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Abstract
Since the advent of large-scale genomic sequencing, and the consequent availability of

large numbers of homologous protein sequences, there has been burgeoning development

of methods for extracting functional information from multiple sequence alignments

(MSAs). One type of analysis seeks to identify specificity determining positions (SDPs)

based on the assumption that such positions are highly conserved within groups of

sequences sharing functional specificity, but conserved to different amino acids in different

specificity groups. This unsupervised approach to utilizing evolutionary information may

elucidate mechanisms of specificity in protein-protein interactions, catalytic activity of

enzymes, sensitivity to allosteric regulation, and other types of protein functionality. We

present an analysis of SDPs in the LacI family of transcriptional regulators in which we 1)

relax the constraint that all specificity groups must contribute to SDP signal, and 2) use a

novel approach to robust treatment of sequence alignment uncertainty based on sub-sam-

pling. We find that the vast majority of SDP signal occurs at positions with a conservation

pattern that significantly complicates detection by previously described methods. This pat-

tern, which we term “partial SDP”, consists of the commonly accepted SDP conservation

pattern among a subset of specificity groups and strong degeneracy among the rest. An

upshot of this fact is that the SDP complement of every specificity group appears to be

unique. Additionally, sub-sampling gives us the ability to assign a confidence interval to the

SDP score, as well as increase fidelity, as compared to analysis of a single, comprehensive

alignment—the current standard in multiple sequence alignment methodologies.

Introduction

Rapid advances in DNA sequencing technologies in recent decades have enabled an exponen-
tial increase in the number of fully sequenced genomes. Combined with advances in automated
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gene annotation and functional assignment [1–3], this has resulted in the availability of homol-
ogous protein sequences from thousands of species. This abundance of sequence data, in turn,
motivated development of numerous computational strategies for inferring functional roles of
individual protein residues from the amino acid composition patterns of multiple sequence
alignment (MSA) columns.

One such type of analysis seeks to identify residues responsible for specificity differences
in families of homologous proteins that share a common function, but differ in substrate,
ligand, protein interaction partner, or various other forms of specificity. Starting with the
model, first postulated by Susumu Ohno in his seminal book [4], that specificity diversifica-
tion occurs through gene duplication followed by specialization of each duplicate, the
approach further pre-supposes that such specificity-determiningpositions (SDPs) experience
a specific pattern of substitutions following duplication. While positions responsible for their
common function remain under constant purifying selection in both duplicates, and posi-
tions evolving neutrally diverge through random drift [5], SDPs mutate as the duplicate
genes acquire new specificity, then come back under purifying selection once that specificity
becomes fixed. Subsequent duplications again relax the purifying selection pressure on SDPs,
followed by renewed purifying selection after further specialization. Eventually each special-
ized gene evolved by repeated duplication gives rise to a set of orthologs—homologs
descended from speciation events—which share both the global function of the protein fam-
ily and the specificity of their pre-speciation ancestor gene. In the context of SDP identifica-
tion these are often called specificity groups. Positions responsible for global function remain
conserved to the same amino acid across all specificity groups, while neutral positions diverge
within each group. SDPs, on the other hand, remain conservedwithin groups due to purify-
ing selection, but are conserved to different amino acids in each group, as required by its
unique specificity. Although the numerous SDP identification algorithms [6–19] differ in
their scoring functions, they all reward maximally this “conserved within specificity groups,
different between” amino acid composition pattern. Because all methods agree on this, we
generically refer to columns with conservation patterns approximating this ideal as having
“SDP signal”.

Sub-specializationwithin protein families commonly involves multiple sites in a protein in
a combinatorial fashion, possibly including catalytic, allosteric, and interaction sites, as well as
other aspects of protein function. In a diverse protein family, each member’s specialized func-
tion is very unlikely to be determined by the same set of positions. More plausibly, positions
acquire and lose specificity roles along different lineages over multiple duplications, resulting
in “partial” SDPs which contribute to specialized function in some specificity groups, but not
in others. Among the fraction of groups which use a particular position as an SDP, the position
should exhibit a conservation pattern consistent with SDP signal. Among remaining groups
purifying selection pressure will have been lost, and the position likely reverted to evolving
neutrally: diverging through random drift, resulting in low conservation both within and
between groups. In fact, we expect relatively few positions to be under purifying selection in all
ortholog sets, with many more positions experiencing a patchwork of purifying selection and
neutral evolution across different lineages. If this is the case, one expects to find many positions
with a “heterogenous” conservation pattern across ortholog sets: conserved in some sets,
degenerate in others. Heterogeneous conservationwas previously reported by Casari et al [20]
in the Ras/Rab/Rho family, in G2/M and B-type cyclins, and in a small subset of SH2 domains.
In larger protein families, at least some heterogeneous positions may contain detectable SDP
signal among the specificity groups in which the position is conserved—indicating that this
fraction of ortholog sets use the position in a specificity-determiningrole. Although several
methods allow limiting conservation analysis to a subset of input sequences by only
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considering sequences corresponding to leaves descendant from an internal node in a phylog-
eny [21–23], doing so assumes are relevant signal is contained in this monophyletic subset.
However, a partial SDP position that acquired and lost its specificity-determiningrole multiple
times would not have its SDP signal confined to any monophyletic subset of ortholog sets.
Identifying SDPs in the context of such non-uniform evolutionary history remains a challenge
to understanding specificity in large protein families.

