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Peptidyl-prolyl isomerization is an important post-translational modification of protein
because proline is the only amino acid that can stably exist as cis and trans,
while other amino acids are in the trans conformation in protein backbones. This
makes prolyl isomerization a unique mechanism for cells to control many cellular
processes. Isomerization is a rate-limiting process that requires a peptidyl-prolyl
cis/trans isomerase (PPIase) to overcome the energy barrier between cis and trans
isomeric forms. Pin1, a key PPIase in the cell, recognizes a phosphorylated Ser/Thr-
Pro motif to catalyze peptidyl-prolyl isomerization in proteins. The significance of the
phosphorylation-dependent Pin1 activity was recently highlighted for isomerization
of ATR (ataxia telangiectasia- and Rad3-related). ATR, a PIKK protein kinase, plays
a crucial role in DNA damage responses (DDR) by phosphorylating hundreds of
proteins. ATR can form cis or trans isomers in the cytoplasm depending on Pin1
which isomerizes cis-ATR to trans-ATR. Trans-ATR functions primarily in the nucleus.
The cis-ATR, containing an exposed BH3 domain, is anti-apoptotic at mitochondria
by binding to tBid, preventing activation of pro-apoptotic Bax. Given the roles of
apoptosis in many human diseases, particularly cancer, we propose that cytoplasmic
cis-ATR enables cells to evade apoptosis, thus addicting cancer cells to cis-ATR
formation for survival. But in normal DDR, a predominance of trans-ATR in the nucleus
coordinates with a minimal level of cytoplasmic cis-ATR to promote DNA repair while
preventing cell death; however, cells can die when DNA repair fails. Therefore, a
delicate balance/equilibrium of the levels of cis- and trans-ATR is required to ensure
the cellular homeostasis. In this review, we make a case that this anti-apoptotic role
of cis-ATR supports oncogenesis, while Pin1 that drives the formation of trans-ATR
suppresses tumor growth. We offer a potential, novel target that can be specifically
targeted in cancer cells, without killing normal cells, to significantly reduce the adverse
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effects usually seen in cancer treatment. We also raise important issues regarding
the roles of phosphorylation-dependent Pin1 isomerization of ATR in diseases and
propose areas of future studies that would shed more understanding on this important
cellular mechanism.

Keywords: cytoplasmic ATR, Pin1, antiapoptotic ATR, apoptosis, prolyl isomerization, cancer, cis and trans

PEPTIDYL-PROLYL ISOMERIZATION OF
PROTEINS AND Pin1

Individual proteins may perform multiple functions and
have evolved to evade unnecessary degradation. These
differing functions and survival skills involve posttranslational
modifications of proteins. Apart from protein function,
post-translational modifications (PTMs) of proteins also can
affect their sub-cellular location, stability and inter-molecular
interactions with other proteins (Gothel and Marahiel, 1999;
Lu and Zhou, 2007; Lu et al., 2007). Of the various types of
PTMs such as phosphorylation, ubiquitination, acetylation,
and so on, peptidyl isomerization of a protein is a unique
type of PTM (Tanford, 1968). Peptidyl isomerization is the
reversible transformation of a molecule between cis and
trans isomeric forms, such that the peptide or protein can
exist in two distinct geometric conformations, cis and trans
(Figure 1). This modification causes no change in the molecular
weight of the peptide or protein; hence, the inability to detect
this change by mass spectrometry; however, isomerization,
especially of a proline residue, alters the affected protein’s
structure. The biological significance of prolyl isomerization,
as compared to the other 19 non-proline amino acids, is
that all non-proline amino acids are naturally stable in trans
isomeric form whereas proline can be in either the cis or
the trans isoform at the amide bond of proline with the
preceding amino acid (Fischer and Schmid, 1990; Hinderaker
and Raines, 2003; Song et al., 2006; Craveur et al., 2013;
Figure 1). Thus, peptidyl isomerization of protein refers mostly
to peptidylprolyl isomerization.

