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Abstract

How the diversity of organisms competing for or sharing resources influences community function is an important question
in ecology but has rarely been explored in natural microbial communities. These generally contain large numbers of species
making it difficult to disentangle how the effects of different interactions scale with diversity. Here, we show that changing
diversity affects measures of community function in relatively simple communities but that increasing richness beyond a
threshold has little detectable effect. We generated self-assembled communities with a wide range of diversity by growth of
cells from serially diluted seawater on brown algal leachate. We subsequently isolated the most abundant taxa from these
communities via dilution-to-extinction in order to compare productivity functions of the entire community to those of
individual taxa. To parse the effect of different types of organismal interactions, we defined relative total function (RTF) as
an index for positive or negative effects of diversity on community function. Our analysis identified three overall regimes
with increasing diversity. At low richness (<12 taxa), positive and negative effects of interactions were both weak, while at
moderate richness (12-26 taxa), community resource uptake increased but the carbon use efficiency decreased. Finally,
beyond 26 taxa, the effect of interactions on community function saturated and further diversity increases did not affect
community function. Although more diverse communities had overall greater access to resources, on average individual taxa
within these communities had lower resource availability and reduced carbon use efficiency. Our results thus suggest
competition and complementation simultaneously increase with diversity but both saturate at a threshold.

Introduction

Organismal diversity is recognized as a driver of ecological
functions such as biomass production, resource turnover,
and community stability. As the number of taxa increases so
do positive and negative biotic interactions such as facil-
itation, niche complementation, and competition, which all
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modulate the efficiency of resource use. While niche com-
plementation leads to optimization of resource use through
avoidance of resource use overlap, competition—either
directly for resources or indirectly by chemical interference
—often negatively impacts ecosystem functions. A con-
siderable number of models have been developed to deter-
mine how and why the relative strength of different
interactions on community function changes with diversity
[1-5]. Most models determine the net effect of interactions
on communities by comparing the observed community
function to that predicted from monoculture functions of
community members. In many ecosystems, these models
agree on a general increase of all types of interactions with
diversity, as well as diverse communities being more
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productive due to the strong effect of niche complementa-
tion. It is, however, also possible for this relationship to be
reversed [6]. Especially in microbial systems, it has been
proposed that the negative effects of antagonism on com-
munity function are only outweighed by the positive effects
of niche complementation if the microbes are functionally
dissimilar and the resource environment is heterogeneous
[2]. Recent work further shows that even when both con-
ditions are satisfied, a negative relationship between diver-
sity and biomass production can occur if interspecific
competition is strong and hierarchical, such as in a highly
antagonistic system of wood degrading fungi [4].

Because of their strong dependence on obtaining mea-
surements of relevant functions of community members in
monoculture, many community interaction models are most
suitable for systems in which diversity can be varied by
making a series of assemblages from well-characterized
species. However, this approach is difficult for microbial
ecosystems because they typically display high richness and
often only a small portion of the total diversity can easily be
isolated and grown in pure culture [7]. An alternative
approach that removes species from natural communities
via serial dilution can effectively generate communities of
decreasing diversity while circumventing isolation, but in
turn makes separating the effects of individuals on com-
munity function from that of interactions challenging [8—
10]. As a result, artificial microbial assemblages have been
used to experimentally study organismic interactions and
these assemblages have been limited in richness and phy-
logenetic diversity. Importantly, it is not clear to what extent
such artificial assemblages reflect naturally occurring
interactions, which are often the result of long term evolu-
tionary processes of co-occurring organisms. It therefore
remains an open question how different types of biotic
interactions contribute to community function across eco-
logically relevant ranges of diversity for microbes that have
co-diversified in the wild.

Here, we address the problem of how microbial inter-
actions and their effects on ecosystem functions change
over a wide diversity spectrum by combining the dilution
approach with isolation and pure culture studies. Dilution
series of planktonic microbial communities are first allowed
to self-assemble on seaweed extract as a realistic, complex
environmental carbon substrate, which mimics an algal
bloom in the coastal ocean [11, 12]. This process generated
a series of replicate microbial communities with varying
diversity and allowed measurement of biomass production
and respiration as relevant community wide parameters.
Following the measurements, each community was diluted
to extinction to approach monoculture-level diversity, and
the same production measures were obtained and compared
to the community values. We extend relative yield total
(RYT), a classical criterion for determining whether

intercropping leads to higher crop yield than mono-
cropping [13], to our multi-taxa system and generalize it
to summable functions across community members as the
relative total function (RTF). RTF can be further broken
down to investigate how interactions affect community
production through changes in total resource use or resource
conversion efficiency. We find that with increasing diver-
sity, total resource access increases due to niche com-
plementation, but carbon use efficiency decreases due to
competition, leading to a stronger increase in community
respiration than biomass production. Our results show that
the production of a natural community may be limited by
both its potential to access resources and by the amount of
niche overlap that allows members to coexist in nature.

Results
Experimental workflow

To test the relationship between diversity and community
function, we generated microbial communities of decreas-
ing diversity by serially diluting the same seawater sample
and subsequently tracking relevant measures of microbial
functions during growth in seaweed-seawater medium
(SSM, pasteurized seawater containing extract from the
brown algae Fucus). Specifically, our approach consisted of
two stages where the first generated communities of similar
overall biomass but different richness for which community
production and respiration were measured, and the second
consisted of dilution-to-extinction of communities from the
previous stage to generate monocultures for which the same
community functions were measured as input to the RTF
model (Fig. 1, Methods).

In the first stage, we generated 15 replicate samples from
seawater passed through a 5 um filter and serially diluted
each sample in 12 steps of 4-fold dilution each to yield a
total of 185 communities of differing cell numbers and
diversity. To acclimate these communities to the conditions
used for measurements of community function, each was
regrown first in pasteurized filtered seawater without any
additional nutrients, then diluted 1:1 into SSM and regrown
for 48 h, and finally diluted 1:30 into SSM and grown for
160 h (Fig. 1). This final regrowth experiment was used to
measure community functions at different diversity levels.
In the second stage, the resultant communities were diluted
to extinction to obtain low complexity communities (typi-
cally 1-10 taxa) and regrown in SSM for 160 h in order to
determine the same functions under near monoculture
conditions.