Another, fundamental challenge to all sequence analyses requiring an input MSA, like
SDP identification, comes from the uncertainty and imperfect accuracy of the alignment pro-
cess itself. In all but the most trivial cases, different multiple sequence alignment tools pro-
duce differing alignments of the same collection of input sequences. And yet, subsequent
downstream applications treat input alignments as an observation, assuming their correctness
[24], even though a number of studies [24–32] have demonstrated sensitivity of downstream
applications to alignment variability. To make matters worse, two recent studies demon-
strated strong positive correlation between the number of aligned sequences and the overall
amount of alignment error for every tested alignment tool [31, 33]. Furthermore, after repeat-
edly aligning a constant subset of sequences with different collections of additional homologs,
Sievers et al. [33] found that the embedded alignment of the constant subset was affected by
the variable additional sequences—illustrating sensitivity of pairwise alignments embedded in
an MSA to the total number and context of aligned sequences. Although a number of
approaches for identification and removal of alignment columns with the most uncertainty
have been developed [34–38], simply removing columns is of limited utility for column-wise
analyses like SDP identification. Therefore, using all available sequence data, in a manner
robust to alignment uncertainty and inaccuracy, is a second challenge in SDP analysis of large
protein families.

In this work we identify numerous partial SDPs in the LacI family of bacterial transcrip-
tional regulators, previously analyzed by multiple SDP identification methods [8, 10, 12, 17,
39]. LacI family members vary in their DNA binding specificity, allosteric regulator identity
and promiscuity, and even regulatory logic—with some members dissociating from DNA
upon binding their regulators and others requiring their regulator to bind DNA [40]. Since
the LacI family contains at least 34, possibly as many as 45 members, each represented by a
set of orthologs from numerous bacterial species [41], it also poses the challenge of robustly
analyzing MSAs of large collections of homologs. To address this challenge we employ sub-
sampling to generate an ensemble of LacI MSAs, taking advantage of a large amount of
sequence data, while aligning relatively few sequences at any one time. We extend an existing
SDP identification method, GroupSim [19], in order to account for partial SDPs and to calcu-
late group-specific scores—allowing us to determine whether a position is an SDP for some
groups, but not for others. We find support for partial SDP in the physical interactions of cor-
responding side chains in solved structures of LacI and its homologs. In comparing group-
specific SDP scores in our work with two other methods, SDPPred [8, 10] and Speer [17, 39],
we find that group-specific scoring identifies many positions that cannot be detected by exist-
ing methods and highlights where these methods are likely making false positive SDP calls
for subsets of specificity groups. Consistent with our expectation for a protein family with
complex specificity, and in contrast to SDPPred, Speer, and GroupSim, SDP complements
identified by our group-specificmethod vary dramatically between family members. The
resulting aggregate analysis is robust to alignment uncertainty and inaccuracy, with individ-
ual sequence position results demonstrating a wide range of sensitivity to alignment varia-
tion. Our sub-sampling approach constitutes a general framework for robust treatment of
any SDP method and, more generally, of any computational analysis of multiple sequence
alignments.
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Results

We assembled a pool of 1814 unique sequences covering 20 members of the LacI protein fam-
ily, each represented by a set of orthologs, consisting of between 28 and 192 sequences, from
different bacterial species. Since a multiple sequence alignment (MSA) of this many sequences
will suffer from significantly higher error [33], we opted to align a subset of 200 sequences ran-
domly sampled from the pool. To create sufficient sampling of the full sequence space, we
repeated this sub-sampling and alignment 5000 times to form an ensemble of MSAs. In order
to merge analysis results across the ensemble, we included a reference sequence in each set, for
a total of 201 sequences in every alignment. Results were aggregated by reference sequence
position and are referenced that way throughout the text. To avoid bias the reference sequence
was withheld from analysis and only the 200 sampled sequences were used. Six separate ensem-
bles were generated, each with a respective reference sequence representing one of the six fam-
ily members with a solved structure: AscG, CcpA, FruR, LacI, PurR, and TreR. Positions in
reference sequences were independently mapped to each other with a structural alignment,
allowing us to compare results for structurally homologous sequence positions in different
family members. Because results from all six ensembles were highly similar, we report results
based on the LacI reference sequence (LacI of Escherichia coli, UniProt accession P03023),
unless otherwise specified.

Our ensemble approach allowed us to quantify the variability column-wisemetrics experi-
ence as a result of differences in alignment inputs and specific errors, which will be highlighted
throughout the remaining results. In short, by using the average SDP score across the ensem-
ble, the result becomes more robust to uncertainty in the alignment process.

Detection of SDP signal at heterogeneously conserved positions

We assume each member of the LacI family has unique specificity and, therefore, we treat sets
of family member orthologs as specificity groups for the purposes of SDP analysis. This
assumption is predicated on the fact that paralogs with identical function are extremely rare.
Instead, when the two copies of a gene resulting from a duplication event fail to evolve func-
tional differences, one copy tends to become a pseudogene [42].

Throughout the text “ortholog set” and “specificity group” both refer to the collection of
orthologs of a family member protein from different bacterial species. “Family member” is also
used to refer broadly to all orthologs of a protein.