Most amino acid residues within a folded protein are
thermodynamically more stable in the trans form (Stewart
et al., 1990; Schmidpeter and Schmid, 2015). However,
proline has the unique ability to exist as a cis or a
trans residue in a protein’s structural backbone as the side
chain of proline forms part of the backbone of protein

FIGURE 1 | Non-enzymatic proline isomerization within proteins is a slow,
rate-limiting process in the folding pathway.

(Fischer and Schmid, 1990; Hinderaker and Raines, 2003; Song
et al., 2006; Craveur et al., 2013). This potential to switch between
isomeric forms (Figure 1) via isomerization allows proline to
act as a molecular switch that affects the protein’s structure
and, hence, its physiological functions. The isomerization
naturally occurs slowly and is rate limiting in the protein
folding process. Hence, enzymes, such as peptidyl-prolyl cis/trans
isomerases (PPIases) are required to overcome existing high-
energy barriers between these protein isomers and to stabilize
the transition between cis/trans isoforms. Protein isomerization
is involved in many cellular processes such as apoptosis
(Follis et al., 2015; Hilton et al., 2015), mitosis (Lu et al., 1996;
Yaffe et al., 1997; Rippmann et al., 2000; Zhou et al., 2000;
Yang et al., 2014), cell signaling (Brazin et al., 2002; Sarkar
et al., 2007; Toko et al., 2013), ion channel gating (Antonelli
et al., 2016), amyloidogenesis (Eakin et al., 2006), DNA damage
repair (Steger et al., 2013), and neurodegeneration (Pastorino
et al., 2006; Grison et al., 2011; Nakamura et al., 2012;
Sorrentino et al., 2014).

Pin1 is a member in the parvulin family of peptidyl prolyl
isomerases (PPIases); it can catalyze proline isomerization only at
a phosphorylated Ser/Thr-Pro (pSer/pThr-Pro) motif (Lu et al.,
1996, 2007; Lu and Zhou, 2007). Structurally, Pin1 consists of
an N-terminal WW protein interaction domain which binds its
substrate at the pSer/pThr-Pro motif, a central flexible linker and
a C-terminal PPIase domain to catalyze proline isomerization
(Lu et al., 1996). Pin1’s activity, stability, subcellular location and
substrate binding can be regulated by its own PTMs, including
Serine 71 phosphorylation by DAPK1 (inactivates Pin1; Lee et al.,
2011; Hilton et al., 2015), ubiquitination (Eckerdt et al., 2005)
oxidation (Chen et al., 2015), and sumoylation (Chen et al.,
2013). Pin1 is involved in regulating multiple cellular processes
including cell cycle transit and division (Rippmann et al., 2000),
differentiation and senescence (Hsu et al., 2001; Toko et al., 2014)
and apoptosis (Pinton et al., 2007; Follis et al., 2015; Hilton
et al., 2015). To perform these cellular functions, Pin1 binds
to many substrates within the cell (Figure 2). These substrates
include proteins involved in cell cycle regulation (p53, cyclin E),
transcriptional regulation (E2F, Notch1), DNA damage responses
(DDR), and so forth (Lin et al., 2015; Chen et al., 2018). Pin1
expression and activity have been implicated in many diseases
from neurodegenerative disorders such as Alzheimer disease and
amyotrophic lateral sclerosis (Pastorino et al., 2006; Kesavapany
et al., 2007; Nakamura et al., 2012, 2013), autoimmune diseases
like systemic lupus erythematosus (Wei et al., 2016), to cancer
(Ayala et al., 2003; Ryo et al., 2003; He et al., 2007; Yeh and Means,
2007; Finn and Lu, 2008; Nakamura et al., 2013; Lu and Hunter,
2014; Lin et al., 2015; Zhou and Lu, 2016; Chen et al., 2018;
El Boustani et al., 2018; Nakatsu et al., 2019), etc. ATR (ataxia
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telangiectasia- and Rad3-related) protein, a master regulator and
phosphatidylinositol 3-kinase (PI3K-like) protein kinase in DDR
(Zou and Elledge, 2003; Cimprich and Cortez, 2008; Flynn and
Zou, 2011), was recently reported to be a substrate of Pin1
for prolyl isomerization (Hilton et al., 2015). Given that ATR
phosphorylates hundreds of proteins in response to DNA damage
(Matsuoka et al., 2007), isomerization of ATR by Pin1 represents
a new paradigm in understanding Pin1’s biological activities,
which is the focus of this article (Figures 2, 3).

