domains but differ
substantially in their N- and C-terminal sequences [94,95]. The role of the GSK-3 family of
kinases in cardiomyocyte biology is well established [96–102]. However, in vivo studies
supporting the role of the GSK-3 family of kinases in myocardial fibrosis are just beginning
to emerge [26]. We employed both Postn-Cre and Col1a2-Cre to investigate the role of cardiac
fibroblast (CF) GSK-3β in myocardial fibrosis [26]. We reported that the CF-specific dele-
tion of GSK-3β lead to excessive fibrogenesis, left ventricular dysfunction, and profound
scarring in the infarcted heart. Mechanistically, GSK-3β deletion in cardiac fibroblasts
caused the hyperactivation of SMAD3, resulting in excessive fibrosis [26]. In stark contrast,
the FB-specific deletion of GSK-3α protected against TAC-induced myocardial fibrosis and
cardiac dysfunction [44]. Interestingly, GSK-3α appears to promote fibrosis via the GSK-
3α-ERK-IL-11 signaling circuit. We believe that GSK-3α-mediated pro-fibrotic signaling is
among the few TGF-β1/SMAD3 independent pro-fibrotic signaling cascades identified
to date. Future studies are warranted in order to further validate the GSK-3α-ERK-IL-11
signaling circuit as a therapeutic target for the management of myocardial fibrosis.

It is well recognized that GSK-3β plays an essential role in the Wnt/β-catenin sig-
nal transduction pathways [103]. The components and the molecular mechanism of
Wnt/β-catenin signaling have been reviewed recently [104]. Briefly, in the absence of
Wnt, GSK-3β participates in the destruction complex, where it phosphorylates β-catenin,
leading to its ubiquitination and subsequent proteasomal degradation. However, the
binding of Wnt ligands to frizzled receptors causes the disassembly of the destruction com-
plex, thereby preventing GSK-3β mediated β-catenin phosphorylation and degradation.
This leads to the stabilization and cytoplasmic accumulation of β-catenin, which further
translocates into the nucleus and activates specific gene programs. Deb et al. [55] showed
that acute ischemic injury induced Wnt1 expression in cardiac FBs and promoted cell
proliferation in a β-catenin-dependent manner. To further confirm the biological relevance
of Wnt/β-catenin signaling in adverse cardiac remodeling, they interrupted Wnt signaling
by deleting β-catenin in FBs. This loss-of-function approach demonstrated minimal col-
lagen deposition at the injury site with accelerated cardiac dysfunction and hypertrophy
post-MI, suggesting that β-catenin-dependent signaling is required to maintain cardiac
homeostasis in the ischemic heart. On the other hand, Xiang et al. [43] demonstrated
that the loss of β-catenin in cardiac fibroblasts or myofibroblasts (Tcf21- or Postn-Cre) pro-
tects from pressure-overload-induced cardiac dysfunction and reduces interstitial fibrosis.
These beneficial effects were seen despite the absence of any significant alteration in the
FBs’ proliferation. However, β-catenin is known to interact with T-cell factor/lymphoid
enhancer factor (TCF/LEF) gene sequences promoting the transcription of ECM genes.
Nonetheless, the precise mechanism of the profibrotic role of GSK-3β-β-catenin signaling
and its crosstalk with the TGF-β1 pathway is just beginning to emerge and needs further
investigation [103] (Figure 1).

2.3. Molecular Mechanism of p38 MAPK Mediated Pro-Fibrotic Signaling

The mitogen-activated protein kinases (MAPKs) mediate a wide range of responses to
extracellular stimuli and cell functions [105–107]. The MAPK family consists of four sub-
families: extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK/SAPK),
p38, and ERK/big MAP kinase 1 (ERK5/BMK1). The role of the ERK1/2 and JNK1/2/3
signaling cascade in myocardial fibrosis has not yet been studied with in vivo mouse
models. Herein, we will discuss the role of p38 MAPK in myocardial fibrosis. There are
four members in the p38 family: p38α (MAPK14/SAPK2a), p38β (MAPK11/SAPK2b),
p38γ (MAPK12/SAPK3), and p38δ (MAPK13/SAPK4). Out of these, the p38α and p38β
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isoforms are ubiquitously expressed, while p38γ and p38δ expression varies, depending
on the type of tissue [108].
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teinases; PAI-1 = Plasminogen activator inhibitor-1; Smad = Contraction of Sma and Mad (Mothers against decapentaplegic);
TGF-β1 = Transforming growth factor beta 1; TIMP = Tissue inhibitors of MMPs.