Relationships between conservation, agreement, and SDP signal. We find it useful to
represent alignment columns as points projected into a two-dimensional space—where the
first dimension is the variable quantifying net amino acid conservationwithin specificity
groups (group-wise conservation) and the second dimension is the variable quantifying net
agreement between amino acid compositions of groups (between-group agreement) (Fig 1).
This projection is conceptually similar to the two entropies projection, total column entropy
and sum of entropies of each specificity group, used by Ye et al. [14]. We then calculate SDP
signal according to the method in GroupSim [19], defined as the difference between group-
wise conservation and between-group agreement.

Fig 1(A) illustrates the fundamental relationships between group-wise conservation,
between-group agreement, and SDP signal in the two-dimensional space. Conservation is max-
imal and agreement is minimal when every specificity group is strictly conserved to a different
amino acid—the ideal SDP pattern (Fig 1, Column II). Regardless of its specific scoring func-
tion, every SDP identification method awards its maximum score to alignment columns with
this pattern. Similarly, everymethod awards a low SDP score to columns where every group is
conserved to the same amino acid (Fig 1, Column I): high conservation and high agreement,
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Fig 1. Projection into conservation-agreement space. In every panel, the color gradient represents strength of SDP

signal, as quantified by average group-wise conservation minus average between-group agreement. Dark red (bottom right

quadrant) represents maximal SDP signal. (A) Projections of hypothetical alignment columns for illustration: Column II has

maximal SDP signal, while columns I and III have low signal. (B,C,D,E) Projections of LacI reference sequence positions

with group-wise conservation and between-group agreement computed either (B,D) over every specificity group or (C,E)

over conserved groups only, where group conservation is >0.6. (D) Points corresponding to LacI positions are colored in

grayscale corresponding to the red color gradient of (B). (E) Points are positioned according their SDP signal calculated

over conserved groups only, but using the grayscale of (D) for illustration of the shift individual sequence positions undergo

as a result of the altered scoring scheme of (C).

doi:10.1371/journal.pone.0162579.g001
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since it is proposed such positions cannot determine specificity differences. Low SDP signal is
also assigned when most groups are degenerate (Fig 1, Column III)—i.e. conservation is a man-
datory component of SDP signal. The consequence of this requirement is that the larger the
fraction of degenerate groups, the more the SDP signal degrades.

Quantifying group conservation and between-group agreement across the ensemble.
Analysis of any property of an alignment column can be extended across an ensemble of align-
ments. A benefit of the ensemble approach is the ability to explore the distribution of a prop-
erty over collections of input sequences. For example, Fig 2 demonstrates the distributions of
conservationwithin each of the 20 ortholog sets representing 20 LacI family members for a sin-
gle position (LacI reference position 88). In almost all cases there is variability in this calcula-
tion (the only exceptions are the strictly conserved scR-BD and fruR families). By taking the
average value for conservation and agreement, we are, ideally, creating robustness to the vari-
ability of these metrics as a function of alignment.

In order to establish a metric for high conservationwithin a specificity group across the
ensemble, we call a group conserved if its average conservation score is 0.6 or greater. For a
group of eight sequences, this threshold corresponds to six or more amino acids being identi-
cal. In Fig 2 ScrR-BD and FruR orthologs are most conserved at reference position 88, with
conservation of 1.0 in every ensemble alignment, while LacI orthologs are least conserved, and
consistently so across the ensemble. We define a column as heterogeneously conserved, or het-
erogeneous, when specificity groups in it span conservation extremes: at least six groups have
conservation greater than 0.6 and at least six others have conservation less than 0.5.

Conservationheterogeneity is pervasive. A third of LacI reference sequence positions
(124 of 360) exhibit heterogeneous group conservation.We represent both conservation and
amino acid content over the ensemble at three positions with heterogeneous conservation
(positions 88, 189, and 280) by sequence logos [43, 44] (Fig 2). The subset of conserved groups
varies dramatically from one heterogeneous position to another. On average, a specificity
group is conserved at only 55 of 124 positions, and no group is conserved at more than 82 posi-
tions, suggesting that purifying selection pressure is acting on a unique subset of positions in
each ortholog set.

Noise from degenerate groups masks strong SDP signal at some positions. Plotting ref-
erence sequence positions in conservation-agreement space illustrates the impact of conserva-
tion heterogeneity on SDP signal across all positions (Fig 1(B) and 1(D)). Since so much of the
LacI sequence is heterogeneously conserved across family members, the area of strongest SDP
signal (bottom right quadrant Fig 1(B)) is relatively unpopulated. Noise from degenerate
groups hampers detection of SDP signal among conserved groups by lowering group-wise con-
servation and making the position as a whole indistinguishable from positions with uniformly
lower conservation across all groups.