POSTTRANSLATIONAL MODIFICATIONS
OF ATR FOR ITS RESPECTIVE NUCLEAR
AND CYTOPLASMIC FUNCTIONS

ATR is a key DDR protein kinase that the cell employs to
sense replicative stress and DNA damage. Following replication
arrest and formation of single-stranded DNA (ssDNA), RPA
coats the ssDNA and recruits ATR-ATRIP complex via ATRIP
(ATR interacting protein). ATRIP is the nuclear partner of
ATR and carries bound ATR along to the DNA damage
site, where ATR is autophosphorylated at its T1989 residue
(Cortez et al., 2001). This phosphorylated residue serves as a
docking site for TopBP1 to significantly enhance the activation
of ATR’s kinase activity (Burrows and Elledge, 2008; Mordes
et al., 2008; Liu et al., 2011). ATR in turn activates several
key downstream proteins, including p53 and other checkpoint
kinases such as Chk1, leading to an S-phase cell cycle arrest
for proper repair of the DNA damage or apoptosis in case
of excessive damage (Cortez et al., 2001; Zou and Elledge,
2003; Sancar et al., 2004; Mordes and Cortez, 2008; Ciccia and
Elledge, 2010; Nam and Cortez, 2011; Saldivar et al., 2017;
Ma et al., 2019).

Recently, ATR was found to function in the cytoplasm and was
described to play an important anti-apoptotic role directly at the
mitochondria, independent of nuclear ATR and its kinase activity
(Hilton et al., 2015). In contrast to nuclear ATR which always
remains in trans form in complexing with ATRIP, cytoplasmic
ATR in the absence of ATRIP exists in two forms, cis and trans,
the existence of which depends on changing just one peptide
bond orientation in ATR by prolyl isomerization. The balance
between cis and trans cytoplasmic forms is regulated by Pin1,
which catalyzes the conversion of cis-ATR to trans-ATR by
recognizing the phosphorylated Serine 428-Proline 429 residues
(pS428-P429) in the N-terminal region of ATR (Figure 3; Hilton
et al., 2015). The activity of Pin1 favors the formation of trans-
ATR, but inactivation of Pin1 by DAPK1 kinase upon DNA
damage promotes cis-ATR accumulation at the mitochondria as
cis-ATR appears to be naturally stable in cells. It is proposed that
unlike its trans isoform, cis-ATR has an exposed BH3-like domain
that allows it to bind to the pro-apoptotic tBid protein at the
mitochondria. This binding prevents tBid from activating Bax-
Bak polymerization which is necessary for the intrinsic apoptotic
pathway. Hence, cis-ATR performs an anti-apoptotic role that
allows the cells to survive long enough to repair its damaged
DNA (Figure 3). However, this can be a double-edged sword that
can play a role in carcinogenesis as discussed below. The newly

discovered BH3 domain, a hallmark of apoptotic proteins, in ATR
defines cis-ATR’s role in the apoptosis pathway (Figure 3).

PHOSPHORYLATION-DEPENDENT
ISOMERIZATION OF ATR BY Pin1

Pin1 has a high degree of phosphate specificity (Zhou et al., 1999;
Lu, 2000; Liou et al., 2011). Due to the numerous amounts of
phosphorylated substrates that Pin recognizes in the cell, Pin1
can be a potential target in treatment of many diseases (Ryo et al.,
2003; Kesavapany et al., 2007; Finn and Lu, 2008; Liou et al., 2011;
Lu and Hunter, 2014; Lin et al., 2015; Wei et al., 2015, 2016;
Campaner et al., 2017; Chen et al., 2018). Since Pin1’s activity on
ATR requires the phosphorylation at Ser428 of ATR, this could
serve as an important regulatory tool to influence the levels of
the ATR isomer. Thus, phosphorylation at Ser428 may play a
critical role in regulating ATR prolyl isomerization and, thus,
ATR’s anti-apoptotic activity at mitochondria.