Molkentin et al. provided the first direct evidence for the role of p38 in cardiac fi-
brosis [37]. They developed genetic mouse models in which p38α could be deleted from
fibroblast or myofibroblast using tamoxifen-inducible Tcf21- and Postn- promoter-driven
Cre recombinase, respectively. The deletion of p38α from the fibroblast prevented myofi-
broblast transformation and reduced fibrosis in two different mouse models of cardiac
injury (IR and chronic neurohumoral-AngII stimulation). Fibroblast-specific p38α KO mice
showed a higher incidence of scar rupture and 100% mortality after MI, thereby highlight-
ing the critical role of this signaling axis in maintaining the structural integrity of the injured
myocardium. Conversely, the expression of constitutively active p38α in fibroblast led to
the development of cardiac fibrosis in transgenic mice, even in the absence of injury signals,
further supporting the crucial role of p38α in fibrosis. In another study, Bageghni et al. [60]
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deleted p38α from fibroblast using tamoxifen-inducible Col1a2-Cre-ER(T) and observed
protection against cardiac hypertrophy induced by isoproterenol (β-adrenergic receptor
agonist). The authors further demonstrated that FB-p38α regulates cardiomyocyte hy-
pertrophy in a paracrine manner through IL-6 secretion. Recently, the Davis group [30]
engineered a biomimetic that recapitulates the spatial variations in collagen organization
seen in ischemic hearts. Using this novel tool, the authors showed that topological dis-
organizations in the ECM lead to p38-dependent YAP stabilization in FBs. Indeed, YAP
promotes myofibroblast transformation and myocardial fibrosis. Taken together, the p38
MAPK signaling is among the best-characterized positive regulators of fibroblast activation
and myocardial fibrosis (Figure 2).
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Figure 2. Molecular mechanism of p38 MAPK-mediated pro-fibrotic signaling. The p38 pathway is a critical positive
regulator of myocardial fibrosis. At the receptor level, p38 signaling is activated by a variety of stimuli, including Ang
II (AT1R), mechanical sensing (integrins), and inflammatory cytokines (TGF-βR, TLR4). These membrane-proximal
events lead to the activation of MKK3/6, the specific upstream activator of the p38 MAPK kinases. Once activated, p38
crosstalk with IKK-NFkB signaling and Hippo effector YAP to mediate the pro-fibrotic (Col-1, Col-3, FN, and α-SMA)
and pro-inflammatory (Il-1b, IL-6, TNF-α) gene programs. Ang II = Angiotensin II; α-SMA = Alpha-smooth muscle actin;
AT1R = Angiotensin II receptor; Col = Collagen; ECM = Extracellular Matrix; FAK = Focal adhesion kinase; GBR2 = Growth
factor receptor-bound protein 2; IKK = IκB kinase; IL = Interleukin; ILK = Integrin-linked kinase; IRAK4 = Interleukin 1
receptor-associated kinase 1; MKK = Mitogen-activated protein kinase kinase; MyD88 = Myeloid differentiation factor 88;
NFkB = Nuclear factor κ B; RhoA = Ras homolog family member A; Shc = SH2-containing collagen-related proteins;
SOS complex = Son of sevenless guanine nucleotide exchange factor; SRF = Serum response factor; TAB1 = TAK binding
protein 1; TAK1 = TGF-β-activated kinase 1; TEAD = TEA domain family member; TGF-β1 = Transforming growth factor
beta 1; TGF-βR = TGF-β receptor; TLR4 = Toll-like receptor 4; TNF-α = TNF, tumor necrosis factor α; TRAF6 = TNF
receptor-associated factor; YAP 1 = Yes-associated protein 1.



