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Abstract: Aging and osteoarthritis are associated with high risk of muscle mass loss, which leads to
physical disability; this loss can be effectively alleviated by diet (DI) and exercise (ET) interventions.
This study investigated the relative effects of different types of diet, exercise, and combined treatment
(DI + ET) on muscle mass and functional outcomes in individuals with obesity and lower-limb
osteoarthritis. A comprehensive search of online databases was performed to identify randomized
controlled trials (RCTs) examining the efficacy of DI, ET, and DI + ET in patients with obesity and
lower-extremity osteoarthritis. The included RCTs were analyzed through network meta-analysis
and risk-of-bias assessment. We finally included 34 RCTs with a median (range/total) Physiotherapy
Evidence Database score of 6.5 (4–8/10). DI plus resistance ET, resistance ET alone, and aerobic
ET alone were ranked as the most effective treatments for increasing muscle mass (standard mean
difference (SMD) = 1.40), muscle strength (SMD = 1.93), and walking speed (SMD = 0.46). Our
findings suggest that DI+ET is beneficial overall for muscle mass in overweight or obese adults with
lower-limb osteoarthritis, especially those who are undergoing weight management.

Keywords: osteoarthritis; sarcopenia; diet; exercise training; muscle mass; physical function

1. Introduction

Osteoarthritis (OA) or degenerative arthritis is the most prevalent musculoskeletal
disorder worldwide [1], with rapid increases in its prevalence after the sixth decade of
lifespan and with a strong impact on the health of the aging population [2]. OA commonly
affects knee and hip joints, and it impairs muscle morphology and function, leading to
physical disability [3–5], especially in individuals with obesity [6,7]. Observational studies
have indicated that older individuals with OA exhibited lower muscle mass or volume than
healthy controls [3,5,8,9], and having less muscle was further associated with lower muscle
strength and poor functional outcomes [10,11]. Recent studies have reported that OA was
associated with high risk of sarcopenia [12,13], an age-related condition characterized by
attenuated muscle mass [14,15].

Obesity and sarcopenia have become public health concerns in the older population,
and sarcopenic obesity might synergistically increase the risk of physical disability [16,17].
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Such compounding effects of sarcopenic obesity may affect OA [18] because obesity has
become epidemic in the OA population [19] and sarcopenic obesity is closely associated
with OA [20]. Because obesity exerts negative effects on physical function in obese indi-
viduals with OA [7,19,21] and a high percentage body fat (BF%) is significantly associated
with sarcopenia [22], people with overweight or obesity and knee or hip OA have a high
risk of physical disability due to sarcopenic obesity.

Among the nonpharmacological and nonsurgical treatments for OA, exercise ther-
apy and weight loss (for individuals with obesity) have been recommended as first-line
treatments [23]. According to well-established evidence, exercise interventions benefit
muscle mass and functional outcomes [24,25], and weight loss through an energy-restricted
diet improves pain and function in patients with OA [26–28]. In particular, successful
diet-induced weight loss for older adults with obesity may reduce both lean body mass
(LBM) and fat-free mass (FFM) [29–31], with 3.8% and 15–25% of weight loss as LBM [31]
and FFM [29], respectively; in addition, nearly 5% loss of leg lean mass may occur after
weight management for those with obesity and OA [31]. Accordingly, for patients with
OA who are at high risk of sarcopenia, muscle mass should be retained or even increased
as much as possible during a weight-loss intervention through increased protein intake
(e.g., high-protein diet or protein supplementation) and exercise [32,33]. However, the
optimal treatment combination remains unclear due to the variety of exercise training
modes for increasing muscle mass and strength [34] and the variety of dietary intervention
types for pain relief [35]. Given the high prevalence and increasing burden of OA [1,36],
identifying the optimal treatment strategy for preventing sarcopenia is relevant for OA,
especially for those who are overweight or obese.

Previous systemic review and meta-analysis studies have investigated the efficacy of
diet alone or diet in combination with exercise for patients with OA and obesity [26–28,30,37],
among which only two studies reported walk performance [26,27]; none of them focused on
muscle mass and strength outcomes. In addition, few studies have compared the relative
effects of combined treatments composed of different diet and exercise types. The purpose
of this study was to (1) identify the relative effects of diet, exercise, and combined treatment
on muscle mass, strength, and walking speed by using network meta-analysis (NMA) and
(2) identify the optimal treatment by ranking the probability of each intervention type for
people with overweight or obesity and knee or hip OA.

2. Materials and Methods
2.1. Design

The present NMA study was conducted in accordance with the guidelines of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses [38] and the ex-
tension statement for reporting of systematic reviews incorporating NMA [39,40]. The
study protocol was registered at PROSPERO (registration number: CRD42021198023). A
comprehensive search of online sources was performed on 12 May 2021 to identify eligible
randomized controlled trials (RCTs) examining the efficacy of diet, exercise, or combined
treatment for patients with OA who had overweight or obesity. Articles were obtained from
the following online databases: PubMed, EMBASE, the Physiotherapy Evidence Database
(PEDro), the ClinicalKey database, the Cochrane Library Database, the China Knowledge
Resource Integrated Database, and Google Scholar. Secondary sources included papers
cited in articles retrieved from the aforementioned sources. To minimize publication and
language biases, no limitation was imposed on the publication year or language. Two
authors (CDL and HCC) independently searched for relevant articles, screened them, and
extracted data. Any disagreement between the authors was resolved through consensus
reached in collaboration with the other team members (SFC and THL).

2.2. Search Strategy

The following keywords were used for participants’ conditions: (“older adult” OR
“elder individual”) AND (“overweight” OR “obesity”) AND “osteoarthritis”. The following
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keywords were used for the intervention: (“land exercise training” OR “water exercise
training”) OR (“diet intervention” OR “weight loss”). The detailed search formulas for
each database are presented in Table S1.

2.3. Criteria for Selecting Studies

Trials were included if they met the following criteria: (1) the study design was an
RCT or quasi-RCT; (2) the study enrolled participants who were aged ≥40 years, had body
mass index (BMI) ≥25 kg/m2, and had a symptom or radiographic diagnosis of primary
hip or knee OA. Participants were excluded if they had comorbidities such as rheumatic
arthritis, neurological diseases (e.g., stroke, spinal stenosis), and substantial abnormalities
in hematological, hepatic, or renal functions; (3) the treatment groups received diet therapy
alone, exercise alone, or their combination; (4) the control group received a comparative
intervention including placebo treatment alone or an intervention not related to diet
therapy or exercise, which was considered usual care (UC) in the present study; (5) the
diet therapy involved weight loss, dietary protein, or protein supplementation; (6) the
exercise involved any mode of muscle strength therapy including resistance exercise
training (RET), multicomponent exercise training (MET)—composed of two or more of
RET, aerobic exercise (AET), balance training, and physical activity training—and an
exercise intervention with physical therapies such as neuromuscular electric stimulation
(NMES) and blood flow restriction (BFR); (7) the study conducted an acute intervention
with a short period ranging from a few days to 12 weeks, a medium-term or a long-term
intervention with a treatment period of ≥6 months; and (8) the study reported outcome
measures including the primary and secondary outcomes defined below (in Section 2.4).