In Fig 1(C) and 1(E)) amino acid positions are re-plotted according to a calculation includ-
ing only the subset of groups identified as being conserved (group conservation� 0.6) at a
position. This process ideally removes the noise contributed by degenerate groups normally
included in traditional SDP calculations. Naturally, when only conserved groups are consid-
ered, group-wise conservation increases for all positions, except those at which every group is
conserved—resulting in a shift of all positions to the right. However, comparing Fig 1(D) and
1(E) demonstrates that this shift is far from homogeneous. Two color gradients are used in
order to compare the original, all group calculation, with the calculation based only on the sub-
set of groups that demonstrate conservation. In Fig 1(E), where positions are plotted by con-
served groups only, the area of strongest SDP signal is populated by a mixture of points having
variable SDP signal in the original scoring scheme. For example, positions 88, 189, and 280,
whose group amino acid composition is shown in Fig 2, are three of the biggest beneficiaries of
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Fig 2. Amino acid composition at heterogeneously conserved positions. Historgrams at left show

group conservation distributions at position 88 over the MSA ensemble for each family member. The dotted

line indicates threshold for “conserved” designation, separating high conservation in blue from low

conservation in gray. Amino acid content of each of the 20 ortholog sets is represented by sequence logos

for three positions that demonstrate heterogeneous conservation. Rows correspond to LacI family members.

Sequence logos for ortholog sets with average group conservation above the conservation cutoff are

outlined in maroon.

doi:10.1371/journal.pone.0162579.g002
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the modified scoring scheme. While removing noise from degenerate groups increases SDP sig-
nal overall, individual positions still vary in the strength of signal among their conserved
groups. Based on this analysis, we incorporated this filter into a high-resolution SDP metric.

Detection of SDP signal in individual specificity groups

As expected for a diverse protein family, the vast majority of noise-filtered SDP signal in the LacI
family is contributed by positions with high heterogeneity of conservation, i.e. positions at which
a subset of specificity groups are degenerate and another subset of groups are conserved.We pro-
pose a simple method for identifying partial SDPs by evaluating SDP signal in a group-specific
manner. Here, we compare the results of this approach to three existing methods, SDPPred,
Speer, and GroupSim, which—like all existing methods—assign a single score to every specificity
group in an alignment column. Our results suggest that the standard approach can produce both
false positives and false negatives as a result of heterogeneous conservation across groups.

A group-specific SDP score. We compute a modified GroupSim score, filtered for noise
from degenerate groups by only including conserved groups, where group conservation� 0.6,
in the score calculation.We refer to these conserved groups as “support” groups, since only
these groups can provide support for an SDP call. For each specificity group in an alignment
column, we then modulate the score by a weight that accounts for the evidence of the position’s
importance to this group, based on the group’s conservation. Specifically this is calculated
according to the following:

Wgroup � ðgroup � wise conservation over support �

between � group agreement over supportÞ
ð1Þ

where

Wgroup ¼
1 if group 2 support

group conservation otherwise

(

ð2Þ

Averaging this score over the ensemble of MSAs accounts for heterogeneity in a group’s con-
servation.Groups conserved at a position in every ensemble MSA receive a higher score than
groups conserved at the position in a fraction of MSAs. The outcome of this approach is an
individualized score for every specificity group (Figs 3 and 4).

SDP signal is highly variable across specificity groups. We compare results of our
group-specificmethod with the GroupSim method, on which our method is based, and with
two other existing methods, SDPPred and Speer, for the 20 highest scoring LacI sequence posi-
tions as judged by either of the latter two methods (Fig 3). SDPPred, Speer, and GroupSim
scores for a position apply to every specificity group. Overlap between SDPPred, Speer, and
GroupSim is high—16 positions are among the top 20 for all three methods—confirming that
different methods generally detect the same SDP signal. However, group-specific scoring dem-
onstrates that SDP signal, defined as being in the top 7.5% of all group-specific scores, is never
uniformly high across all specificity groups. SDP signal detected by SDPPred, Speer, or Group-
Sim is supported by, on average, only 12 of 20 specificity groups. Therefore, the group-specific
scoring scheme is able to identify groups with low SDP signal due to low conservation.Given
that conservationwithin a specificity group is a requisite for hypothetical importance in a spec-
ificity determining role, it is likely that traditional methods are overcalling SDPs at these posi-
tions for those groups and a group-specific scoring scheme rectifies this.

Our method identified 15 additional LacI positions with strong SDP signal, where at least
one group’s score is in the top 5% of all group-specific scores (Fig 4). All of these positions
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Fig 3. SDP results for the highest scoring positions by SDPPred and Speer. Each position receiving a top-20 score from at

least one of the comparative methods, SDPPred and Speer, are shown. Ensemble score for SDPPred is the average ranking.

Ensemble score for Speer is the average z-score. See Methods for details on SDPPred and Speer ensemble averages. Position

scores are shown for SDPPred, Speer, and GroupSim. Group-specific scores for each specificity group at the corresponding

position are also shown. Marker size and color correspond to score according to color bars. Note that top 7.5% of scores make up
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score outside the top 20 for both SDPPred and Speer, likely due to the fact that, on average,
only 7.4 of 20 groups have detectable signal in this set. Position 29 scores 11th highest with
GroupSim, underscoring the modest differences between existing methods, but the remaining
14 positions in Fig 4 score outside of the top 20 for GroupSim as well. Noise from numerous
degenerate groups masks the SDP signal at these positions when SDP is calculated as a property
of all groups. Our group-specificmethod detects partial SDPs even when the signal is present
in a small fraction of specificity groups.