Cells 2021, 10, 2412 9 of 17

2.4. GPCR-Mediated Myocardial Pro-Fibrotic Signaling

G-protein-coupled receptors (GPCRs) signaling has been extensively linked with the
pathogenesis of cardiac diseases. Many conventional therapies for HF, such as beta-blockers
and angiotensin-II receptor blockers (ARBs) work by targeting GPCRs. GPCRs represent
the largest family of transmembrane receptors. In classical GPCR signaling, the binding
of ligands induces conformational changes in the receptor, thereby activating G protein
and inducing intracellular signaling cascades. The G-protein-coupled receptor kinases
(GRK) are the negative regulators of GPCR signaling. Specifically, GRKs phosphorylate
ligand-bound GPCRs and create a docking site for β-arrestin. This high-affinity binding
of β-arrestin leads to the desensitization or downregulation of GPCRs. GRKs are a family
of serine/threonine kinases. Based on tissue specificity and sequence homology, GRKs
are further classified into 3 subfamilies: rhodopsin kinases (GRKs 1 and 7); β-adrenergic
receptor kinases (GRKs 2 and 3); and the GRK4 subfamily (GRKs 4, 5, and 6) [109–111]. In
the heart, the expression of GRK2 and GRK5 isoforms is predominant. A large body of
research adequately supports a central role for cardiomyocyte GRKs in the pathogenesis of
cardiac diseases [112,113]. However, studies investigating the FB-specific role of GRKs in
cardiac diseases are limited.

To determine the role of cardiac fibroblast GRK2 in myocardial fibrosis, Koch et al.
employed inducible fibroblast-specific GRK2 KOs [62]. Indeed, cardiac fibroblast GRK2
deletion protected against ischemia/reperfusion (I/R)-induced cardiac injury and adverse
remodeling [62]. Consistently, pharmacological inhibition or the targeting of GRK2 in
activated fibroblast attenuated pathological myofibroblast activation, interstitial fibrosis,
and HF progression [42]. These protective effects were associated with a reduction in
fibrotic and inflammatory responses in the re-perfused hearts. Mechanistically, it was
proposed that GRK2 mediates pro-fibrotic effects by modulating cAMP levels in fibrob-
lasts. Furthermore, GRK2 acts as a positive regulator of NF-κB signaling and promotes
inflammatory cytokine secretion in the ischemic heart. The Koch laboratory employed
two different mouse models, specifically MI and in vivo AngII infusion, to investigate the
fibroblast-specific role of GRK5 in the pathogenesis of cardiac diseases. In both models,
the FB-specific deletion of GRK5 prevented adverse cardiac remodeling and improved
systolic function. Furthermore, the authors demonstrated that non-canonical interaction
between GRK5 and NFAT potentiates NFAT: DNA binding, thereby inducing the transcrip-
tion of NFAT-mediated fibrotic genes [58]. Additionally, the activation of β2-adrenergic
receptors (β2AR) leads to the proliferation of cardiac proliferation and fibrosis through the
Gαs/ERK1/2-dependent IL-6 secretion [114]. However, the role of β2AR in cardiac fibrosis
needs further validation with conditional FB-specific mouse models in an in vivo setting.
Taken together, GPCRs-mediated signaling, specifically β2AR, GRK2, and GRK5, is the
critical positive regulator of myocardial fibrosis, therefore representing a novel therapeutic
target for the limitation of excessive myofibroblast activation and interstitial fibrosis in the
diseased heart (Figure 3).