Studies were excluded if (1) the trial was conducted in vitro or in vivo in an animal
model or (2) the trial had a non-RCT design such as case report, case series, or prospectively
designed trial without a comparison group.

Study selection was initially performed by two authors (CDL and HCC) who inde-
pendently screened and identified potentially relevant articles based on title and abstract.
The full texts of all potentially eligible articles were examined to ensure they matched
the inclusion criteria. In cases of inconclusiveness, the disagreements were resolved by
discussions until consensus was obtained. A third author (THL) was consulted to discuss
eligibility if the disagreement persisted.

2.4. Outcome Measures

The primary outcomes of interest included measures of muscle mass, strength, and
walking speed, all of which are sarcopenia indicators recommended by the Asian Work-
ing Group for Sarcopenia [14] and the European Working Group on Sarcopenia in Older
People [15]. The muscle mass measures included, but were not limited to, LBM, FFM,
appendicular lean mass, muscle cross-sectional area, muscle volume, and muscle thickness.
If LBM or FFM was not available, BF% and body weight was used to estimate the percent-
age FFM. For muscle strength measures, muscle quality (i.e., ratio of muscle strength to
muscle mass) was prioritized [15]. Other strength measures were extracted on the basis
of the following sequence of preference: concentric/eccentric power and peak torque,
and maximum voluntary isometric contraction of knee extensors, knee flexors, and hip
abductors; bench press and hand grip strength of upper extremity. Walking speed was
assessed using gait and walking parameters (e.g., walking time).

2.5. Data Extraction

The following data were extracted from each included trial: (1) characteristics of the
study design and sample, including study arm, age, BMI, and sex distribution; (2) charac-
teristics of the exercise and diet interventions; (3) measurement time points; and (4) main
outcomes. One author (CDL) extracted the relevant data from included trials, and the sec-
ond author (HCC) checked the extracted data. Any disagreement between the two authors
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was resolved through the consensus procedure. A third author (THL) was consulted if the
disagreement persisted.

Treatment effects of varying intensities or bilateral legs were combined to obtain
a single treatment effect as recommended in the Cochrane Handbook [41]. The follow-
up duration was assessed and was defined as short-term (≤3 months), medium-term
(<3 months and ≤6 months), and long-term (>6 months) for subgroup analysis; when
multiple time points were reported within the same time frame, the longest period was
used for analysis (e.g., if the follow-up time points for walking speed measurement were 6
and 12 months, the data for the 12-month period were used as the long-term results). We
also examined the compliance for interventions as well as adverse events reported by the
included studies.

2.6. Assessment of Bias Risks and Methodological Quality of Included Studies

Quality was assessed using the PEDro quality score to determine the risk of bias. The
methodological quality of all the included studies was independently assessed by two
researchers in accordance with the PEDro classification scale, which is a valid measure of
the methodological quality of clinical trials [42]. In the PEDro scale, the following 10 items
are scored: random allocation, concealed allocation, similarity at baseline, subject blind-
ing, therapist blinding, assessor blinding, >85% follow-up for at least one key outcome,
intention-to-treat analysis, between-group statistical comparison of at least one key out-
come, and point and variability measures for at least one key outcome. Each item is scored
as either 1 for present or 0 for absent, and a total score ranging from 0 to 10 is obtained
through summation of the scores of all the 10 items. An interrater reliability generalized
kappa statistic value between 0.53 and 0.94 has been reported for the PEDro scale [43],
and an intraclass correlation coefficient of 0.91 (95% confidence interval (CI): 0.84–0.95)
associated with the cumulative PEDro score has been reported for nonpharmacological
studies [44]. In this study, on the basis of the PEDro score, the methodological quality of
the included RCTs was rated as high (≥7/10), medium (4–6/10), and low (≤3/10) [45].

2.7. Data Synthesis and Analysis

We separately computed effect sizes for each outcome measure in each intervention.
The effect size was defined as a pooled estimate of the mean difference in change scores
between any two study arms. Change scores (i.e., change from baseline) were analyzed to
partially correct between-participant variability [46]. Change scores were extracted when
the mean and standard deviation (SD) of the changes were available. If the exact variance
of the paired difference was not derivable, conservative estimation was performed by
assuming a within-participant correlation coefficient of 0.7, as recommended by Rosenthal
(1993) [47], between the baseline and posttest measured data. If the SD was not reported,
it was estimated using p-values or 95% CIs. If data were presented as the median and
interquartile range, the mean value was estimated using the median, and the SD was
calculated by dividing the interquartile range by 1.35 [46].

Because of the varied tools employed for measuring muscle mass, strength, and
walking speed among the included studies, the standard mean difference (SMD) with
95% CI was calculated for all the extracted outcome data to ensure sufficient comparability
of effect sizes. The odds ratio with 95% CI was estimated for dichotomous outcomes,
such as occurrence rate of adverse events. We categorized the magnitude of the SMD
using the following Cohen’s criteria [48]: trivial (d < 0.10), small (0.10 ≤ d < 0.25), medium
(0.25 ≤ d < 0.40), and large (d ≥ 0.40).

We conducted random-effects NMA within a frequentist framework by using sta-
tistical software R (version 4.0.4, The R Foundation for Statistical Computing, Vienna,
Austria) [49,50]. Direct and indirect comparisons of different diet and ET interventions
were performed using the netmeta package of R [51]. Tests of heterogeneity (within designs)
and inconsistency (between designs) were performed using the I2 statistic and Cochran
Q test. The magnitude of τ2 was calculated to estimate the variance across all treatment



Nutrients 2021, 13, 1992 5 of 23

comparisons. The design-by-treatment inconsistency model, loop-specific approach, and
node-splitting method were used to assess the inconsistency between the direct and indirect
comparisons [52,53]. A two-sided p-value of <0.05 was considered statistically significant.

For evaluation of relative efficacy, we calculated the ranking probabilities of each treat-
ment on the basis of effect sizes by using the frequentist treatment ranking method [54];
and a P-score which has been shown to be equivalent to the surface under the cumulative
ranking curve score within a Bayesian framework was expressed to represent the proba-
bilities for each treatment [54]. Network forest plots for treatment effects in comparison
with UC effects were produced to provide a visual representation of the uncertainty in
NMA [55].

Network meta-regression analyses were performed to assess the moderating effects of
age, BMI, sex distribution (i.e., proportion of female participants in the sample), treatment
duration, sample size, and methodological level (i.e., PEDro score) on the relative efficacy
of treatments.

Potential publication bias was investigated through visual inspection of a funnel
plot to explore possible reporting bias [56] and was assessed using Egger’s regression
asymmetry test [57].