Hilton et al. (2015) showed that when the serine 428 residue
in human ATR is mutated to alanine (S428A), Pin1 is unable
to recognize its motif to isomerize cis-ATR to trans-ATR; hence,
cytoplasmic S428A ATR exists primarily as the anti-apoptotic cis
isomer. In addition, when the proline 429 residue was mutated to
alanine, the P429A ATR in the cytoplasm was in the trans form.
This indicates that the type of ATR present in the cytoplasm can
be regulated by targeting this phosphorylation-dependent Pin1-
mediated isomerization of ATR (Figure 4). An accumulation of
cis-ATR at mitochondria confers a survival signal that allows
the cell to escape apoptosis even following DNA damage. The
evasion of cell death may allow mutations that have occurred
in these cells to be passed to daughter cells. Survival of an
increasing number of cells with accumulating mutations over
time can increase genomic instability and cause carcinogenesis.
The alternative scenario where trans-ATR is dominant in the
cytoplasm leads to an increase in free t-Bid since trans ATR is
unable to bind and sequester t-Bid, allowing the programmed cell
death that occurs when the cell is unable to repair DNA damage.
In support of this mechanism proposed by Hilton et al. (2015),
Lee et al. (2015) observed that a low expression of cytoplasmic
pATR (S428; which implies higher levels of cytoplasmic cis-ATR)
is associated with an advanced stage epithelial ovarian carcinoma
(EOC) with poor disease prognosis and treatment outcomes. In
contrast, no such correlations were found with nuclear pATR
(S428) levels, implicating that cytoplasmic cis-ATR levels are
uniquely important in the disease progression of EOC.

The level at Ser428 phosphorylation in ATR can be determined
by two important classes of proteins: protein kinases and
phosphatases. The former phosphorylates Ser428 while the latter
dephosphorylates this residue. The balance between the two
opposing activities is critical to controlling the cis/trans balance
of ATR isomers and, thus, the health of the cells. Identification of
the phosphatases which have activities at Ser428 is particularly
important to cancer treatment as dephosphorylation of this
residue leads to an increase of anti-apoptotic cis-ATR formation
(Hilton et al., 2015) and poor prognosis for cancer treatment
(Lee et al., 2015). Thus, the responsible phosphatase(s) would be
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FIGURE 2 | Pin1 participates extensively in multiple cellular processes involved in cancer. Pin1 has many cellular substrates that participate in the multi-step tumor
development processes. Pin1’s roles can be contradictory: pro- or anti-tumor. Pin1 inhibits formation of cis-ATR and deprives the cell of cis-ATR’s anti-apoptotic role
at the mitochondria, while promoting the formation of trans-ATR in the nucleus where it is important for repair of genotoxic stress to prevent mutations and maintain
genome stability. Modified from Chen et al. (2018).

FIGURE 3 | Graphical representation of the proposed mechanism by which
ATR plays a direct anti-apoptotic function at the mitochondria. UV damage
inactivates Pin1’s isomerization of ATR in the cytoplasm. Cis-ATR (ATR-H) then
accumulates and binds to and sequesters t-Bid at the outer mitochondria
membrane. Without tBid, Bax and Bak fail to polymerize, thus cis-ATR inhibits
cytochrome c release and apoptosis. Trans-ATR (ATR-L) is the dominant
isomer in the nucleus where it interacts with ATRIP, RPA and chromatin in the
DNA damage repair (DDR) response. PPs (protein phosphatases) can
dephosphorylate the Pin1 recognition motif and promote formation of cis-ATR
(to be published elsewhere). Modified from Hilton et al. (2015).

a reasonable target for inhibition to improve cancer treatment.
Indeed, we recently identified PP2A (Protein Phosphatase 2A)
as the protein phosphatase that dephosphorylates Ser428 in
the Pin1 recognition motif of cytoplasmic ATR. When PP2A
dephosphorylates this Ser428 residue, Pin1 can no longer
recognize its motif to isomerize cytoplasmic ATR from the
cis to the trans isoform (Figure 4). This key regulation was
found to increase the level of cis-ATR in the cytoplasm and
its accumulation at the mitochondria to bind tBid for its