Biomass production was measured as the maximum of
both cell numbers and per cell protein content that the
communities reached within the first 110 h of observation,
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Fig. 1 Schematic for community self-assembly and functioning mea-
surements. In the first stage, a seawater sample is serially diluted and
regrown in pasteurized seawater to generate inocula of different
diversities for community growth and function measurements in
seaweed-seawater medium (SSM) over a period of 160h. In the
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Function tracking time/h

second stage, communities from the first stage are diluted to extinction
to generate near monoculture samples that are subjected to the same
growth and function measurements in SSM over a period of 160 h.
Unfilled points/lines represent time points that were taken but are
eventually omitted due to changes in physical properties of the cultures
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Fig. 2 Diversity strongly impacts all measures of community function.
Relationship of different measurements of community production (cell
numbers and protein per cell) and respiration (CO, production) with a
inoculum taxonomic richness and b stationary phase taxonomic rich-
ness of communities. ¢ Comparison of the hyperbolic fits for CO,
production and cell density scaled to 1 as maximum. Each dot

while respiration was estimated as the total CO, production
during this time. The combined measures of biomass pro-
duction and respiration allow estimation of resource use
efficiency. Finally, community composition was assessed
by 16S rRNA amplicon sequencing immediately after the
first diversity removal step and after each community
reached early stationary phase in SSM. To estimate the total
taxonomic richness, we first counted the number of taxa as
clusters of identical 16S rRNA amplicon sequence variants
(ASVs) [14, 15], and then inferred the number of ASVs that
were uncounted due to limitations in sequencing depth [16].
Since observed and estimated taxonomic richness were
highly similar in all cases (Fig. S1), we used direct ASV
counts as the approximate taxonomic richness.

Of the total 185 possible communities from the first stage
dilution series, 151 showed sufficient cell numbers after
regrowth in pasteurized seawater to serve as inoculum into
SSM. These communities ranged in taxonomic richness and
cell densities from 5 to 350 and 1.1x 10* to 3 x 10° cells/
mL, respectively (Fig. 1 and S2a). As expected, more
diluted communities contained fewer and more dissimilar
sets of taxa (Fig. S2b, c). All communities experienced
further loss of taxa during their regrowth in SSM (Fig. S3a,
b) possibly due to environmental filtering, population bot-
tlenecks during transfer, or competitive exclusion.

The second stagedilution-to-extinction experiment to
create monocultures yielded 882 samples, most containing
less than 10 taxa, with 275 almost completely dominated by
a single taxon (>90% of reads belonging to one ASV).

Taxonomic richness

represents one inoculum community; colored bars indicate the stan-
dard deviation of the measurement; black/colored lines indicate fits to
an appropriate model selected between a linear, log-linear, and
hyperbolic least squares fit with blue-gray regions around the line
indicating the 95% confidence of the fit

These monocultures represent 37 ASVs in 7 families
(Table S1), and cover 75.8% of total reads for the com-
munities grown in SSM from the first dilution, hence pro-
viding a good basis for comparison of community-level and
single taxon measures of function.

Relationships between diversity and community
functions vary

We observed Michaelis-Menten-like hyperbolic relation-
ships between taxonomic richness and cell density or CO,
accumulation, but negative relationships between taxo-
nomic richness and protein production per cell, independent
of whether taxonomic richness of the inoculum or resultant
communities after growth in SSM was used (Fig. 2a, b).
Normalizing both respiration (CO, production) and cell
density to the maximum measured difference between two
communities, we found that respiration increased at a faster
rate than cell density with increasing taxonomic richness
(Fig. 2¢c, p<2.2x 10716, paired #-test, two-tailed). Since the
amount of protein per cell also decreased with diversity, this
differential rate indicates that as the number of taxa in the
communities rose, higher portions of assimilated carbon
were released as CO,. Because such lowered yield in more
complex communities could be due to individuals having
intrinsically lower efficiencies in converting assimilated
carbon into biomass or due to different taxa negatively
affecting each other, we developed an indicator that allows
differentiating between these two possibilities.

SPRINGER NATURE
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Relative total function as an indicator for
interaction effects on community function

We established relative total function (RTF) as an indicator
for inter-taxa relationship effects on community function by
generalizing the concept of relative yield total (RYT) sug-
gested by De Wit and Van den Bergh [13]. RYT is calcu-
lated as the sum of the relative yields of two species in a
community compared to each of their monocultures. It is
thus a measure of how resource use of one species is
influenced by the other when the two occur together in a
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community, under the assumption that the resource to bio-
mass conversion efficiency of each species is maintained
between mono and community cultures so that biomass
becomes an indirect readout for resource use. Generalizing
two species to multi-species and yield to all community
functions that are summable across species, we defined RTF
as the summed relative function of each taxon in a com-
munity to their monocultures:

Fe:
RTF = Zj\fc ;’l?
1

(1)
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Fig. 3 Graphical illustration of the RTF concept. The RTFc allows
determination of interaction effects on community function by sum-
ming the relative function of each taxon in the community compared to
its monoculture. Functions suitable for this analysis are thus limited to
those that can be summed across taxa, such as biomass or CO, pro-
duction. For illustration purposes, the function of interest used in this
graph is the number of microbes. Community C1 represents a case of
the null model (RTF, = 1): taxa 1 and 2 are capable of utilizing the
same resources when separately in monoculture (colored regions in
circles; circles represent total resources available). When together in a
community, the two taxa equally split the pool of resources that they
are both capable of utilizing (relative total resource uptake
Eﬁvc %’ =1, mean relative per taxa resource uptake S, = 0.5).
However, the resource to function conversion efficiency of each taxon
is not affected by the other (mean relative resource to function con-
version efficiency a; = 1). As a result, the output function (number of
cells) is proportional to the resource allocation between the two taxa.
In Community C2 (RTF, < 1), the two taxa 3 and 4 interfere with each
other when sharing resources in a community, resulting in a mean
relative resource to function conversion efficiency ac<1. Here,
although resource uptake is exactly the same as in the null model, the
output function is reduced. In Community C3 (RTF, > 1), the two taxa
5 and 6 perfectly com[s)lement each other in resource use (relative total
resource uptake Zf’c SC = 2, mean relative per taxa resource uptake
S. = 1), and do not affect each other’s resource conversion efficiencies
(@ =1). See also Fig. S4 for an extension case where com-
plementation and competition cancel out to result in an RTF¢ of 1 but
should be distinguished from the null model

where F(; is the function of a taxon i in community C, F; is
the measured monoculture function of taxon i, N¢ is the
number of taxa in community C. Under the null model that
community function is solely dependent on individual
function, RTF: equals 1, while an RTF. larger than 1
indicates that biotic interactions increase community
function, and an RTFc smaller than 1 indicates a decrease
(see Fig. 3, S4 for graphical illustrations).