Figs 3 and 4 offer a striking illustration of the complexity of specificity encoding in LacI
family proteins. Every single position with detectable signal is a partial SDP to some extent,
and no two positions appear to have signal in the same subset of family members. There are
some positions (62, 81, 128, 189, 191, 196, and 277) that additionally highlight the sensitivity of

the vast majority of color scale for each method. For column-wise scoring methods the 27th highest score corresponds to the

92.5th percentile, since 27� 360 = 0.075, or 7.5%.

doi:10.1371/journal.pone.0162579.g003

Fig 4. Group-specific SDP signal undetected by SDPPred or Speer. Marker size and color corresponds to group-specific score according to color

bar in Fig 3.

doi:10.1371/journal.pone.0162579.g004
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SDP analysis to available sequence data, since all of these positions would have failed to have
high SDP signal, should the latter three ortholog sets not been included in this analysis. Non-
inclusion of a group could easily occur if there was low representation of these orthologs in cur-
rently sequenced species. This highlights the sensitivity of SDP analysis to input and impor-
tance of using all available data.

A subset of positions score among the top 20 with either SDPPred or Speer, but outside of
the top 7.5% for our group-specificmethod: 149, 73, 274, 87, 291, and 187. Of these, 149, 73,
87, and 291, but not 274 or 187 score in the top 7.5% for GroupSim (Fig 3), though GroupSim
scores each position lower than SDPPred or Speer. The fact that GroupSim ranks these posi-
tions higher than the group-specificmethod is misleading: group-specific scores for conserved
groups at these positions are actually higher than GroupSim scores (because the two methods
use the same scoring function, scores can be compared directly). However, because their SDP
signal is selectively boosted by the noise filtering in our method, positions in Fig 4 crowd posi-
tions 149, 73, 87, and 291 outside of the top 7.5%. The group-specificmethod prioritizes posi-
tions that are very different from those prioritized by existing methods.

From exploring the similarities among positions ranked higher by other methods than by
our group-specificmethod (S1 Fig), a clear pattern emerges: strength of SDP signal detected by
any method falls as the fraction of groups conserved to the same amino acid increases, resulting
in greater between-group agreement. While SDPPred, Speer, and GroupSim detect SDP signal
at some or all of these positions, none of the four methods detect signal at positions 22 or 25
(S1 Fig). In addition, it appears that the GroupSim scoring function penalizes between-group
agreement somewhat more severely than those of SDPPred and Speer, explaining why each
position with this pattern is ranked lower by GroupSim (Fig 3). Detecting SDP signal in conser-
vation patterns like positions 22 and 25, at which a large fraction of groups are conserved to
the same amino acid, presents a considerable challenge to all SDP identification methods.

Structural organization of group-specific SDPs

The position of a residue in the 3-dimensional structure of a protein can provide clues to its
role in protein function and specificity. Therefore, we explored SDP positions for those families
where structures are available. We mapped positions scoring in the top 5% of all group-specific
SDP scores onto family members with solved structures (Figs 5 and 6, S2, S3, S4 and S5 Figs).
Based on group-specific scores, this results in a unique structural collection of SDPs for each
family member.

SDP complements of familymembers have unique structural organization. In order to
compare SDPs in their sequence alignments to structure, we created a structural sequence
alignment of the AscG, CcpA, FruR, LacI, PurR, and TreR reference sequences and compared
this to SDP scores (Fig 5). There is, overall, substantially more SDP signal in the N-terminal
half of the alignment, corresponding to the helix-turn-helix DNA binding subdomain, the
inter-domain linker, and the N-terminal regulatory subdomain. Together these account for
DNA binding functionality and, most likely, the conformational transition induced by binding
and dissociation of the allosteric regulator. In addition, several SDPs in the C-terminal regula-
tory subdomain are in the allosteric site located at the interface of N-terminal and C-terminal
regulatory subdomains. By comparison, the remainder of the C-terminal sub-domain is rela-
tively devoid of SDP signal.

In order to locate the positions of top-scoring SDPs within the 3-dimensional structure, we
mapped SDPs onto the structures of two family members, LacI and CcpA (Fig 6). SDP comple-
ments of LacI and CcpA identified by the group-specificmethod clearly have different spacial
organization. LacI SDPs cluster near the allosteric binding site and in the adjacent protein core
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Fig 5. SDP scores mapped onto reference structural alignment. Locations of alignment positions in structural features are indicated

in the top track. The allosteric site is located at the interface of N-terminal and C-terminal regulatory sub-domains, each of which is split

into two linear segments of the polypeptide chain, as indicated. Heatmap colors correspond to group-specific scores for indicated

specificity groups and whole-position Speer and SDPPred scores, according to the color bars in Fig 3.

doi:10.1371/journal.pone.0162579.g005

Fig 6. Structural distribution of SDP complements of LacI and CcpA. LacI (left) and CcpA (right) SDPs scoring in top

5% of all group-specific SDP highlighted on LacI (2pe5) and CcpA (3oqo) structures. Each protein is shown as a homo-

dimer complexed with DNA, with one monomer shown in blue and the other in green. SDP side chains shown in space-

filling representation in color matching their monomer. LacI ligand and CcpA binding partner protein shown in gray. CcpA

binding partner is semi-transparent.

doi:10.1371/journal.pone.0162579.g006
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region, where they are likely participate in ligand-induced conformational changes. Only a sin-
gle DNA contacting residue has strong SDP signal in LacI, although additional DNA contact-
ing residues have an SDP-like conservation pattern, impossible to detect by any of the four
methods due to high between-group agreement (as discussed earlier). On the other hand,
CcpA SDPs cluster almost exclusively at monomer-monomer and protein-DNA interfaces,
with three SDPs contacting DNA. The prevalence of positions at the interface betweenmono-
mers suggests CcpA diverged from the rest of the LacI family in some functional aspect of
dimerization.