FIGURE 4 | A brief summary of the mechanism by which the levels of
cytoplasmic cis- and trans-ATR isoforms are mediated by phosphorylation
and dephosphorylation before and after UV irradiation. The red X stands for
inhibition or inactivation of Pin1.

anti-apoptotic role (Figure 3). In addition, cells in which PP2A
was inhibited were found to be significantly more sensitive to
DNA damage agents. In contrast, a kinase that phosphorylates
cytoplasmic ATR at Ser428 in the Pin1 recognition motif will
cause an opposite effect; in the cytoplasm, there would be
a relative abundance of phosphorylated substrate for Pin1 to
perform its phosphorylation-dependent isomerization of cis-
ATR to the trans form. Since the trans form has no direct
anti-apoptotic benefit following DNA damage, the cells with
a predominance of cytoplasmic trans-ATR will succumb more
quickly to apoptosis. It is worth noting that UV irradiation
reduces the Ser428 phosphorylation level of ATR in the cytoplasm
(Hilton et al., 2015) while at the same time increasing the
phosphorylation level at the same S428 residue of ATR in the
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nucleus of cells. The former consistently leads to accumulation of
cis-ATR at mitochondria. The latter’s effect remains unknown as
the nuclear phosphorylation of ATR-Ser428 has no effect on ATR
checkpoint activation of Chk1 after UV damage (Liu et al., 2011).
In addition, while the mechanism of ATR isomerization is defined
with the cells treated with UV, Hilton et al. (2015) also show
that other types of DNA damage agents such as hydroxyurea and
camptothecin can induce formation of cis-ATR in the cytoplasm
though less efficiently. This suggests that the mechanism defined
by Hilton et al. (2015) may represent a universal pathway of ATR
isomerization in response to DNA damage. By simply regulating
a PTM event in the cytoplasmic ATR protein, i.e., addition or
removal of a phosphate group in the Pin1 motif of ATR, one
would be able to control how cells respond to a DNA damaging
event: survival or death as summarized in Figures 3, 4.

Cis-ATR’S ANTI-APOPTOTIC FUNCTION
MAY SUPPORT AN ONCOGENIC
PROCESS IN DIVIDING CELLS

Cancer is characterized with deregulated cell growth, where
there is an imbalance in the inherent cell cycle regulation to
check the rate and integrity of cell division and growth. In
addition, given that cis-ATR is antiapoptotic, we hypothesize
that cis-ATR may perform an oncogenic role, while Pin1
might be tumor suppressive in terms of ATR’s anti-apoptotic
activity at the mitochondria. If cis-ATR is the dominant
cytoplasmic form, it may block mitochondrial apoptosis and
allow damaged cells to survive and mutate, even when DNA
damage repair is insufficient and the abnormal cells are
supposed to die via apoptosis. This evasion of apoptosis is
an important hallmark of cancer cells that, over time, allows
them to accumulate the mutations that define genome instability
and, eventually, leads to carcinogenesis. However, if Pin1’s
action is increased and trans-ATR is the dominant form of
ATR in the cytoplasm, before mutations can be propagated,
programmed death will occur in those cells that are too
severely damaged for proper DNA repair. Thus, reduction of
cytosolic cis-ATR discourages accumulation of cells with DNA
damage that could be passed on to daughter cells and would
promote carcinogenesis.

This hypothesis is interesting in and of itself, but is
inconsistent with the existing literature which suggests other
roles of Pin1 in cancer development (Figure 2). The current
understanding stems primarily from observations that Pin1 is
overexpressed/has increased activity in most cancers and cancer
stem cells, with corresponding negative prognostic outcomes
(Ayala et al., 2003; He et al., 2007; Tan et al., 2010; Girardini
et al., 2011; Luo et al., 2014; Rustighi et al., 2014; Xu et al., 2016;
Nakatsu et al., 2019). Also, Pin1 upregulates many oncogenes,
while downregulating several tumor suppressor genes (Chen
et al., 2018). Pin1 overexpression or its over activation can
be inhibited by genetic approaches or chemically with juglone
(Hennig et al., 1998), all-trans retinoic acid (ATRA; Toledo
et al., 2011) or KPT-6566 (Campaner et al., 2017) and, when
tested, Pin1 inhibitors were able to suppress cancers (Estey et al.,