3. Results
3.1. Trial Selection Flowchart

Figure 1 shows a flowchart of the trial selection process. Through an electronic
and manual literature search, we identified 966 articles. After excluding duplicates, we
reviewed the titles and abstracts of 248 studies to assess their eligibility; 91 were con-
sidered to be relevant for full-text assessment (Figure 1). The final sample consisted of
34 RCTs [58–91], which were derived from 28 trials and were published between 2000
and 2020. Two of the included RCTs [58,74] had a common study protocol [92], as did
another two RCTs [59,62], two RCTs [82,83], and three RCTs [75,76,91], which respectively
employed three trial protocols [76,93,94].

3.2. Study Characteristics

Table 1 summarizes the study characteristics of and patient demographic data from
the included RCTs. A total of 3563 participants were recruited, with a mean age of 64.7
(range: 41.4–71.6) years; the mean BMI was 33.1 (range: 26.4–41.4) kg/m2, and the average
proportion of female participants was 71.0% (range: 39.1–95.0%), which was estimated
by excluding eight sex-specific (women or men alone) RCTs [68,69,71,77,80,81,88,89]. All
included RCTs enrolled participants who had received a diagnosis of symptomatic or
radiographic knee OA, whereas four RCTs recruited individuals with a diagnosis of hip
OA [64,67,72,85].

In this study, 23 of the included RCTs had a two-arm design [61,64–69,73,75–78,80–87,89–91]
and the remaining 11 RCTs were multiarm studies, with a total of 21 treatment arms. Among all
participants, 711 (19.9%) received diet therapy alone, 1235 (34.7%) received exercise alone, 858
(24.1%) received combined treatment, and 759 (21.3%) received UC. Regarding the follow-up
duration for measuring outcomes, 23 RCTs [61,63–72,77,79–82,84–90] had a short-term follow-
up duration of≤12 weeks, whereas 12 RCTs [58,64,73–76,78,82,85–87,91] had a medium-term
follow-up duration ranging from 14 to 24 weeks, and six RCTs [58,69,70,74,82,83] had a long-
term follow-up duration ranging from 8 to 36 months.
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Figure 1. Flowchart of study selection.
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Table 1. Summary of the study characteristics of included trials.

Study
(Author, y, Ref.) Study Arm 1 Age (y) 2 BMI

(kg/m2)
Sex

(F/M) N Involved
Joint

Exercise Intervention Diet Intervention Measured
Time Point

(weeks)

Main
Outcome
Measure

Type
(COM%)

Frequency ×
Duration

Type
(COM%)

WL Target
(% or kg) 6

Diet intervention alone

Christensen, D 60.5 ± 11.6 36.3 ± 5.6 35/5 40 Knee None None MR None Baseline FFM
2005 [61] UC 64.6 ± 10.4 35.5 ± 4.6 36/4 40 (6 meals/d), Posttest: 8

DIA, CBT
−93.2

Christensen, D1, Regular MR 63.7 ± 6.5 32.6 ± 3.7 62/15 77 Knee None None MR None Baseline LBM
2017 [60] D2, Intermittent 63.9 ± 6.3 34.0 ± 5.3 65/11 76 (1–3 meals/d), Midtest: 52

MR DIA Posttest: 156
−71.2

López- D1, Uni-MR 60.9 ± 11.2 38.9 ± 5.1 35/17 52 Hip None None MR (1 or ↓ 5 kg Baseline FFM
Gómez, D2, Multi-MR 61.4 ± 11.0 40.2 ± 5.3 46/14 60 Knee 2 meals/d) Posttest: 12
2020 [67] (NR)

Exercise intervention alone

Gill, Water-based ET 69.2 ± 10.5 41.4 ± 3.9 28/14 42 Hip AQET, 2 d/wk × 6 wk None None Baseline GS
2009 [64] Land-based ET 71.6 ± 8.9 39.8 ± 13.1 23/17 40 Knee RET (12 sessions) Posttest: 7

(81.7–87.5) Follow-up: 15
Kuptniratsaikul, Water-based ET 62.1 ± 6.4 27.9 ± 1.5 38/2 40 Knee AQET 3 d/wk × 4 wk None None Baseline Qd strength

2019 [65] Land-based ET 61.7 ± 6.9 27.6 ± 1.7 37/3 40 IMET (12 sessions) Posttest: 4
(76–91.7)

Lim, Water-based ET 65.7 ± 8.9 27.9 ± 1.5 23/3 26 Knee AQET; 3 d/wk × 8 wk None None Baseline LBM
2010 [66] Land-based ET 67.7 ± 7.7 27.6 ± 1.7 21/4 25 RET; (24 sessions) Posttest: 8 FFM

Home-based ET 63.3 ± 5.3 27.7 ± 2.0 21/3 24 (NR) Qd strength
Mahmoud, ET 54.6 ± 8.6 35.0 ± 4.1 0/32 32 Knee IM-ET 3 d/wk × 12 wk None None Baseline MT

2017 [69] UC 3 53.2 ± 9.6 34.8 ± 4.2 0/12 12 (NR) (36 sessions) Posttest: 12 Qd strength
Mangani, AET 68.7 ± 5.6 5 33.3 ± 5.0 5 146/51 5 57 Knee AET 3 d/wk × 72 wk None None Baseline GS
2006 [70] RET 64 RET (216 sessions) Mid-test: 12, 36

UC 76 (50.5–81.4) Posttest: 72
Matsuse, NMES + ET 58.8 ± 11.8 37.5 ± 4.5 10/0 10 Knee AET 2 d/wk × 12 wk None None Baseline GS
2020 [71] ET 59.7 ± 6.1 36.1 ± 3.4 10/0 10 (NR) (24 sessions) Posttest: 12 Qd strength

Rabe, NMES 67.3 ± 8.5 27.5 ± 6.1 17/0 17 Knee RET 2 d/wk × 12 wk None None Baseline GS
2018 [77] ET 65.9 ± 9.4 27.5 ± 4.1 18/0 18 (NR) (24 sessions) Posttest: 12 Qd strength
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Table 1. Cont.