Structuralmaps of AscG, FruR, PurR, and TreR SDP complements are shown in S2 through
S5 Figs. The comprehensive mapping of SDP signal onto available structures suggests that fam-
ily members diverged through specialization in varying aspects of function, as indicated by
clustering of SDPs at different locations in the protein.

Structural evidence that an SDP is used by only a fraction of familymembers. In com-
parison to other methods, our method has increased the total number of positions with signifi-
cant SDP signal. Additionally, our group-specific scoring scheme uses group conservation to
identify subsets of specificity groups that are most and least likely to use the position as a speci-
ficity determinant. We illustrate our method’s ability to identify these subsets by highlighting
the structural roles of residues at a position where our method identified a partial SDP—posi-
tion 101 in the LacI reference sequence (Fig 7). These residues (TreR F102, FruR D101, CcpA
Q101, LacI R101, and AscG H101) are homologous to each other, according to the structural
alignment, and correspond to position 101 of the LacI reference sequence in our analysis. In
TreR, FruR, and AscG this position is conserved to three unique amino acids and accordingly,
all three received very high group-specific SDP scores. In their respective structures all three
participate in highly specific hydrophobic packing (TreR) or hydrogen bonding (FruR, AscG)
interactions which cannot be satisfied by other amino acids. In contrast, in LacI and CcpA this
position is degenerate and receives low group-specific scores. Accordingly, R101 of LacI has no
obvious interactions with either the nearby ligand or any neighboring residues, none of which
are SDPs. Since the position is exposed to solvent, theoretically any polar residue should be tol-
erated. This is borne out by the range of amino acids occurring at this position in LacI ortho-
logs. In CcpA Q101 forms a single hydrogen bond with a nearby backbone nitrogen atom.
Again, none of the neighboring positions are SDPs. Asparagine and glutamic acid, both capable
of forming the same hydrogen bond, are present at this position in other CcpA orthologs.
AscG H101 presents a particularly interesting case study for this partial SDP position. Histidine
is strictly conserved in AscG orthologs and the group-specific SDP score is high. In Fig 7(E),
the two H101 residues in an AscG dimer participate in two different interactions—one trans
and one cis—neither of which alone appears to strictly require histidine. However, only histi-
dine can satisfy both interactions simultaneously, consistent with its conservation among AscG
orthologs.

These structural observations support the hypothesis that position 101 contributes to speci-
ficities of TreR, FruR, and AscG, but not of LacI or CcpA. For AscG, although neither H101
interaction alone provides evidence supporting SDP, the two taken together are consistent with
the SDP call. This example demonstrates the usefulness in group-specific scoring, which
detected both the importance of position 101 to specificity groups in which it is conserved and
its lack of a specific role in specificity groups in which it is degenerate.

Sensitivity of ensemble SDP scores to alignment uncertainty

Results reported so far were obtained from an ensemble of MSAs. In order to compare ensem-
ble results to the traditional single-MSA approach, we created a single, “comprehensive”

High-Resolution Identification of Specificity Determining Positions in the LacI Family

PLOS ONE | DOI:10.1371/journal.pone.0162579 September 28, 2016 13 / 21



alignment of all 1814 sequences and scored it with our group-specific SDP method. Even for
SDP signal in the top 1%, when groups are most conserved, comprehensive alignment scores
are often outliers with respect to score distributions over the ensemble (Fig 8). Consistent
agreement between the average score from the ensemble and the score from the comprehensive
alignment, such as seen at position 110, is rare. More often the comprehensive alignment score
falls in the tails of ensemble score distributions, such as seen at positions 29 and 81.

In most cases ensemble score distributions are symmetric, as indicated by similar mean and
median values of the distribution. Symmetric score distributions with low variance suggest that
the same amino acid nearly always aligned to this reference sequence position for all orthologs
in that specificity group. The ensemble method identifies specificity groups for which conser-
vation varied dramatically between alignments, indicating greater uncertainty in the alignment
of those orthologs at that position—e.g. IdnR and RbsR-A at position 29—and penalizes the
specificity group for this uncertainty with a lower ensemble score (ensemble distribution aver-
age). The comprehensive alignment approach cannot account for different degrees of align-
ment uncertainty between specificity groups: all groups receive a single score.

Fig 7. Structural evidence of partial SDP at LacI position 101. Interactions of TreR (A), FruR (B), CcpA (C), LacI (D),

and AscG (E) positions corresponding to LacI position 101, according to the structural alignment. The side chain at the

position homologous to LacI 101 is shown in light blue. Side chains at neighboring positions are shown in salmon, if those

positions are SDPs, and in gray otherwise. Amino acid composition of the ortholog set is represented by sequence logo.