1997; Budd et al., 1998; Shen et al., 2004; Lu and Hunter,
2014; Wei et al., 2015; Zhou and Lu, 2016; Lian et al., 2018).
However, there are many challenges to chemically inhibiting
Pin1, especially with retinoids (e.g., ATRA), the most commonly
used clinical inhibitor. These include low drug bioavailability,
clinical relapse and retinoid resistance, etc. (Muindi et al.,
1992; Decensi et al., 2009; Arrieta et al., 2010; Moore and
Potter, 2013; Jain et al., 2014). In contrast, bioinformatic
analyses of human tumors (Kaplan–Meier Plots) reported in
the Human Protein Atlas (7,932 cases) found that low Pin1
RNA expression is largely associated with a lower survival
profile for most types (12 types) of cancer patients while high
expression correlates with a higher survival profile for three
types of cancer (Table 1). For two other types of cancer the
relationship of survival profile with Pin1 expression is non-
determined. Interestingly, two types of male-only cancer, prostate
and testis, are among the three types of minorities; these patients
had a higher survival profile with low versus high Pin1 RNA
expression. These results also are consistent with the 5-year
survival probabilities (Table 1). However, of all the 17 cancer
types analyzed, only in two types, renal and pancreatic, are
Pin1 expression prognostic: high Pin1 expression is favorable
for better prognosis as determined by Human Protein Atlas
(Table 1). This appears to contradict a recent report on the
prognostic value of Pin1 in cancer which analyzed the data from
20 published papers (2,474 patients) which concluded that Pin1
overexpression was significantly associated with advanced clinical
stage of cancer, lymph node metastasis and poor prognosis,
although no correlation with poor differentiation was found
(Khoei et al., 2019). Interestingly, it is known that over 50%
of cancers have mutations in p53, and Pin1 expression was
found to promote mutant p53-induced oncogenesis (Girardini
et al., 2011). Also, importantly, Pin1 isomerizes wild-type p53
in DDR and the wild type p53 functions are regulated by Pin1
(Wulf et al., 2002; Zacchi et al., 2002; Zheng et al., 2002). Thus,
p53 status may affect the relationship between Pin1 expression
and cancer as Pin1 appears to have different effects on cancer
cells with mutant and wild-type p53 (Mantovani et al., 2015). It
remains unknown if or how the p53 status would affect cancer
prognosis in correlation with Pin1 expression levels, which is
of great interest to determine. We propose that a wider role
for Pin1 and its regulator partners in carcinogenesis needs to
be considered and investigated further to provide better context
(Han et al., 2017).

While it is logical to target Pin1 or the many processes that
Pin1 regulates directly or indirectly via its substrates involved
in carcinogenesis (see Figure 2), we propose that it would be
significantly more effective to target the control of apoptosis,
a common pathway always deregulated in carcinogenesis with
uncontrolled proliferation. This is because apoptosis is the
ultimate terminator and always has the final say in determining
the fate, death or survival, of cells. This would tie in with
the emerging idea of oncogene addiction, where the so-called
“Achilles heel” of a cancer is used to deal a deathblow to
that cancer (Weinstein, 2002; Weinstein and Joe, 2006, 2008).
Oncogene addiction is one of the themes that has evolved
in the study of tumor progression. There are innumerable
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TABLE 1 | Pin1 RNA expression in caner patients analyzed by Kaplan-Meier Plot (Human Protein Atlas).