2.5. Hippo Signaling Pathway in Myocardial Fibrosis

The Hippo signaling pathway was first identified in Drosophila and was found to be
evolutionary conserved. It controls organ size by regulating cell proliferation and apop-
tosis [115–117]. The Hippo signaling network is complex as it operates with more than
30 different components. In mammals, this signaling initiates at the mammalian Ste20-like
kinases (MST1/2), which are orthologous to Drosophila Hippo. MST1/2 forms a complex
with adaptor protein, a Sav family WW domain-containing protein 1 (SAV1) that allows
the phosphorylation/activation of the large tumor suppressor 1/2 (LATS 1/2). LATS 1/2
regulates the transcriptional activities of two transcriptional co-activators, yes-associated
protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ). When
the pathway is active, LATS 1/2 phosphorylates YAP and TAZ, thereby sequestering them
in the cytoplasm, eventually leading to their ubiquitin-mediated proteasomal degradation.
However, the inactivation of this pathway permits the stabilization and nuclear transloca-
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tion of YAP and TAZ, whereupon they interact with the TEA domain family (TEAD1-4)
of transcription factors and enhance the expression of target genes [115–117]. Mechan-
otransduction plays an important role in the determining the subcellular localization of
YAP/TAZ. Specifically, ECM elasticity and Rho ATPase-mediated cytoskeleton dynamics
have been linked to YAP/TAZ activation [118,119].
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GPCR signaling. GRKs are the critical positive regulator of fibroblast activation and myocardial fibrosis. GRKs mediate
pro-fibrotic effects by modulating cAMP levels and NF-κB signaling. Furthermore, GRKs interact with NFAT to potentiate
NFAT: DNA binding, thereby inducing the transcription of NFAT-mediated fibrotic genes. α-SMA = Alpha-smooth muscle
actin; cAMP = Cyclic adenosine monophosphate; EPAC = Exchange protein activated by cAMP; GRK = G-protein-coupled
receptor kinases; IkB = Inhibitor of NF-κB; NFAT = Nuclear factor of activated T-cells; NFκB = Nuclear factor-kappa B;
PKA = Protein kinase A; TGF-β1 = Transforming growth factor beta 1; TNF = Tumor necrosis factor.

The Hippo pathway plays a critical role in cardiac development, cardiomyocyte biol-
ogy, and regeneration, which has recently been elegantly reviewed [120]. Herein, we will
exclusively focus on in vivo studies with FB-specific mouse models investigating the role
of this signaling in fibroblast biology and fibrosis. Fransisco et al. [46] showed that YAP
expression increased in FBs after MI, and FB-specific YAP ablation attenuated MI-induced
cardiac dysfunction and fibrosis. The authors further demonstrated that YAP promoted
myofibroblast differentiation and ECM gene expression through MRTF-A. Martin’s labo-
ratory demonstrated that Hippo signaling promoted epicardial progenitors to fibroblast
transition during embryonic development [121]. In another study, the same group condi-
tionally deleted the Hippo pathway kinases LATS1 and LATS2 from adult mouse cardiac
fibroblasts. Interestingly, the ablation of LATS1/2 from adult resting cardiac FBs caused
spontaneous myofibroblast transformation, cardiac fibrosis, and systolic dysfunction, even
in the absence of any cardiac insult. Moreover, the basal fibrotic response (without injury)
became more severe in LATS1/2 KOs post-MI, resulting in a poor survival rate. The
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authors of this study employed single-cell transcriptome analysis and demonstrated that
LATS1/2 are essential to the maintenance of FBs in the resting state [47]. These findings
are important since there is a general belief that fibroblasts have a minimal role in resting
heart physiology. Indeed, most of the research on myocardial fibrosis is limited to diseased
conditions. Thus, future investigations are needed to identify the physiological role of
fibroblasts in the healthy heart (Figure 4).
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Figure 4. Hippo pathway and myocardial fibrosis. When Hippo signaling is on (left), the mammalian STE20-like protein
kinase 1 (MST1), MST2, and the Sav family WW domain-containing protein 1 (SAV1) complex activate the large tumour
suppressor homologue 1 (LATS1) and LATS2 kinases, which in turn phosphorylate and promote the degradation of the
downstream effectors YAP and TAZ. When Hippo signaling is off (right), YAP and TAZ function as transcriptional co-
activators and partner with different transcription factors to regulate gene transcription. Active Hippo signaling is essential
to maintain fibroblasts in their inactive state (calm). However, Hippo signaling is switched off in activated fibroblasts,
leading to YAP/TAZ nuclear localization for the mediation of pro-fibrotic signaling (right). CTGF = Connective tissue
growth factor; ECM = Extracellular matrix; FAK = Focal adhesion kinase; Gα and Gq = G protein subunit; ILK = Integrin-
linked kinase; LATS 1/2 = Large Tumor Suppressor; MOB1 = Mps One Binder 1; MST 1/2 = Mammalian Ste20-like 1 and 2;
PAI-1 = Plasminogen activator inhibitor-1Roa; Smad = Contraction of Sma and Mad (Mothers against decapentaplegic);
TAZ = Transcriptional co-activator with PDZ-binding motif; YAP = Yes-associated protein.