Study
(Author, y, Ref.) Study Arm 1 Age (y) 2 BMI

(kg/m2)
Sex

(F/M) N Involved
Joint

Exercise Intervention Diet Intervention Measured
Time Point

(weeks)

Main
Outcome
Measure

Type
(COM%)

Frequency ×
Duration

Type
(COM%)

WL Target
(% or kg) 6

Exercise intervention alone

Rosemffet, NMES + ET 62.4 ± 8.7 4,5 31.6 ± 5.3 4 20/6 5 8 Knee MET 3 d/wk × 8 wk None None Baseline Qd strength
2004 [79] NMES 34.2 ± 6.7 4 8 −70.3 (24 sessions) Posttest: 8

ET 29.1 ± 3.3 4 10

Segal, BFR-ET 58.4 ± 8.7 31.3 ± 5.3 0/19 19 Knee RET 3 d/wk × 4 wk None None Baseline Leg press
1-RM

2015a [80] ET 56.1 ± 7.7 30.4 ± 4.2 0/22 22 −100 (12 sessions) Posttest: 4
Segal, BFR-ET 56.1 ± 5.9 28.7 ± 4.4 19/0 19 Knee RET 3 d/wk × 4 wk None None Baseline Qd volume

2015b [81] ET 54.6 ± 6.9 32.5 ± 5.2 21/0 21 −97.2 (12 sessions) Posttest: 4 Leg press
1-RM

Swank, ET 63.1 ± 7.3 35.9 ± 8.5 24/12 36 Knee RET 3 d/wk × 4–8 wk None None Baseline Qd strength
2011 [84] UC 3 62.6 ± 7.6 32.9 ± 5.7 22/13 35 −90 (12–24 sessions) Posttest: 8

Tak, ET 67.4 ± 7.6 26.4 ± 3.0 29/16 45 Hip MET 7 d/wk × 8 wk None None Baseline GS
2005 [85] UC 3 68.9 ± 7.6 26.6 ± 4.3 35/14 49 −77 (56 sessions) Posttest: 8

Follow-up: 20
Talbot, ET 69.6 ± 6.7 31.0 ± 5.9 13/4 17 Knee AET 3 d/wk × 12 wk None None Baseline GS

2003a [86] UC 3 70.8 ± 4.7 32.6 ± 6.9 13/4 17 −76 (36 sessions) Posttest: 12 Qd strength
Follow-up: 24

Talbot, NMES 70.3 ± 5.6 29.5 ± 4.1 15/3 18 Knee IMET 3 d/wk × 12 wk None None Baseline GS
2003b [87] UC 3 70.8 ± 4.9 31.6 ± 5.9 4/12 16 −85 (36 sessions) Posttest: 12 Qd strength

Follow-up: 24
Wallis, ET 68.0 ± 8.0 34.0 ± 5.2 9/14 23 Knee AET 7 d/wk × 12 wk None None Baseline GS

2017 [90] UC 3 67.0 ± 7.0 34.0 ± 7.4 11/12 23 −70 (84 sessions) Posttest: 13

Combined treatments

Beavers, D + ET 65.5 ± 6.0 33.5 ± 3.7 108/43 151 Knee MET 3 d/wk × 72 wk MR ↓ ≥10% Baseline FFM 4

2015 [58] ET 65.5 ± 6.4 33.5 ± 3.7 108/42 150 (58–70) (216 sessions) (2 meals/d), Midtest: 24
D 65.8 ± 6.2 33.7 ± 3.8 105/44 149 DIA, CBT Posttest: 72

−63
Christensen, D + ET 62.9 ± 5.8 36.5 ± 4.4 52/12 64 MET 3 d/wk × 52 wk MR ↓ ≥10% Baseline LBM;

2013 [59]; D 63.0 ± 6.5 37.9 ± 5.3 52/12 64 −59.1 (156 sessions) (1 meal/d), Posttest: 52
2015 [62] UC 61.7 ± 6.8 37.6 ± 4.5 51/13 64 DIA, CBT

−61.5
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Table 1. Cont.

Study
(Author, y, Ref.) Study Arm 1 Age (y) 2 BMI

(kg/m2)
Sex

(F/M) N Involved
Joint

Exercise Intervention Diet Intervention Measured
Time Point

(weeks)

Main
Outcome
Measure

Type
(COM%)

Frequency ×
Duration

Type
(COM%)

WL Target
(% or kg) 6

Combined treatments

Ghroubi, D + ET 41.4 ± 3.9 37.5 ± 3.7 NR 12 Knee MET 3 d/wk × 8 wk MR NR Baseline LBM
2008 [63] ET 43.8 ± 13.1 37.1 ± 5.7 10 (NR) (24 sessions) (3 meals/d), Posttest: 8

D 41.5 ± 11.7 38.7 ± 6.1 12 (NR)
UC 3 42.4 ± 9.8 39.2 ± 3.7 11

Magrans- D + ET 54.0 ± 9.0 5 33.3 ± 5.0 5 14/0 14 Knee RET 3 d/wk × 14 wk DIA ↓ 3–5 kg Baseline FFM
Courtney, ET 16/0 16 (NR) (42 sessions) (NR) Midtest: 10 Bench-
2011 [68] Posttest: 14 press 1-RM
McLeod, D + ET 66.5 ± 4.8 33.7 ± 7.6 64/8 72 Hip MET 3 d/wk × 8 wk DIA, CBT ↓ 5% Baseline LBM
2020 [72] ET 67.2 ± 5.7 33.9 ± 7.3 73/10 83 Knee (NR) (24 sessions) (NR) Posttest: 8 FFM 4

Messier, D + ET 67.0 ± 4.0 35.0 ± 5.0 10/3 13 Knee MET 3 d/wk × 24 wk DIA, CBT ↓ ≥6.8 kg Baseline GS
2000 [73] ET 69.0 ± 5.0 38.0 ± 6.0 7/4 11 −94.7 (72 sessions) −82.6 Midtest: 12 Qd strength

Posttest: 24
Messier, D + ET 65.0 ± 6.0 33.6 ± 3.7 109/43 152 Knee MET 3 d/wk × 72 wk MR ↓ 10–15% Baseline LBM
2013 [74] ET 66.0 ± 6.0 33.5 ± 3.7 108/42 150 (54–70) (216 sessions) (2 meals/d), Midtest: 24

D 66.0 ± 6.0 33.7 ± 3.8 108/44 152 DIA, CBT Posttest: 72
(61.0–63.0)

Miller, D + ET 69.8 ± 8.2 34.9 ± 6.5 43/24 67 Knee MET 3 d/wk × 24 wk MR, ↓ 10% Baseline FFM
2006 [76] UC 3 69.5 ± 8.2 34.4 ± 5.7 38/29 67 (72–83) (72 sessions) (2 meals/d) Posttest: 24

DIA, CBT
−75

Miller, D + ET 69.3 ± 6.6 35.7 ± 6.6 14/12 26 Knee MET 3 d/wk × 24 wk MR ↓ 10% Baseline FFM
2012 [75] UC 3 69.3 ± 6.5 34.9 ± 4.0 13/12 25 −76.3 (72 sessions) (2 meals/d), Posttest: 24

DIA, CBT
−74

Robbins, D + ET 62.5 ± 7.4 34.6 ± 6.9 4 57/30 87 Knee MET 3 d/wk × 18 wk MR NR Baseline GS
2020 [78] UC 3 63.8 ± 7.3 36.3 ± 7.5 4 52/32 84 (89/73) (54 sessions) (2 meals/d), Midtest: 20 Qd strength

−94 Posttest: 32
Skou, D + ET 64.8 ± 8.7 30.6 ± 5.6 26/24 50 Knee MET 2 d/wk × 12 wk DIA ↓ ≥5% Baseline GS

2015 [82] UC 3 67.1 ± 9.1 29.4 ± 5.2 25/25 50 −65.8 (24 sessions) −67.5 Posttest: 12
Follow-up: 24,

52
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Table 1. Cont.