Cancer type Male/female
(n/n)

Max post-
diagnosis years

Pin1 expression

Survival probability 5-year survival (%)
Expression Prognosis

Low High Level status

Lower Higher expression expression cut-off P score (Prognosability)

Renal 591/286 16 Low High 64% 82% 9.65 0.000078 Yes

Pancreatic 96/80 7 Low High 7% 48% 8.72 0.00032 Yes

Glioma 99/54 7 Low High 5% (∗) 12% (∗) 15.74 0.022 No

Thyroid 135/366 15 Low High 91% 100% 9.19 0.031 No

Lung 596/398 20 Low High 40% 47% 6.16 0.029 No

Stomach 229/125 10 Low High 26% 50% 8.03 0.022 No

Breast 12/1063 23 Low High 81% 82% 7.16 0.25 No

Cervical 0/291 17 Low High 59% 74% 10.81 0.0061 No

Endometrial 0/541 19 Low High 70% 80% 8.61 0.044 No

Ovarian 0/373 15 Low High 27% 38% 13.22 0.0072 No

Urothelial 299/107 14 Low High 33% 43% 7.49 0.012 No

Head and Neck 366/133 17 Low High 39% 57% 8.75 0.0065 No

Melanoma 60/42 5 High Low 37% (∗) 0 (∗) 15.17 0.27 No

Prostate 494/0 14 High Low 100% 97% 11.77 0.094 No

Testis 134/0 20 High Low 100% 97% 8.63 0.26 No

Liver 246/119 10 Non-determined 53% 46% 5.4 0.190 No

Colorectal 322/275 12 Non-determined 63% 60% 8.76 0.065 No

Total Cases 3679/4253 Low:High=3:12 (∗): 3-year Survival

FIGURE 5 | An appropriate balance between cytoplasmic levels of cis- and trans- ATR is critical for the wellbeing of cells.

causes of cancer, hence the difficulties in identifying suitable
treatment targets for developing effective therapies. Research
has shown that oncogenes and tumor suppressor genes are
constantly undergoing mutations in the background of genetic
instability that can drive tumor progression. Oncogene addiction
attempts to simplify the essence of carcinogenesis to a single,
most important oncogenic protein that a tumor depends on
for its survival, while the counterpart normal protein has

little or no negative effects on normal cell survival. If this
oncogenic pathway is targeted and switched off, cancer cells
that are addicted to this pathway will be disproportionately
affected, sparing normal cells (Weinstein, 2002; Weinstein
and Joe, 2006, 2008). This is the ideal cancer treatment,
with a surgical precision in its action, leaving negligible
side effects that biomedical researchers have been working
toward for decades.
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POTENTIAL TARGETING OF ATR
ISOMERIZATION IN CANCER
THERAPIES
Prior to the elucidation of this anti-apoptotic role of cis-ATR
in the cytoplasm, a wealth of knowledge already existed about
the nuclear kinase roles of ATR which is a trans isomer and
several cancer therapies have taken advantage of this by targeting
the kinase function of ATR to promote cancer cell killing. ATR
inhibitors, in combination with chemo- and radio-therapy, have
been utilized in a synthetic lethality approach to sensitize cancer
cells for cell death with varied results (Wagner and Kaufmann,
2010; Toledo et al., 2011; Fokas et al., 2014; Karnitz and Zou,
2015; Lecona and Fernandez-Capetillo, 2018). Challenges to
this approach include: development of specific ATR inhibitors,
delivery of the ATR inhibitors to achieve useful physiological
concentrations in test subjects, and specificity in killing only
cancer cells and not normal cells. VX-970, AZD6738, and other
ATR inhibitors are in ongoing clinical trials, being used in
conjunction with chemo- or radio-therapy for breast (Kim et al.,
2017), ovarian (Huntoon et al., 2013), pancreatic (Prevo et al.,
2012), and small cell lung cancers (Vendetti et al., 2015). Pin1
inhibitors also are being evaluated for their usefulness in cancer
therapies (Zannini et al., 2019); however, it is possible that side
effects could be a concern for this targeting due to the number
and diversity of important Pin1 substrates in the cell.