Packing interaction of TreR F102 with F127 and hydrogen bonding interaction of FruR D101 with R149 are highly specific.

CcpA Q101 and LacI R101 do not form specific interactions, although CcpA Q101 does participate in a single hydrogen

bond. Glutamic acid and asparagine, capable of making the same interaction, also occur among CcpA orthologs. LacI

R101 is exposed to solvent, and several other polar amino acids occur at the position. AscG H101 participates in two

different interactions. (E), top: hydrogen bonding with cis-monomer backbone (gray) and coordinated water molecule (red

dot). (E), bottom: hydrogen bond network with cis-monomeric N68, trans-monomeric E88 (light violet backbone), and

another coordinated water.

doi:10.1371/journal.pone.0162579.g007
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Discussion

In this work we demonstrated that a substantial fraction of positions in the LacI family are het-
erogeneously conserved—i.e. only a fraction of family members are highly conserved,while a
comparable fraction are highly degenerate. In order to accurately identify the specificity deter-
minants among positions with this conservation pattern, we implemented a scoring approach
in which we 1) boost SDP signal-to-noise ratio by considering only the specificity groups that
are conserved at a position and 2) modulate the score in a group-specificmanner—based on
each group’s degree of conservation. The paralog-specific collections of specificity determining
residues identified using our method cluster on their representative protein structures in con-
figurations that are consistent with our understanding of the functional specialization of those
proteins. Importantly, the modulation of the score appears consistent with the importance of
the corresponding residue, given its physical interactions. Our scoring method avoids spurious
SDP identification for family members in which a position is degenerate and detects “hidden”
SDPs used by a small fraction of family members.

In the course of our investigation, we encountered a conservation pattern that occurred at
positions ranked significantly lower by our method than by SDPPred, Speer, or even GroupSim,
which uses the same scoring function as our method. The pattern is characterized by conserva-
tion of a large fraction of specificity groups to the same amino acid, consistent with specializa-
tion of the common ancestor of those groups, followed by maintenance of the same functional
role through the more recent duplications that gave rise to present day specificity groups. For
example, at position 22, 15 of the 20 groups are conserved to arginine, while the remaining

Fig 8. SDP score distributions vs comprehensive alignment scores. Score distributions and the comprehensive alignment scores for specificity

groups with a score falling in the top 1% are plotted for positions 29, 81, and 110. Score distributions shown as box plots, with medians indicated by

white lines and means indicated by yellow dots. Boxes cover middle two quartiles of score distributions, while whiskers cover middle 95%.

Comprehensive alignment scores shown as red dots. These can fall below (position 29), above (position 81), or within (position 110) the middle two

quartiles of the ensemble distributions. Some ortholog sets (IdnR, RbsR-A, ScrR-A at position 29, LacI at position 81) can be substantially more

sensitive to alignment variability than other ortholog sets at the same position. This fact is reflected in their ensemble score (distribution average—

yellow dot), but not in the comprehensive alignment score.

doi:10.1371/journal.pone.0162579.g008
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groups are conserved to one of four other amino acids. While SDPPred and Speer do tolerate a
marginally greater amount of between-group agreement than the GroupSim scoring function,
their, and GroupSim’s ability to rank these positions higher than our method is a side-effect of
their failure to detect SDP signal at a number of positions identified by our method (Fig 3),
rather than a strength. In addition, they too fail to identify positions with conservation patterns
like that of positions 22 and 25 (S1 Fig) as SDPs.

Several SDP methods can simultaneously identify SDPs and optimal specificity groups [9,
12, 16, 22] by grouping sequences so that total SDP signal across all alignment columns is max-
imized. However, as S1 Fig illustrates, such columns often have mutually exclusive optimal
sequence groupings, which further conflict with many partial SDPs identified in this work.
These observations suggest that further development of SDP identificationmethods may be
required to identify SDPs with high between-group agreement.

In this work we also tackled the common challenge of MSA-based computational analyses
that arises from uncertainty of the alignment process due to both sensitivity to the input collec-
tion of sequences and to alignment error. This concern is particularly acute when analyzing
large collections of sequences, because overall alignment error increases rapidly with the num-
ber of aligned sequences.We avoided making large alignments, while still taking advantage of
all available sequence data, by building and analyzing ensembles of sub-sampled MSAs. Using
an ensemble average improves the robustness of any metric computed on a sequence alignment
and allows for the detection of regions in the alignment that may be especially prone to error.
We believe this robust approach can be generalized to any analysis that requires an MSA input.

Whether “specificity determining position” is a biologicallymeaningful designation remains
an open question. Highly targeted experiments are necessary to demonstrate this functional
role: for example, by demonstrating that substituting the amino acids at these positions with
the amino acids present at the homologous positions in a paralog is sufficient to switch the
functional specialization of the protein to that of the paralog. The partial SDPs identified in
this work, together with the ortholog sets in which these positions are conserved,will signifi-
cantly reduce the number of candidates for mutation that must be considered by experimental-
ists when investigating specialization in the LacI family.