Study
(Author, y, Ref.) Study Arm 1 Age (y) 2 BMI

(kg/m2)
Sex

(F/M) N Involved
Joint

Exercise Intervention Diet Intervention Measured
Time Point

(weeks)

Main
Outcome
Measure

Type
(COM%)

Frequency ×
Duration

Type
(COM%)

WL Target
(% or kg) 6

Combined treatments

Skou, D + ET 65.9 ± 8.7 31.3 ± 5.7 56/44 100 Knee MET 2 d/wk × 12 wk DIA ↓ ≥5% Baseline GS
2018 [83] UC 3 67.1 ± 9.1 29.4 ± 5.2 25/25 50 (NR) (24 sessions) (NR) Posttest: 12

Follow-up: 24,
104

Toda, D + ET 56.5 ± 11.1 28.1 ± 1.1 11/0 11 Knee AET 7 d/wk × 8 wk MR NR Baseline LBM
2000 [89] UC 3 61.9 ± 5.5 28.8 ± 3.3 31/0 31 RET (56 sessions) (2 meals/d), Posttest: 8

(NR) (NR)
Toda, D + ET 63.2 ± 7.9 27.4 ± 3.1 4 63/0 63 Knee AET 7 d/wk × 8 wk MR NR Baseline LLM

2001 [88] ET 61.0 ± 11.7 26.6 ± 4.0 4 84/0 84 RET (56 sessions) (2 meals/d), Posttest: 8
D 60.1 ± 13.5 27.9 ± 4.7 4 29/0 29 (NR) (NR)

UC 3 63.1 ± 9.3 26.4 ± 4.1 4 52/0 52
Wang, D + ET 69.9 ± 5.7 35.0 ± 5.8 25/15 40 Knee MET 3 d/wk × 24 wk MR ↓ 10% Baseline LBM

2007 [91] UC 3 68.8 ± 5.7 34.7 ± 4.3 21/12 33 −77.5 (72 sessions) (2 meals/d), Posttest: 24 Qd strength
DIA, CBT
−75

1 All study arms are presented for each trial. 2 Values are presented as mean and SD (or range). 3 No diet intervention, and no muscle strength exercise training. 4 Data were estimated. 5 Values of all samples.
6 Values denote the weight loss target in terms of body weight reduction in % or kg. AET, aerobic exercise training; AQET, aquatic exercise training; BFR-ET, exercise training with blood flow restriction; BMI,
body mass index; CBT, cognitive behavioral therapy; COM, compliance; D, diet; DIA, diet instruction and advisement; ET, exercise training; FFM, fat-free mass; GS, gait speed; IMET, isometric exercise training;
LBM, lean body mass; LLM, leg lean mass; MET, multicomponent exercise training; MR, meal replacement; MT, muscle thickness; NC, nutrition class; NMES, neuromuscular electric stimulation; NR, not
reported; PLA, placebo; Qd; quadriceps muscle; Ref, reference number; RET, resistance exercise training; UC, usual care; WL, weight loss.
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3.3. Dietary Intervention Characteristics

The protocols for diet therapy are summarized in Table 1. Dietary interventions
employed intermittent meal replacement (MR) in one RCT [60] and regular MR in
14 RCTs [58–63,67,74–76,78,88,89,91]. The MR prescribed was one meal daily (uni-MR)
in four RCTs [59,60,62,67] and two or more meals daily (multi-MR) in 12
RCTs [58,60,61,63,67,74–76,78,88,89,91]. In addition, diet instruction and advisement (DIA),
which had been conducted through nutrition classes and cognitive behavior therapy,
was employed in five RCTs [68,72,73,82,83] or applied in combination with MR in nine
RCTs [58–62,74–76,91]. In summary, a total of five types of diet therapy for weight manage-
ment were included in the NMA: intermittent multi-MR with DIA (IMMR-DIA), regular
uni-MR (RUMR), RUMR combined with DIA (RUMR-DIA), regular multi-MR (RMMR),
and RMMR combined with DIA (RMMR-DIA).

3.4. Exercise Training Protocol

A summary of protocols for exercise is presented in Table 1. Regarding the train-
ing mode of exercise, seven types of exercise were identified; AET was used in six
RCTs [70,71,86,88–90] and RET in 10 RCTs [64,66,68,70,77,80,81,84,88,89], aquatic exer-
cise (AQET) in three RCTs [64–66], isometric exercise in three RCTs [65,66,69], MET in 13
RCTs [58,59,62,63,72–76,78,79,85,91], NMES in four RCTs [71,77,79,87], and RET with BFR
in two RCTs [80,81]. Moreover, 23 RCTs [58,59,62–66,68–71,73,74,77,79–81,84–88,90] em-
ployed exercise alone, whereas 14 RCTs incorporated exercise with dietary
interventions [58,63,68,72–76,78,82,83,88,89,91]. Regarding the treatment duration, 19
RCTs [63–66,69,71,72,77,79–89] conducted a short intervention lasting 4–12 weeks
(12–56 sessions), whereas eight RCTs [68,70,73,75,76,78,90,91] had a medium-term exer-
cise duration of 14–24 weeks (42–72 sessions); in addition, five RCTs [58,59,62,70,74] had a
long-term training period of 52–72 weeks (156–216 sessions).

3.5. Risk of Bias in Included Studies

The individual PEDro scores are listed in Table S2. Overall, methodological quality as-
sessment revealed that half of the included RCTs [59,60,62,64–66,68,69,74,78,80–83,85,88,90] had
high methodological quality and the other 17 RCTs [58,61,63,67,70–73,75–77,79,84,86,87,89,91]
were ranked as medium, with a median PEDro score of 6.5/10 (range: 4/10 to 8/10). The inter-
rater reliability of the cumulative PEDro scores was acceptable, with an intraclass correlation
coefficient of 0.97 (95% CI: 0.93–0.98). All the 34 included RCTs employed random allocation,
similarity at baseline, between-group comparisons, and point estimates and variability. More-
over, 11 of the 17 (64.7%) high-quality RCTs [59,60,62,64,65,78,80–83,90] performed allocation
concealment, whereas only 1 medium-quality RCT did [71]. Owing to the intervention nature,
it was difficult to blind the participants and therapists in all the included RCTs. However,
assessor blinding was performed by all the high-quality RCTs, as well as five medium-quality
RCTs [58,70,71,73,77].