It should be pointed out that the current ATR inhibitors used
in cancer clinical trials are specific inhibitors of ATR kinase
activity which is pivotal to the hallmark ATR’s DNA damage
checkpoint functions in the nucleus. Since the new anti-apoptotic
activity of cis-ATR at mitochondria is independent of ATR kinase
activity (Hilton et al., 2015), these inhibitors have no effect on cis-
ATR’s anti-apoptotic activity. Cis-ATR (ATR-H), potentially, can
be such a target protein that is novel and could be effective in
cancer treatment. Cis-ATR is not directly mutagenic, but it allows
cancer cells to evade apoptosis, a very important hallmark of
carcinogenesis. It is possible that cancerous cells, especially with
chemo- or radio-therapeutic challenge, have a proportionally
higher level of cytoplasmic cis-ATR and are resistant to killing
due to a low level of Pin1 or a lower level of the phosphorylation
of Ser428 in ATR than normal cells (Ibarra et al., 2017). In
support, a reduced level of pSer428 ATR in the cytoplasm of
advanced stage epithelial ovarian cancer cells correlates with a
poor prognosis (Lee et al., 2015). Therefore, targeting cis-ATR as
an adjuvant in treating cancers by irradiation or chemotherapy
should preferentially kill cis-ATR-addicted cancer cells, with
minimal effects on the normal functions of nuclear trans-ATR
in cells. ATR is an essential protein (Brown and Baltimore,
2000) and its cis and trans isomers function normally and exist
in a delicate balance to ensure cellular survival and normality
(Figure 5). By utilizing the natural balance that exists in normal
human cells between cis- and trans-ATR isoforms, we propose
cis-ATR as a novel, potential target in cancer treatment. Also,
cis-ATR might serve as a diagnostic marker of prognosis and
treatment efficacy in cancer management.

Given the critical role of Pin1 in maintaining the balance
between cis- and trans-ATR in the cytoplasm, manipulation

of Pin1 subcellular level or activity could be another means
to control cis-ATR formation for cancer therapeutics. Ibarra
et al. recently reported different subcellular distribution of Pin1
in different cell types in zebrafish in vivo, suggesting specific
mechanisms for regulating Pin1 subcellular activity are cell-
type dependent (Ibarra et al., 2017). These authors also found
dramatic reduction of Pin1 in the nucleus and high cytoplasmic
Pin1 levels in some cell types in vivo (Ibarra et al., 2017).
These findings could have important implications in terms of
cytoplasmic cis-ATR formation.

PROSPECTIVE

There are still important questions remaining to be answered
to validate the hypotheses put forward in this review,
including a better understanding of (1) how the Ser428
residue is phosphorylated or dephosphorylated under different
physiological and biological conditions. Phosphorylation status
plays a critical role in the regulation of ATR isomerization and,
thus, its antiapoptotic activities; (2) the structural differences
between the cis and trans isomers; and (3) their specific folding
for substrate recognition and binding. Are there specific
binding partners of cis- and trans-ATR in the cytoplasm and
nucleus, respectively, which help to energetically stabilize
ATR in their isoforms? If so, what are these proteins and how
are they regulated. Understanding the mechanisms of each
isomer’s formation and stabilization can help to define whether
cis-ATR fulfils the criteria to be termed an oncoprotein. It
also should be possible to develop drugs that can selectively
increase or reduce the specific ATR isoform that is needed
in the management of a disease, as elucidated earlier for
cancer, for example.

The quest for an ideal cancer therapy began when cancer
itself was described as a disease and many promising targets
have been investigated in the past with varying results.
Since a cancer cell starts as a normal cell that has become
deregulated, the ability to selectively target only cancer cells
by identification of proteins/processes unique to cancer cells
remains elusive for many cancer types and stages. Such targeting
should minimize adverse effects while obtaining an effective
treatment. As a further complication, the pathways that lead
to cancer are numerous and varied, with confounders like
immunoediting, persistence of cancer stem cells, etc. Here we
propose a target common to all cells: isomerization-mediated
apoptosis, but in such a specifically targeted way that normal
cells are spared. The isomerization of ATR by Pin1 is an
important biological process that should be studied further
since the existing evidence points to exciting possibilities for
drug/genetic regulation of this singular process. There would
be significant potential translational implications in disease
diagnosis and treatment.

Finally, the ability to induce or prevent apoptosis in
select groups of cells can be of importance in other
diseases such as ischemia and inflammation where
cell death is the major issue. Moreover, it is worth
investigating if cis-ATR plays a role in elongating the life of
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a cell in the context of aging since more cells would be able
to successfully evade apoptosis by increasing the mitochondrial
health of the cell.
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