Methods

Generation of MSA ensembles

We downloaded all protein sequences from the LacI family resource AlloRep [41] and supple-
mented each ortholog set with sequences from EnsemblBacteria release 26 [45]. A supplemen-
tal sequence was added to an ortholog set, if: 1) it had 35% or greater identity to each ortholog
in the set and 2) its lowest identity to any ortholog in the set was higher than its identity to any
other sequence in the pool. We then dropped from our analysis any ortholog set containing
fewer than 20 sequences in order to ensure adequate statistical coverage. The final sequence
pool contains 1814 sequences split among 20 ortholog sets ranging from 28 ortholog sequences
(IdnR) to 192 ortholog sequences (CcpA).

The subsamples of 200 sequences were sampled from each ortholog set according to its fre-
quency in the full sequence set. We required a minimum allocation of eight sequences to avoid
small number effects and limited the maximum to 13 sequences per ortholog set. This sampling
procedure was repeated 5000 times. Each 200 sequence sample was combined with a reference
sequence and the 201 sequences were aligned using MAFFT’s L-INS-i (most accurate) protocol
[46, 47]. In addition to the LacI reference sequence, AscG (P24242), FruR (W8ZE48), PurR
(X7PN48), and TreR (P36673) of Escherichia coli and CcpA (P25144) of Bacillus subtilis were
used as reference sequences.
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SDP scoring

Pairwise comparisons between sequence positions, comp(s1, s2), were made using the identity
matrix which had previously produced the most accurate results with both XDet [15] and
GroupSim [19] SDP identification methods. Conservationwithin a specificity group was
defined as the average of pairwise comparisons between all sequences in the group:

compðs1; s2Þh i
ðs1 ;s2Þ 8 s12group; 8 s22group j s1 6¼s2f g

ð3Þ

For an alignment column, group-wise conservationwas defined as the average of each group’s
conservation:

compðs1; s2Þh i
ðs1 ;s2Þ 8 s12group; 8 s22group j s1 6¼s2f g

D E

groups
ð4Þ

and between-group agreement was defined as the average pairwise sequence comparison
between sequences belonging to different groups, averaged over all pairs of groups:

compðs1; s2Þh i
ðs1 ;s2Þ 8 s12g1 ; 8 s22g2f g

D E

ðg1 ;g2Þ 8 g12groups; 8 g22groups j g1 6¼g2f g
ð5Þ

5000 alignments from the LacI ensemble were scored with SDPPred [8, 10], accessed via its
web interface at http://bioinf.fbb.msu.ru/SDPpred/, and Speer [17, 39], downloaded from ftp://
ftp.ncbi.nih.gov/pub/SPEER/ and run locally.

SDPPred produces a ranking of positions with statistically significant scores for every align-
ment. The number of ranked positions varies from alignment to alignment, and there is no
clear way to rank positions without statistically significant scores. For each position in the LacI
reference sequence we averaged its rank across all ensemble MSAs to generate an ensemble
score. All positions not ranked by SDPPred for a particularMSA received the next rank after
the last explicitly ranked position: e.g., if SDPPred ranked 20 positions, every unranked posi-
tion received rank 21 for averaging purposes. Because of this, ensemble scores for SDPPred are
not discriminatory beyond, roughly, rank 30.

Speer produces several scores, including a z-score based on the mean and variance of scores
for each position in an alignment. We averaged the z-scores of each LacI position over the
MSA ensemble to produce an ensemble Speer score.

Structural mapping of SDPs

We aligned representative protein structures for each reference sequence with MUSTANG
[48] to produce an independent structural alignment of the reference sequences. Structures
3dbi (AscG), 3oqo (CcpA), 2iks (FruR), 1jwl, 1tlf, 2pe5 (LacI), 1jft, 2pua (PurR), and 4xxh
(TreR) were aligned. Structures with multiple ligands were used for LacI and PurR. The DNA
binding subdomain and inter-domain linker segments were not included in any structures of
AscG, FruR, or TreR. In order to obtain a complete mapping, full reference sequences were
aligned to the structural alignment using MAFFT’s seeded alignment option.

Implementation

Group-specific scoring code is available at http://naegle.wustl.edu/software.

Supporting Information

S1 Fig. Amino acid content at SDPs with excess between-groupagreement.Amino acid con-
tent of each of 20 ortholog sets, represented by sequence logos, at positions with an SDP-like
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group-wise conservation pattern. Between-group agreement increases from left to right. Posi-
tion 18 receives high scores from SDPPred, Speer, and the group-specific scoring method. Posi-
tions 149 through 187 are detected, with progressively lower scores, by at least one of SDPPred
and Speer, but not by the group-specificmethod. Positions 25 and 22 are not detected by any
method.
(PDF)

S2 Fig. SDP complement of AscG. SDPs mapped onto structure 3brq and highlighted in
space-filling representation. Structure only contains N- and C-terminal regulatory subdo-
mains.
(PNG)

S3 Fig. SDP complement of FruR. SDPs mapped onto structure 2iks and highlighted in
space-filling representation. Structure only contains N- and C-terminal regulatory subdo-
mains.
(PNG)

S4 Fig. SDP complement of PurR. SDPs mapped onto structure 2puc and highlighted in
space-filling representation.
(PNG)

S5 Fig. SDP complement of TreR. SDPs mapped onto structure 4xxh and highlighted in
space-filling representation. Structure only contains N- and C-terminal regulatory subdo-
mains.
(PNG)
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