3.6. Effectiveness of Treatment for Muscle Mass Assessed in NMA

Figure 2 presents the network of eligible comparisons for the treatment options for
patients with overweight or obesity and OA. The effects of each treatment relative to UC
on muscle mass, muscle strength, and walking speed at each follow-up time point are
shown in Figures 3–5, respectively, and the details of each comparison are presented in
Figures S1–S3. The supplementary league tables, Tables S3–S5, present direct comparisons
from the pairwise meta-analysis and NMA results and the relative efficacy of different
treatments in comparison with UC.
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Figure 2. Network plot of direct comparisons for different treatments for (A) muscle mass, (B) muscle strength, and
(C) walking speed. The lines between nodes represent direct comparisons in various studies; the thickness of each line
is proportional to the number of studies denoted on the line and indicates the connection between studies in terms
of comparisons. The size of each node is proportional to the sample size of the participants involved in each specific
treatment. AET, aerobic exercise training; AQET, aquatic exercise training; BFR, blood flow restriction; DIA, diet instruction
and advisement; IMET, isometric exercise training; IMMR, intermittent multimeal replacement; MET, multicomponent
exercise training; NMES, neuromuscular electric stimulation; RET, resistance exercise training; RMMR, regular multimeal
replacement; RUMR, regular unimeal replacement; UC, usual care.

Figure 3. Forest plot summarizing the effects of diet, exercise intervention, and combined treatment on changes in muscle
mass in at each follow-up time point. Each point estimate (square) in each time frame and during the overall duration
presents the network combined effect (SMD) on the muscle mass relative to UC, with the 95% CI (horizontal line). The
results plotted on the right-hand side indicate effects favoring the treatment approach. The blue−colored point denotes
the highest rank of probability, reflecting that the treatment approach is the optimal intervention among all treatments
in each time frame. 95% CI, 95% confidence interval; AET, aerobic exercise training; AQET, aquatic exercise training;
BFR, blood flow restriction; DIA, diet instruction and advisement; IMET, isometric exercise training; IMMR, intermittent
multimeal replacement; MET, multicomponent exercise training; RET, resistance exercise training; RMMR, regular multimeal
replacement; RUMR, regular unimeal replacement; Std, standard; UC, usual care.
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Figure 4. Forest plot summarizing the effects of diet, exercise intervention, and combined treatment on changes in muscle
strength in each follow-up duration. Each point estimate (square) in each time frame and during the overall duration
presents the network combined effect (SMD) on the muscle strength relative to UC, with the 95% CI (horizontal line). The
results plotted on the right-hand side indicate effects favoring the treatment approach. The blue–colored point denotes the
highest rank of probability, reflecting that the treatment approach is the optimal intervention among all treatments in each
time frame. 95% CI, 95% confidence interval; AET, aerobic exercise training; DIA, diet instruction and advisement; MET,
multicomponent exercise training; RET, resistance exercise training; RMMR, regular multimeal replacement; RUMR, regular
unimeal replacement; Std, standard; UC, usual care.

Figure 5. Forest plot summarizing the effects of diet, exercise intervention, and combined treatment on changes in walking
speed in each follow-up duration. Each point estimate (square) in each time frame and during the overall duration presents
the network combined effect (SMD) on the walking speed relative to UC, with the 95% CI (horizontal line). The results
plotted on the right-hand side indicate effects favoring the treatment approach. The blue-colored point denotes the highest
rank of probability, reflecting that the treatment approach is the optimal intervention among all treatments in each time
frame. 95% CI, 95% confidence interval; AET, aerobic exercise training; AQET, aquatic exercise training; DIA, diet instruction
and advisement; IMET, isometric exercise training; MET, multicomponent exercise training; NMES, neuromuscular electric
stimulation; RET, resistance exercise training; RMMR, regular multimeal replacement; RUMR, regular unimeal replacement;
Std, standard; UC, usual care.

3.6.1. Pairwise Meta-Analysis

Direct comparisons of pairwise meta-analyses (Table S3) indicated that IMET (SMD = 1.13,
95% CI: 0.27–1.98) and regular IMMR-DIA (SMD = 1.02, 95% CI: 0.35–1.69) were more ef-
ficacious than UC for increasing muscle mass, as were the combined treatments regular
IMMR-DIA plus MET (SMD = 1.16, 95% CI: 0.75–1.58) and regular multi-MR plus either
RET (SMD = 1.26, 95% CI: 0.59–1.92) or AET (SMD = 1.17, 95% CI: 0.47–1.86). In addition,
the combined treatment of regular multi-MR plus RET produced greater changes in muscle
mass than regular multi-MR alone (SMD = 0.76, 95% CI: 0.19–1.33) or RET alone (SMD = 0.64,
95% CI: 0.01–1.29).
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3.6.2. Global Effects in NMA

The NMA results showed that in comparison with UC, the diet interventions RMMR-
DIA (SMD = 0.79) and RMMR (SMD = 0.51) produced greater changes in muscle mass—as
did the exercise interventions AQET (SMD = 1.04), RET with BFR (SMD = 1.00), IMET
(SMD = 0.79), RET (SMD = 0.63), and MET (SMD = 0.43)—during the overall follow-up
duration (Figure 3 and Figure S1). In addition, the combined effects of RMMR plus RET
(SMD = 1.40), RMMR-DIA plus MET (SMD = 0.99), RMMR plus AET (SMD = 0.93), and DIA
plus MET (SMD = 0.69) on muscle mass gain relative to UC appeared to be stronger than
the effect of diet intervention alone or exercise alone. Pooling all treatment effects in NMA,
RMMR plus RET was ranked as the most effective (P score = 0.95) among all treatment arms
for muscle mass gain—followed by regular IMMR-DIA plus MET (P score = 0.78), AQET
(P score = 0.77), and RET with BFR (P score = 0.73)—during the overall follow-up duration
(Figure 3 and Figure S1). The global heterogeneity of the NMA model for muscle mass was
significant (τ2 = 0.06, I2 = 56.7%, p = 0.005). The node splitting results for inconsistency of
NMA revealed no inconsistencies between direct and indirect evidence; the same results
were detected through visual inspection of the forest plot (Figure S4).

3.6.3. Subgroup Analysis of Follow-Up Duration

The combined treatment RMMR plus RET was ranked as the optimal treatment for
muscle mass (SMD = 1.44, 95% CI: 0.57–2.31, P score = 0.88) over the short-term follow-up
duration, whereas RMMR-DIA plus MET (SMD = 0.50, 95% CI: 0.11–0.90, P score = 0.97)
was ranked highest over the long-term follow-up (Figure 3 and Figure S1); only a sin-
gle comparison was conducted in NMA over medium-term follow-up, and the results
showed that RMMR-DIA plus MET exerted a significant effect on muscle mass (SMD = 1.16,
95% CI: 0.86–1.47).

3.7. Effectiveness of Treatment for Muscle Strength
3.7.1. Pairwise Meta-Analysis

Direct comparisons of pairwise meta-analyses (Table S4) indicated that AET (SMD = 0.51,
95% CI: 0.10–0.91) and MET (SMD = 0.42, 95% CI: 0.20–0.65) were more efficacious than UC
for muscle strength, as was DIA plus MET (SMD = 0.52, 95% CI: 0.26–0.77). In addition,
the combined treatment RMMR-DIA plus MET yielded greater changes in walking speed
than RMMR-DIA alone (SMD = 1.64, 95% CI: 1.29–1.99) or MET alone (SMD = 0.55, 95% CI:
0.22–0.87); similar results were observed for the comparison between DIA plus MET and
DIA alone (SMD = 0.68, 95% CI: 0.26–1.11).