Under most resource concentration regimes, the carrying
capacity of a community can be seen as a linear function of
resource uptake. Only when resource overabundance indu-
ces incomplete respiration of substrates, the assumption of
linearity may be violated [17]. Since this is unlikely here
due to limited resources being provided, we can further
define for community functions analogous to carrying
capacity:

RTFc =Y “LSSL =@y SSC (2)

a; t

. Sci
. i
* represents that the second step only holds when 7~ and 75~ do not co-vary.

where a is efficiency of resource conversion into the func-
tion of interest (i.e., the amount of resource converted into a
specific community function, such as biomass or carbon
dioxide production, divided by the total resource uptake),
and S is the amount of resource uptake. Thus, there are
two major ways that interactions could affect community
function: by altering the total amount of resource uptake
or the efficiency of resource conversion into the

community function of interest. Under the null model,
both the mean relative resource conversion efficiency (ac),

and the relative total resource uptake (vac SSL) would
be 1. If either factor is larger or smaller than 1, it is posi-
tively or negatively affected by interactions between taxa

(Fig. 3, S4).

While RTF: compares the function of a community to
the monoculture functions of its constituents, the function of
individual taxa in a community can be compared to its
monoculture using relative mean function RMFc. RMF¢ is
calculated by dividing RTF with the total number of taxa
in the community (N¢). A relative mean function (RMF¢)
larger than 1 indicates facilitation between the majority of
community members. Furthermore, relative mean function
(RMF¢) can be seen as the product of mean relative per taxa

resource uptake (S_C =y SSL /NC> and mean relative

resource conversion efficiency (@:). Thus, in ecological
terms, the mean relative per taxa resource uptake (S_C) is the
ratio of the realized niche to the fundamental niche for the
average community member (Fig. 3, S4).

We used the RTF¢ indicator to evaluate how interactions
between taxa impacted different community function mea-
surements as diversity increased. Since RTF( is only sui-
table for community functions that are summed across taxa,
we applied it to three functions of interest: cell number, total
protein production, and total respiration (as CO, accumu-
lation). However, calculation of RTF¢ also requires know-
ing the function in community (Fc¢;) and in monoculture
(F;) for every taxon in a community. We achieved this by
defining communities that were at least 85% covered by the
37 taxa we were able to isolate in sufficient purity as
“constitutable”, and assuming that the remaining 15% of
taxa contribute to community function similar to the con-
stitutable 85%. The 85% cutoff was chosen because it was
the highest criterion that allowed constitutable communities
to cover the full diversity spectrum of the stationary phase
communities (Fig. S5). Using this cutoff, we identified 82
(35%) of the 235 total communities with good sequencing
coverage to be constitutable for every community function.
Subsequently, we calculated functions of the individual taxa
in each community (F¢;) by multiplying the measured total
community function F with relative abundances of each
taxon from community composition measurements. This
calculation estimates cells counts for each taxon (Fc,jcen
county) N the community; however, for estimating protein
and CO, productions of individual taxa in the community
(Fc iProtein) and Fc jicop)) the calculation is only valid if there
are no large variations in the amount of protein per cell and
CO, production per cell across different taxa, which we
found to be the case for the majority of taxa in our com-
munities (see Methods for details).

SPRINGER NATURE
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Fig. 4 Relative community-to-monoculture functions indicate differ-
ential increases in niche complementation and competition with
diversity. Relationship between diversity and a relative total biomass
production, respiration, and resource uptake (RTF¢ and va ¢ %) and b
relative per taxa biomass production, respiration, and resource uptake
(RMF¢ and S;) ¢ estimated relative carbon use efficiency (CUE). In a,
b each point represents one community at stationary phase (biological
replicates were not averaged). In ¢, each point represents a combina-
tion of one relative total function (RTF() ratio with a random value of

Interaction effects on community function
differentially increase with diversity

By tracking how different community functions relative to
monoculture change with diversity, we found that as
diversity increased, interactions lead to a stronger increase
in community respiration (CO, production) than community
biomass production (cell count and total protein). At low
richness (N.<12), RTF- was not significantly different
from 1 for CO, production, and slightly below 1 for total
protein production and cell count, indicating that the effect
of interactions on respiration was negligible but weakly
negative for biomass production (Fig. 4a, S6a, t-test, two-
tailed, pcos = 0.90, Pprogein = 1.0 X 1076, pey = 2.4 x 107 19).
However, as taxonomic richness increased beyond 12,
RTF¢(cop) steadily rose above 1 until it eventually plateaued
when a moderate richness level of 26 taxa was reached.
Meanwhile, RTF ¢ proeiny remained around 1 over the entire
diversity range, and RTF ey remained around 1 until 26
taxa, beyond which it stayed slightly above 1 (¢-test, two-

SPRINGER NATURE

CUE drawn from 0-0.6. The black line represents the mean of all
combinations with the same taxonomic richness. Colored regions
around the points indicate the standard deviation of the interaction
effect, and the gray areas indicate the range where relative total and per
taxa resource uptake is limited to at each taxonomic richness. The y-
axes are in log scale for better resolution of points (see Fig. S6 for the
same data in linear scale). d A hypothetical model for how the effects
of niche complementation and competition on community function
scale with taxonomic richness. Numbers on the y-axis are arbitrary

tailed, peoa,12ane <26 = 6.4 X 107>, pcon, nes26=1.4x 107",
Pprotein,12<Nc <26 = 0.88, Pprotein, Ne >26 = 0.29, Pcell,12<Nc <26 =
0.21, peent, Ne »26 = 7.5 X 107%). Thus, at moderately high
diversity, interactions had a strong net positive effect on
community respiration, but only a weakly positive effect on
the production of cells, and no net effect on community
protein production.