3. Conclusions and Future Perspectives

As discussed throughout this review, the recent emergence of the conditional FB-
specific mouse model revolutionized the area of cardiac fibroblast biology and myocardial
fibrosis research. As a result, the last decade was productive, leading to a paradigm shift
towards the idea that fibrosis is not merely a secondary effect of developing pathology and
that fibroblasts are not just ECM-producing cells. In fact, numerous studies showed that
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FB-specific gene targeting can lead to a robust cardiac phenotype, including cardiomyocyte
hypertrophy. Indeed, the animals studied demonstrated intact gene expression in all other
cells, including the cardiomyocytes. Thus, the last decade saw remarkable progress in
our understanding of cardiac fibroblasts’ role in myocardial pathophysiology. There was
reasonable success on the mechanism front as well; in addition to the historical profibrotic
canonical TGF-β1 pathway, numerous new pro- and anti-fibrotic pathways were identified.
However, although substantial progress has been made, it will require a great deal of
effort to transform these early bench discoveries into much-needed anti-fibrotic therapies
for patients. Specifically, most of the work performed is focused on linear pathways; it
is conceivable that these newly identified pathways operate through multiple crosstalk.
These signaling circuits and missing links are yet to be established. An upcoming area
of enormous potential is the cellular crosstalk among cardiac cells (e.g., fibroblasts to
cardiomyocytes) and the circulation (immune cells). The area of fibroblast crosstalk with
the immune system and its role in myocardial injury, healing, regeneration, and fibrosis is
gaining a lot of interest and is currently under intense investigation by multiple groups.
Furthermore, the interplay of fibroblast and inflammation is proposed to play a critical
role in the pathogenesis of the comparatively understudied HFpEF syndrome. Regrettably,
due to the lack of well-optimized animal models of HFpEF, the progress in this exciting
area has been slow and is only just starting to gain some momentum. In the same vein, car-
diomyocytes and fibroblast cellular crosstalk has been noted in multiple settings. However,
the precise mechanism is not known and is currently under intense investigation by numer-
ous groups. Another emerging area is fibroblast heterogeneity within organs and across
various tissues. This line of research with single-cell multi-omics and advanced genomics
technologies will be critical to the identification of commonalities and heterogeneity among
fibrotic diseases across organs and could play a crucial role in drug repurposing. Indeed,
we have recently reported the potential of repurposing Nintedanib (an FDA-approved
kinase inhibitor for pulmonary fibrosis) to combat myocardial fibrosis, pathological cardiac
remodeling, and dysfunction [122]. The repurposing of authorized anti-fibrotic agents
is certainly a “low hanging fruit,” and this line of investigation should be prioritized.
Moreover, we anticipate that various fibroblast subpopulations may have a distinct role in
the repair and remodeling of the injured heart. Efforts from multiple laboratories with the
single-cell RNAseq approach have paved the way towards the identification of the specific
markers of different fibroblast subpopulations. We speculate that this knowledge base
will help to create future FB-specific mouse models with the ability to target particular FB
subpopulations. Finally, it is clear that a better understanding of the profibrotic signaling
network may provide a promising new therapeutic target for managing myocardial fibrosis.
An effective translation of these new findings will need rigorous verification in human
tissues and human tissue-based culture systems, such as pluripotent cell-derived organoids
(human tissue chips). There is great optimism that with these newly optimized models and
identified pathways, the area of myocardial fibrosis research is set to see another round
of growth and productivity. We anticipate that these efforts will enable new approaches
to the prevention, treatment, and, hopefully, even the reversal of myocardial fibrosis in
diseased hearts.
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