3.7.2. Global Effects of NMA

The NMA results showed that during the overall follow-up duration, the exercise
interventions RET (SMD = 1.93), RET with BFR (SMD = 2.03), and NMES (SMD = 1.18)
exerted significant effects on strength gain relative to UC, whereas the diet intervention and
combined treatment did not (Figure 4 and Figure S2). RET was ranked as the most effective
(P score = 0.82) among all treatment arms for muscle strength—followed by RET with
BFR (P score = 0.81), NMES plus MET (SMD = 1.27, P score = 0.61), and AET (SMD = 1.23,
P score = 0.60)—during the overall follow-up duration (Figure 4 and Figure S2). The global
heterogeneity of the NMA model for muscle strength was significant (τ2 = 0.16, I2 = 74.2%,
p < 0.0001). The node splitting results for inconsistency of NMA showed no inconsistencies
between direct and indirect evidence; the same results were detected through visual
inspection of the forest plot (Figure S5).

3.7.3. Subgroup Analysis of Follow-Up Duration

RET plus BFR and NMES ranked the highest in terms of short-term (SMD = 2.06,
95% CI: 0.28–3.84, P score = 0.79) and medium-term (SMD = 0.71, 95% CI: 0.01–1.41,
P score = 0.79) treatment efficacy, respectively, for muscle strength (Figure 4 and Figure
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S2); only one RCT [78] reported the long-term treatment effects of RMMR plus MET
(SMD = 0.15, 95% CI: −0.17 to 0.46).

3.8. Effectiveness of Treatment for Walking Speed
3.8.1. Pairwise Meta-Analysis

Direct comparisons of pairwise meta-analyses (Table S5) indicated that AET (SMD = 0.47,
95% CI: 0.15–0.80) was more efficacious than UC for the walking speed, as well as the com-
bined treatment DIA plus MET (SMD = 0.36, 95% CI: 0.02–0.69) did. In addition, the
combined treatment DIA plus MET yielded greater changes in walking speed than MET
alone (SMD = 1.12, 95% CI: 0.21–2.03).

3.8.2. Global Effects of NMA

The NMA results revealed that during the overall follow-up duration, AET alone
(SMD = 0.46) and DIA plus MET (SMD = 0.45) achieved greater changes in walking speed
in comparison with UC (Figure 5 and Figure S3). In addition, during the overall follow-
up duration, AET was ranked as the most effective (P score = 0.77) among all treatment
arms regarding the effect on walking speed, followed by DIA plus MET (P score = 0.75),
NMES plus AET (SMD = 0.46, P score = 0.66), and AQET (SMD = 0.28, P score = 0.55;
Figure 5 and Figure S3). The global heterogeneity of the NMA model for muscle strength
was insignificant (τ2 = 0.02, I2 = 20.1%, p = 0.28). The node splitting results for inconsistency
of NMA showed no inconsistencies between direct and indirect evidence; the same result
was detected through visual inspection of the forest plot (Figure S6).

3.8.3. Subgroup Analysis of Follow-Up Duration

For walking speed, AET alone was discovered to be the optimal treatment in the
short-term (SMD = 0.52, 95% CI: 0.25–0.80, P score = 0.87), medium-term (SMD = 0.55,
95% CI: 0.05–1.05, P score = 0.82), and long-term (SMD = 0.51, 95% CI: 0.16–0.86, P score = 0.92)
follow-up durations, respectively (Figure 5 and Figure S3).

3.9. Network Meta-Regression Results for Moderators of Treatment Efficacy

The results of network meta-regression analyses are shown in Supplementary Table
S6. No moderator was identified to have an influence on the treatment efficacy regarding
muscle mass, strength gains, and walking speed.

3.10. Side Effects and Compliance

No serious adverse events, side effects, or severe complications were reported after diet ther-
apy, exercise intervention, or combined treatment in all of the included RCTs. Nonserious adverse
events related to exercise intervention were observed by nine RCTs [59,62,65,66,71,74,78,82,90],
among which most commonly conditions were training-induced knee pain or muscle soreness
of short duration (Table S7). Three RCTs [60,61,78] reported adverse events related to the diet
therapy which included food intolerances and mild gastrointestinal reactions (Table S7). In addi-
tion, among the 16 RCTs [59–62,64–66,71,74–78,82,90,91] which had information about adverse
events, seven [59,62,74–76,82,91] and five [64,75–77,91] reported no any adverse event occurred
during (or after) diet therapy and exercise intervention, respectively.

The rate of compliance with the exercise interventions was 50.5–100% among the
included RCTs that reported the adherence to exercise protocols or attendance rate of
exercise sessions (Table 1) [58,59,62,65,70,73–76,78,80–82,84,86,87,91,95,96]. The rate of
compliance with diet therapy was 61.0–94.7% in 13 RCTs [58–62,73–76,78,82,91,95].

3.11. Publication Bias

Visual inspection of the funnel plot of publication bias across the included RCTs for
each primary outcome revealed no substantial asymmetry (Figure S7). Egger’s test results
for muscle mass also did not indicate any obvious reporting bias among the RCTs included
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in the NMA (p = 0.24; Figure S7A), nor did those for muscle strength (p = 0.42; Figure S7B)
or walking speed (p = 0.39; Figure S7C).

4. Discussion

The primary goal of this study was to identify the relative efficacy of different diet
therapies, exercise interventions, and combined treatments for muscle mass, strength,
and functional outcomes in individuals with obesity and OA. The NMA results in the
present study showed that (1) diet therapy alone (particularly RMMR) and exercise therapy
alone had significant effects on muscle mass relative to UC, whereas combined treatment
had additional treatment efficacy, irrespective of the specific intervention and follow-up
duration; (2) in comparison with UC, exercise therapy alone and combined treatment
exerted favorable effects on muscle strength and walking speed, respectively; (3) based
on the cumulative ranking results, RMMR plus RET, RET alone, and AET alone were
the optimal treatment strategy for muscle mass gain, strength gain, and walking speed
recovery, respectively.

The present NMA can be considered clinically useful specifically because of the vast
number of available treatment strategies and compositions for overweight or obese people
who have lower-extremity OA. In the conservative pairwise meta-analysis coupling with
multiple independent head-to-head trials, it is difficult to determine which treatment is
the most efficacious [97]. By contrast, NMA provides consistent estimates of the relative
treatment effects compared with each other using both direct (i.e., conservative pairwise
meta-analysis) and indirect evidence without double counting the participants [98]. In
addition, with a specific treatment such as RMMR plus MET, the inclusion of active
comparators (i.e., RMMR alone or MET alone) is important as it encourages optimal clinical
decision among different treatment options by clinicians for overweight or obese patients
with OA. Even in the absence of head-to-head RCTs, this NMA provides clinicians with the
bottom-line knowledge regarding the best available evidence on the comparative efficacy
among different diet, exercise, and combined treatments for overweight or obese people
with OA, especially those who are undergoing weight management.