Community resource uptake increases with diversity
while individual taxa resource uptake decreases

Since the relative community CO, production increased
significantly with diversity, and relative community bio-
mass production also exhibited a weak increase, the relative
resource uptake of the community must also increase with
diversity. Detailing this under the RTF: framework, since
each community has a single relative total resource uptake
value (vac SS%' , and the conversion efficiencies for CO,
and biomass accumulation have to change in opposite
directions (i.e., they cannot simultaneously increase or
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decrease), the relative total resource uptake of a community
must fall between RTF¢(coz) and RTF¢giomass)- Taking total
protein production as the measurement for biomass, we
found that the region between RTFccoz) and RTFcprotein)
moved from around 1 to higher than 1 as diversity increased
(Fig. 4a, S6a). This indicates that biotic interactions with
positive effects on resource uptake, such as niche com-
plementation, are more prevalent in more diverse
communities.

Howeyver, individual taxa in more diverse communities on
average take in fewer resources, i.e., they have narrower
realized niches relative to their fundamental niches in
monoculture. This is supported by the gradual decrease of the
mean relative per taxa resource uptake (S_c), whose bound-
aries are defined by relative mean functions RMFcoy) and
RMF ¢ (progein), With diversity (Fig. 4b, S6b). Also, since all
RMFcs never exceeded 1, communities where most
community members facilitate each other are rare. In fact,
only a very small fraction of taxa produced more biomass or
CO; in communities than in monocultures (Fig. S7), indi-
cating that each taxon always has more competitors than
facilitators, and the frequency of mutualistic interactions
among different taxa is lower than negative interactions.

Competition in more diverse communities reduces
carbon use efficiency (CUE)

Since relative community CO, production increased faster
with diversity than relative community biomass production,
the relative carbon to biomass conversion efficiency (often
known as carbon use efficiency, CUE) decreased, possibly
as a result of stronger competition. Because the ratio of
RTF¢cop) t0 RTF¢giomass) should scale positively with both
the expected CUE from monocultures and how much this
CUE changes upon introduction of the organism into a
community, we estimated the range of the relative-to-
expected CUE from the RTF¢coz) t0 RTF(protein) ratios and
limiting the expected CUE to the thermodynamic limits of
0-0.6 [[18], see methods for details]. We found that as
taxonomic richness increased, interactions had increasingly
negative effects on the relative CUE of the community, but
the effect leveled off at moderate taxonomic diversity
(Fig. 4c, S6c). Furthermore, since at higher richness
RTF ¢ (proteiny Was lower than RTFcceny (Nc> 26, p=0.06,
paired Wilcoxon rank sum test, one-tailed), the relative
CUE decrease is a joint effect of both smaller cell size and
lower cell number. This is likely because microbes in more
diverse communities are under stronger competition for
resources, as evidenced by their narrower relative realized
niches. They either have to grow faster to directly compete
with other microbes for preferred resources or avoid com-
petition by using more recalcitrant and less preferred
resources. Because growth rate generally scales positively
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Fig. 5 More diverse communities reach stationary phase earlier. Dis-
tributions of time for communities to reach peak cell density in

communities with a less than 26 taxa (N, <26), and b more than 26
taxa (N, >26)

with cell size [19-21], it appears more likely that our
observation of smaller cells in more diverse communities
indicates reduced growth rate and partitioning of a larger
portion of carbon taken up toward respiration due to the
lower energy yield of more recalcitrant substrates.
However, it is possible that the “faster growth” strategy
dominates initial periods of growth and the “recalcitrant
resource” strategy takes over in later growth phases. We
observed that more diverse communities had, at least initi-
ally, faster growth rates. An overwhelming majority of
communities with more than 26 taxa reached maximum cell
density by 24 h of growth, while those with less than 26
taxa had equal probability of growing to maximum at 24,
32, or 40h (Fig. 5). Hence, our data suggest that diverse
communities had a high probability of containing members
specialized for substrates that allow initial rapid growth.
Conversely, communities with lower diversity only occa-
sionally contained such potentially fast growers, which can
bloom under conducive conditions but otherwise occur at
low concentration in natural communities, explaining the
broader distribution of times to maximum cell numbers.
Although this does not provide direct evidence for indivi-
dual taxa growing faster in more diverse communities, it
may indicate that it could be advantageous for taxa in more
diverse communities to regulate itself for faster growth
compared to monocultures. We would then expect relatively
lower CUE but larger cells to accumulate early in the
experiment [22, 23]. Over the full observation period,
however, more diverse communities on average had smaller
cell size, possibly because after reaching peak density, the
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initial population was replaced by other taxa or switched
into a metabolism that utilizes substrates that are more
recalcitrant and less energy efficient.

Effects of interactions on community function
increase logistically with diversity

Although cell density and CO, both exhibit Michaelis-
Menten-like hyperbolic relationships with diversity, both
competition and complementation have logistically
increasing effects on community function as diversity
increases. By estimating CUE through the size of the dif-
ference between RTF¢(cop) and RTF¢proreiny and total niche
occupation through their relative position to 1, we found
that at low diversity (N¢ < 12), the effects of both compe-
tition and niche complementation were weak, with the
negative effects of competition narrowly exceeding benefits
of niche complementation. As diversity increased beyond
this level, the positive effect of niche space expansion
gradually exceeded that of the negative effect of competi-
tion until they both stabilized at moderately high diversity
(N.>26). This indicates that while niche complementation
is probably limited by the total amount of resources avail-
able, competition also has plateaued (Fig. 4d). Overall,
these patterns translate to a logistic model of growth as
diversity increases for impacts on community function by
either competition or complementation.

Specific taxa effects on community function

Since it is often assumed that organisms that are more
phylogenetically distant are also more metabolically dis-
tinct, and taxonomic richness only partially explained the
variance of community function (Fig. 2a, b), we asked if
phylogenetic diversity of the communities affected com-
munity cell production or respiration through niche com-
plementation. We found that when compared to species
richness, neither of the two most common measurements for
phylogenetic distance, the abundance weighted mean pair-
wise distance (MPD) or the abundance weighted mean
nearest taxon distance (MNTD), was better in explaining
the variance of community functions (see Table S2 for
comparison between all models/diversity metrics).

We then checked the possibility of specific “key” taxa
affecting community function, i.e., whether one taxon could
alter community function without altering MPD or MNTD.
We screened for these taxa by looking for ASVs whose
relative abundance significantly correlated (Kendall rank
correlation, ¢ <0.05 after FDR correction) with community
function within sliding windows of taxonomic richness
(window widths ranging from 2 to 10) (see Table S3 for all
significant correlations). In most cases, each identified taxon
was specific to a certain range of taxonomic richness
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(usually of size 10-15), with the direction of correlation
highly consistent among windows within the range. Also,
correlations between taxa and CO, were few compared to
those for cell density and total protein production, indicat-
ing that biomass production is more sensitive to taxonomic
alterations than respiration. We identified five ASVs that
exemplify how diversity may affect the outcome of
microbial interactions and consequently community
function.

Taxonomic richness of the inoculum strongly influenced
dominance patterns in communities and thereby had sig-
nificant effects on community function. For example, one
taxon (ASV3) belonging to the genus Alteromonas was
found to positively correlate with CO, production but only
in communities with less than 10 taxa. However, ASV3
did not show strong dominance in communities with
higher inoculum diversity. This suggests that there were
other, more rare taxa that were able to compete with
ASV3 and demonstrates the importance of priority effects
in colonization of small resource patches in the
environment [24].

Despite having generally more niche overlap for
resources, communities with high diversity can still benefit
from having taxa that use the less common resources.
ASV30, identified as Wenyingzhuangia, positively corre-
lated with total protein production in communities with high
taxonomic richness. Members in the Wenyingzhuangia
genus are among the few organisms known to degrade the
highly sulfated and recalcitrant sugar Fucoidan [25], esti-
mated to be 4-10% of the dry weight of Fucus [26]. ASV30
may thus have positively affected community production by
occupying a niche inaccessible to most other taxa, and
might even have acted as a pioneer taxon by degrading the
recalcitrant Fucoidan and converting it into more easily
usable substrates.

Other taxa were found to have effects on community
production likely through facilitation and predation. Several
ASVs belonging to the genus Sulfitobacter were con-
sistently found to be positively correlated with community
production across different ranges of community richness
and production measurements. Members of this genus are
found as stable associates with algae [27], and possess
sulfite-oxidation and aromatic compound degradation abil-
ities [28]. Given that Fucus contains large amounts of
aromatic compounds, Sulfitobacter could have positively
affected the community production through degradation of
aromatic compounds, which could otherwise impede the
growth of other bacteria. We also found a negative corre-
lation between ASV66, a putative predatory bacterium from
the genus Halobacteriovorax [29], and community cell
density at high taxonomic richness, indicating that pre-
datory behavior may also play a role in determining com-
munity production.
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Discussion

In this study, by growing serially diluted seawater on brown
algal leachate to generate self-assembled communities that
span a wide range of diversity, we examined how diversity
could impact community function through various interac-
tions. Consistent with observations from artificially assem-
bled systems, we found communities with greater diversity
to have greater resource uptake due to niche com-
plementation. However, the expansion of resource use came
at the cost of increased competition driven by niche overlap
and decreased the carbon use efficiency of the communities.

Compared to assembling “bottom-up” communities from
known isolates, our method has both advantages and
caveats. Since our communities self-assemble, our work-
flow is inevitably less well controlled compared to artificial
assembly experiments and has more challenges regarding
detailed characterization of individual traits and interac-
tions. For example, unlike isolate assemblages that could be
mixed to the exact same cell density, our inoculum com-
munities only had cell densities on the same order of
magnitude. Thus, checking that relationships between
diversity and community function remain significant after
considering the effect of initial cell density via multi-
variable regression is necessary (Table S4). Also, since our
method was based on 16S rRNA gene amplicon sequen-
cing, we were only able to distinguish bacteria that had at
least one nucleotide difference in the 16S rRNA V4 region.
Different strains of bacteria that show genetic variability
beyond the 16S rRNA region and have different pro-
ductivities would be collapsed as one taxon in our analyses.

Despite these limitations, our method has the advantage
of providing a more accurate recapitulation of how natural
microbial communities assemble under defined environ-
mental conditions and a more precise measurement of how
community diversity alters different measurements of
community function. Using organisms that have shared and
adapted to a common habitat is especially important in light
of studies that show evolutionary history can alter resource
use patterns of taxa and can have a strong influence on how
community functions are affected by biodiversity [30, 31].
Therefore, communities artificially assembled from strains
that do not necessarily have a common history may provide
a less realistic picture than provided by using a “top-down”
approach of directly allowing natural communities to self-
assemble to different diversities.

We thus argue that a “top-down” approach provides a
better window into how diversity affects community func-
tion in nature. In previous work, this self-assembly
approach has proven powerful in evaluating how and
when various biogeochemical functions are affected by loss
of diversity in a number of ecosystems such as fresh water
lakes and top soil [8-10]. However, it was not possible to

provide more detailed exploration of the underlying
mechanisms for functional loss [8—10]. We addressed this
problem by adding a dilution-to-extinction step to the tra-
ditional dilution approach, effectively allowing us to study
how community function is mediated via interactions across
a diversity gradient by comparing community function to
monoculture functions via the RTF index.