In the present study, combined treatment incorporating RMMR and RET was overall
ranked as the most effective treatment for muscle mass gain for a number of possible
reasons. First, weight management may synergically cause decreases in absolute lean
mass as well as total body weight and fat mass in older individuals with obesity and
OA [31]. However, the negative effects of diet-induced weight loss on muscle mass may
be overestimated when using changes in absolute LBM or FFM. In this NMA, the ratio of
muscle mass to total body weight in terms of percentage FFM or LBM was used to estimate
the effect size of each treatment, and the NMA results showed that diet intervention alone,
particularly RMMR and RMMR-DIA, exerted positive effects on muscle mass gain relative
to UC. Our findings indicate that the efficacy of diet therapy for muscle mass can be
objectively estimated using percentage LBM or FFM rather than absolute values. Second,
previous systemic review studies have indicated that muscle strength training, especially
RET, augments muscle mass gain in older people with sarcopenia [99,100], individuals
with obesity and OA [101], and older adults with OA [24]. The muscle mass gain caused
by exercise may be beneficial for older adults with obesity who are undergoing weight
management [31,102]. The previous results support our findings that RET plus RMMR
for dietary weight management exerts superior effects on muscle mass relative to RMMR
or RET alone. Our findings also indicate that muscle mass can be effectively maintained
or muscle mass loss can be prevented by the adjunct therapy of RET in individuals with
obesity and OA who are undergoing a dietary weight loss intervention. Finally, a previous
NMA indicated that RET and MET are equally ranked as optimal exercise therapies for
muscle mass gain in adults with obesity [101], which supports the present study finding
that RET and MET combined with diet therapy were ranked as the first two optimal
treatments for individuals with obesity and knee or hip OA. We further identified that
PMMR plus RET had the highest efficacy for muscle mass gain over a short-term follow-up,
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and PMMR-DIA plus MET had the strongest long-term effect on muscle mass and walking
speed outcomes.

The present NMA demonstrated that RET alone and RET with BFR were overall the
two optimal treatments for muscle strength gain in people with obesity and OA; in addition,
over the medium-term follow-up, NMES and AET had higher effects on muscle strength
gain than combined treatment did. In OA, muscle weakness has been associated with low
muscle mass [103]. Based on the facts that reduction in fat mass is accompanied by loss
of absolute FFM caused by weight loss [29–31] and that decreased muscle mass is more
sensitive for detecting muscle strength loss than fat mass reduction in individuals with
OA [9], an exercise intervention employed as monotherapy may achieve more positive
effects on muscle strength gain than dietary therapy alone, supporting the results in the
current NMA.

In this NMA, a series of meta-regression analyses were performed to identify the
factors affecting treatment efficacy, and we found no significant moderation effects of age,
BMI, gender, sample size, and methodological level (i.e., PEDro score). However, substan-
tial moderating effects of some factors were noted. First, substantially but insignificantly
minor treatment effects were exerted on muscle strength and walking speed in participants
of an older age. In addition, a similar association was observed between age and muscle
mass gain, although the finding was nonsignificant (Table S6). Previous studies have
indicated that age-related changes in muscle mass are associated with a decline in strength
and walking speed [104,105]. Conversely, intervention-induced increases in muscle mass
may improve the strength and walking ability of older people who have sarcopenia and
frailty risks [106]. The previous results may explain the parallel associations between age
and muscle mass change and between age and strength and walking speed that were
discovered in this NMA. Second, compared with male sex, female sex may be associated
with poorer walking speed outcomes after interventions in such patients with obesity and
OA. Results in this NMA were in line with a previous systemic review which found such a
sex-specific difference in physical mobility after a diet plus exercise intervention in older
individuals with OA [107]. Our findings further indicate that sex mediates the relative
treatment efficacy among different diet therapies, exercise interventions, and combined
treatments for physical mobility, which may be explained by the sex-specific muscle adap-
tations in response to diet and exercise interventions for the older population [108–110]
and those with OA [24,111].

The findings of the present NMA should be interpreted on the basis of the follow-
ing limitations. First, given the variation in dietary prescriptions and instructions (e.g.,
contents of MR and prescribed amounts, nutritional classes, and cognitive behavior ther-
apy) and exercise protocols (training mode, duration, and volume), making a definite
conclusion regarding the effect of specific types of treatment on muscle mass or strength
gains was difficult. Second, some of our included trials had small group samples of
fewer than 20 participants [63,68,69,71,73,77,79,86–88,96]; these studies found nonsignifi-
cant treatment effects on primary outcomes, which may have contributed negatively to
the overall effect size. Third, because of the small number of RCTs with multiple exercise
intensities (e.g., low and high intensities of RET), we combined the treatment effects of
different exercise intensities within an exercise class, and the results should therefore be
interpreted with caution. Fourth, the estimates for treatment arms—including IMMR,
RUMR, AQET, NMES, RET with BFR, DIA plus RET, and DIA plus MET—were subject to
considerable uncertainty with wide credibility intervals because the number of relevant
RCTs was small. Finally, inadequate statistical power to detect inconsistency was noted
owing to the small number of study arms relative to the number of treatment comparisons,
although inconsistency was not detected in the current NMA.

5. Conclusions

This NMA determined the relative efficacy of different diet therapies, exercise inter-
ventions, and combined treatments for sarcopenia indices in individuals with obesity and
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hip or knee OA; in addition, the combined treatment RMMR plus RET was determined to
be the optimal treatment strategy for muscle mass gain or preservation, whereas RET and
AET alone were the optimal treatment options for strength and walking speed, regardless
of the intervention and follow-up duration. According to the results of this study, we
conclude that exercise alone increases muscle strength and walking speed, whereas an
intervention incorporating diet therapy and exercise, especially RMMR plus RET, has
superior effects on muscle mass and in individuals with obesity and lower-limb OA. The
results of this study contribute to the knowledge on optimal diet and exercise intervention
strategies, and an interdisciplinary and practical approach is required to counteract muscle
loss and functional decline in the older population with obesity and OA. The findings of
this review may guide the prescription of diet and exercise type for ensuring optimal treat-
ment outcomes. Given the limitations of the current study, additional studies with large
samples should be conducted for the identification of specific supplementation protocols.
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effects of diet, exercise interventions, and combined treatments on changes of muscle mass at each
follow-up duration, Figure S2: Forest plot summarizing effects of diet, exercise interventions, and
combined treatments on changes of muscle strength at each follow-up duration, Figure S3: Forest
plot summarizing effects of diet, exercise interventions, and combined treatments on changes of
walk speed at each follow-up duration, Figure S4: Forest plot summarizing node splitting results
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