Data generated from our method is also suitable for most
other models that evaluate the net effect of interactions on
communities by comparing the observed community func-
tion to that predicted from monoculture functions of com-
munity members. While our null model places a strong
emphasis on comparing the uptake and utilization efficiency
of resources between monocultures and communities, many
other null models assume the performance of an individual
in a community is directly proportional to its initial relative
abundance, i.e., all individuals have the same growth rate.
For example, in the Loreau and Hector model [3], the
deviation between the expected and observed community
function is called the net biodiversity effect, which can be
further broken down into a part due to growth rate differ-
ences between individuals (“selection effect”) and a part
due to resource complementation and competition (“com-
plementarity effect”, which is linearly related to the RTF¢
index). Applying such a null model towards our system
shows that the net biodiversity effect is mostly driven by the
complementarity effect (Fig. S9). Thus, since our major
purpose was to elucidate how interactions influence com-
munity functions through different resource use patterns
across a diversity gradient, we chose to use our current null
model that allows easy breakdown of interaction effects on
functions into that on resource use and resource to function
conversion efficiency.

In our system, we found a large decrease in CUE with
diversity, possibly due to increased competition for
resources. Although decrease of CUE with increasing
diversity due to interactions has been documented pre-
viously, our data suggest an unusually large effect. For
example, in an artificially assembled system of saprophytic
basidiomycete fungi, it was found that interactions in mul-
tispecies communities can decrease CUE by up to 25%, a
stronger reduction than induced by many abiotic factors
such as temperature increase [32]. However, it is estimated
that most of our communities at moderately high diversity
have a 60-80% decrease in CUE due to interactions. It is
unlikely that this large CUE decrease in our system is due to
antagonism as suggested by Maynard et al. [32], since
instead of selecting a system (wood decaying fungi) and
conditions that favor antagonism, we are mimicking a free-
living and dilute marine environment. Although antag-
onistic potential has been demonstrated in marine bacteria
[33, 34], it is more likely that the large interaction effect on
CUE in our system results from resource competition,
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which Maynard et al. made efforts to minimize by having
excess supply of both carbon and nitrogen [32]. By contrast,
with seaweed extract being mostly organic matter, our
system 1is likely limited by nitrogen or phosphate. Thus,
with the narrower realized niches we observe as diversity
increases, resource competition is likely the major driving
force for the CUE decrease in our communities.

Furthermore, in our system, the impacts of both com-
petition and complementation on community function
logistically increased as diversity increased. This is prob-
ably a result of algal exudates being overall ubiquitous in
the coastal ocean, but consisting of substrates that have
different numbers of bacterial consumers. Certain substrates
may only be utilized by a portion of bacteria in the envir-
onment, and the chance of getting such bacteria in a com-
munity would be equally small among communities with
different richness when diversity is low (N, <12). Only
when there was a sufficient number of taxa in the com-
munity did adding in new taxa actually expand the resource
use profile, and this expansion quickly become limited by
the amount and types of resources available. Moreover, the
speed of the resource use expansion was slower than that of
the increase in taxa, thus niche overlap also increased with
diversity. However, niche overlap also only started to
translate to negative effects on community production when
there was a sufficient amount of taxa in the community,
possibly because only when there are enough competitors
around there would be a need for employing a fast growth,
low efficiency strategy.

The saturation of competition in our system at moderately
high diversity is possibly due to a combined effect of
organisms co-diversifying over long periods of time under the
specific environmental conditions of the coastal ocean. The
limited amount of competition we observe is consistent with
theoretical predictions that environmental fluctuation place
upper bounds on how much overlap there can be between
niches for species in the community to stably coexist [35].
Indeed, the communities assembled here were drawn from the
highly fluctuating coastal environment, and given that niche
overlap is the result of organisms having sets of redundant
functional genes, this might indicate that there is a limited
amount of functional similarity between algal degrading
bacteria due to the frequency of environmental fluctuation.

In conclusion, using self-assembled microbial com-
munities directly derived from a costal ocean seawater
sample, we found that complementation and competition
for resources both increase with diversity but reach a
threshold at a moderate number of taxa, beyond which no
further effect of these interactions is evident. The simul-
taneous increase of complementation and competition
with diversity generates trade-offs between the range and
efficiency of resource use. Although the exact diversity
thresholds where the impact of competition and
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complementation on community function saturates in our
system are specific to our experimental setup, such a
threshold should exist in many natural habitats: while it is
expensive for organisms to maintain pathways for
resources they rarely encounter, competing for more
common resources can also require costly strategies and
puts the organism at higher risk of competitive exclusion.
Therefore, limits on interactions between wild populations
of bacteria are likely a result of them maintaining a tre-
mendous amount of diversity in fluctuating environments
over long periods of time.

Methods
Media preparation

To prepare pasteurized seawater as a media for bacterial
growth and as the solvent for making seaweed-seawater
media (SSM), a total of 8 L of costal surface seawater was
collected from a sampling site near Northeastern Uni-
versity’s Marine Science Center (Canoe Beach, Nahant,
MA, USA; N 42° 25’ 11.6",W 70° 54’ 24.8"), on Nov 12th,
2016. The water temperature at the time of sample collec-
tion was 12.0 °C. Seawater was pasteurized as described in
Takemura et al. [11]. Briefly, the seawater sample was
divided into 2 L bottles, heated to temperatures between 78
and 82 °C in water baths and maintained at the temperature
for 1 h. Each bottle was pasteurized twice with at least 48 h
intervals between the pasteurization events. The pasteurized
seawater was then combined and filtered through 0.22 um
filters to remove any large size particles.

Stock solution for making the SSM was made from
Fucus vesiculosus collected from the rocky shorelines of
Canoe Beach on July 12th, 2015. The Fucus was washed,
sun dried and grinded using a blender (Waring). Four grams
of the ground Fucus was mixed with 100 mL of pasteurized
seawater, and stirred at 150 rpm for 2 h at room temperature.
The mixture was then passed through 20 um Steriflip filters
(Millipore), diluted 4-fold with pasteurized seawater, passed
through a 0.22 ym filter (Corning, pre-washed three times
with MilliQ water), and pasteurized again. The seaweed
media extract stock solution was stored in the dark at room
temperature till time of use, when it was diluted 10-fold in
pasteurized seawater to make SSM. Lyophilizing 10 mL of
the 10X stock solution resulted in 22 mg of dried material;
thus the concentration of dissolved organic matter in the
SSM was approximately 0.022% (w/v).

Sample collection and experimental design

In order to generate the inoculum communities, a costal
surface seawater sample was collected from a sampling site
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near Northeastern University’s Marine Science Center
(Nahant, MA, USA; N 42° 25" 11.6",W 70° 54’ 24.8"), on
Nov 18th, 2016. The water temperature at the time of
sample collection was 11.5 °C.

The collected seawater was filtered through a 5 ym filter
(Whatman) to remove particulates and larger eukaryotes
and was estimated to have a microbial concentration of 3 x
10° cells/mL via Fluorescence-activated cell sorting (FACS)
using absolute count beads. Thus, an initial “undiluted”
seawater community was defined as 30 mL of the filtrate,
containing approximately 10° cells in total. Fifteen “undi-
luted” seawater communities were 4-fold serial diluted with
pasteurized seawater, generating 15 communities (30 mL)
for each dilution level (4X to 4''X). An additional 5 and 15
sub-communities were generated for the two highest dilu-
tion levels (4'°X and 4!'X).

All diluted communities were placed in 50 mL Falcon
tubes and rotated end-over-end at 6.5 rotations per minute in
the dark. Bacterial growth in each tube was repeatedly
sampled over time using FACS until they were determined
to have reached stationary phase (less than 20% increase in
cell count between two consecutive time points following
time points with over 20% growth in between), when they
were destructively sampled for DNA extraction and used as
inoculate into SSM. Time points for sampling were 0, 15,
24, 38, 52, 72, 96, 120, and 360 h.

For each community, three replicates of 0.3 mL each
were used to inoculate an equal volume of 2X SSM. The
communities were allowed to grow for 48 h in 96 deep well
plates on a floor shaker at 300 rpm before being diluted 1/30
into 580 uL of SSM. The re-inoculated cultures were grown
in MicroResp Systems (James Hutton Ltd, Aberdeen, UK)
on a floor shaker at 300 rpm, and their community functions
tracked as cell count, total protein, and CO, production at
time points 0, 16, 24, 32, 40, 64, 110, and 160 h. The 160 h
data point was eventually omitted due to possible changes
in the physical properties of the culture interfering with the
FACS measurements.

At the end of the tracking period, communities similar in
initial dilution levels and 160 h cell count were combined.
The combined communities were diluted in SSM according
to their cell densities so that on average each diluted com-
munity would contain 1 cell per 200 pL of culture. Each
combined community had 18-24 corresponding diluted
communities. These diluted communities were allowed to
grow for 7 days in flat-bottom 96-well plates before they
were screened for positive growth using FACS.

Communities that scored positive for growth were dilu-
ted 1/30 into 580 pL. of SSM, and again grown in Micro-
Resp Systems on a floor shaker at 300 rpm, with their
community functions tracked as cell count, total protein,
and CO, production at time points 0, 16, 24, 32, 40, 64,
110, and 160 h. The 160 h data point was eventually omitted

due to possible changes in the physical properties of the
culture interfering with the FACS measurements.

Community growth and function measurements

For tracking growth of the diluted communities in pasteurized
seawater for generating inoculum communities, at each time
point 100 uL. subsamples of the communities were obtained
and fixed 1:1 with 0.8% Formaldehyde + 0.5 ug/mL 4',6-
Diamidino-2-Phenylindole (DAPI, Sigma). During subsequent
growth of the inoculum communities in SSM for community
function measurements, at each time point 20 uL of each
culture was fixed 1:10 with 0.8% Paraformaldehyde
(BeanTown Chemical), and mixed 1:1 with staining media
(1:5000 SYPRO red +0.02% SDS + 1 pug/mL. DAPI) for
30min in the dark at room temperature [36], with some
modifications].

All FACS measurements were performed using a BD
LSRFortessa Flow Cytometer with a high throughput
sampler. Bacterial cells were gated by forward and side
scatter as well as the intensity of DAPI staining under a 500
V laser with activation wavelength of 405 nm, and collected
through a 450/50 nm band-pass filter. Signal points that
were between 20-4 x 10* FSC-H, 40-4 x 10* SSC-H and
showed more than 200U blue fluorescence were counted as
bacteria (Fig. S10). These gates were based on the follow-
ing criteria: (a) The SSC-H threshold represents the lowest
values above the region that accumulated 1000 events/min
when running a blank sample, while the gated region above
the threshold accumulated less than 100 events/min. (b)
Events in the gated region shift to higher FSC-H values
when the voltage of FSC is dialed up, while events below
the FSC-H threshold do not move and are likely machine
noise. (c) A population of cells clearly distinctive from
background noise appeared in the region bound by SSC-H
and FSC-H for different isolate cultures as well as envir-
onmental samples stained with DAPI, while no events
appeared for blank samples or unstained cells (To reduce
background noise, acquisition was triggered by blue fluor-
escence signal). The gating protocols were validated by
comparing the CFU/ml of a Vibrionaceae strain (grown
with twice the substrate concentration as SSM) to cell
density calculated from the number of gated events
(Fig. S10f). The CFUs were counted in triplicate by plating
100 pL of serial dilutions on Marine Broth 2216 plates (BD
Difco). Fluorescence for the SYPRO red stain was deter-
mined with a 561 nm excitation laser (630 V) and 610/20
band-pass filter.

For consistency, cell counts for both community function
measurements and growth tracking were determined by the
number of DAPI positive events in the selected gated region
for bacteria. Since 99.0+3.6% DAPI positive cells in all
non-blank samples also stained positive for SYPRO red, the
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protein per cell was determined by measuring the mean
SYPRO red fluorescence for all DAPI positive events. Total
protein was calculated via multiplying protein per cell by
cell counts. For each 96-well plate of samples, cell counts
were normalized to 3—6 standards of CountBright absolute
count beads (Thermo Fisher) at 990,000 beads/mL, and
total protein was normalized to 3—-6 wells that contained a
fixed standard marine bacteria mixture containing approxi-
mately 1:1 Vibrionaceae and Halomonadaceae.

CO, production of communities was calculated from
reading indicator plates in the MicroResp System on a plate
reader at 1 =572nm [37]. In the MicroResp system, all
target communities were placed in deep 96-well blocks and
connected to a top indicator plate using a seal. The seal
insulated wells from each other but allowed the indicator
plate to reflect the % of CO, accumulated in the headspace
of each well. The MicroResp indicator plates were made
and calibrated according to the manufacturer’s instructions.
The relationship (R* =0.996) between %CO, in headspace
and absorbance was (%CO,)=0.1648/ (As57;,—0.2457)
—0.2301, with As7, being the difference in As;, between the
start and end of CO, production time. Compared to the
manufacturer’s instructions, we increased the number of
measurements at low CO, concentration, and were able to
detect CO, at levels as low as 0.025% (v/v). The average
precision for all points on the standard curve was +4% of
each measurement (Fig. S11). The rate of CO, production
per volume of culture was calculated from %CO, for each
sampling interval, and a normalized total CO, production of
communities was calculated by summing CO, production
rate X average time X average community volume for each
sampling interval. The effect of atmospheric CO, was
removed by normalizing the CO, production values to the
average of the blank wells.

Measurements eventually used as community functions
were: maximum cell density the community reached within
110 h, maximum total protein production and protein per
cell within 110h, as well as total normalized CO, produc-
tion within 110 h. To account for cells clumping in later
time points, the maximum protein per cell was calculated
from maximum total protein production/maximum cell
density, instead of directly comparing protein per cell
measurements between time points.

DNA extraction

In order to determine community composition for the
inoculum communities, 30 mL of the inoculum commu-
nities were pushed through Swinnex Filter holders (13 mm,
Millipore) containing 13 mm 0.22 ym filters (autoclaved,
Durapore membrane PVDF, Millipore) connected to Luer-
Lok syringes (BD). Filter paper was removed from the
holder, cut into 4-6 smaller pieces, submerged in 125 pL
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QE buffer with 1% Ready-Lyse Lysozyme (Epicenter,
Quick Extract Kit) in eppendorf tubes, and shook at 400
rpm overnight at room temperature. The tubes were spun
down at 1700rpm for 5min the second day and the
supernatant was stored at —20 °C till future use.

The composition for communities growing in SSM were
determined at early stationary phase. For each community,
200 uL. of sample was taken and filtered through Multi-
Screen HTS GV filter plates (0.22 pm, sterile, PVDF
membrane, Millipore) by spinning the plates for 5 min at
3000 rpm. Each well was incubated overnight in 100 uL QE
buffer with 1% Ready-Lyse Lysozyme (Epicenter) on a
tabletop shaker at 400 rpm. DNA extract was collected by
spinning the plates for 5 min at 3000 rpm and obtaining the
flow through.

Library prep, sequencing, and quality control

16S rRNA gene amplicon libraries (V4 hypervariable
region, U515-E786) were prepared according to the method
described by Illumina 16S metagenomic library preparation
with some slight modifications (first PCR clean-up was
done by using ExoSAP-IT express PCR clean up reagent,
Thermo Fisher). Samples were sequenced on an Illumina
MiSeq (PE 250 + 250) at the BioMicro Center (Massa-
chusetts Institute of Technology, Cambridge, MA). Reads
were processed using a custom pipeline where cutadapt was
used for primer trimming, QIIME 1.9 [38] was used for
demultiplexing, and DADA2 [15] was used to infer
amplicon sequence variants (ASVs). Default settings were
used except forward reads were truncated to 200 base pairs,
and reverse reads were truncated to 175 base pairs before
merging. Communities with less than 2000 reads were
removed. ASVs that were more than 2% in more than 20%
of the blank samples were considered as contaminants and
also removed. Taxonomy for the sequence variants was
assigned using the RDP database [39]. 16S copy number
correction was performed with microbiome helper [40]:
sequence variants were combined with the Greengenes
database v13.5 [41] to build a new reference tree using
FastTree [42], and assigned copynumbers using PICRUST
[43].

Calculation of RTF,

For RTF calculation, the monoculture functions measured
from the second stage dilution-to-extinction was used as
F;. Fc; was calculated from FcRc;, where F¢ is the total
community function and R¢; is the relative abundance of
the of taxon i in community C. This is only completely
accurate when the community function of study is cell
density, since different taxa may have different function to
cell ratios. Thus, for community functions other than cell
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for each taxa in a community, which we find to be between
the ranges of 0.5-2 for the majority of our taxa in com-
munities (Fig. S8). The overall effect of these adjustment
factors should be even closer to one when they are further
averaged across different taxa in a community for calcu-
lating RTF . Thus, for simplicity, the adjustment factor was
assumed to be 1 for all taxa in communities, i.e., the protein/
cell ratio and CO,/cell ratio among taxa in a community
were equal.

as the adjustment factor

null model, the adjustment factor becomes

Other estimations and assumptions used to calculate
RTF¢ included: (i) The criteria for determining if a sample
was a monoculture was that at least 90% of the reads in the
sample belonged to one sequence variant; the functions of
the community was directly used as the monoculture
functions. (ii) The criteria for a community to be “con-
stitutable” was that 85% of the reads were covered by
sequence variants of which we had monoculture functions.
The constitutable parts of the communities were re-
normalized so that the relative abundances of the
sequence variants added up to 100%. (iii) CO, production
from O to 40 h were used for RTF calculations for CO,,
since community composition measurements taken at early
stationary phase were all around 40 h.

Estimation of relative CUE
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equivalent to CUE, and a;coy) is equivalent to 1-CUE. By
definition, dc jprotein) 15 Telative-to-expected CUE (denoted
as rCUE) times CUE. Thus, by seeing the whole commu-

nity as the behavior as an “average taxa”,
RTF, 1-rCUE+CUE
c(coy) I_CUE__ This oi
= . This gives
RTF, C(Protein) = C%Eﬁg UE g
1
rCUE =

Ratio RTF, (1 — CUE) + CUE

Estimation of relative CUE depending on the ratio
between RTFccoz and RTFgppoeiny Was performed
according to the equation above and by setting up the
expected CUE in intervals of 0.01, ranging from 0 to 0.6.

Curve fitting

All curve fitting was performed using the nls function in R
[44], and the 95% confidence interval of the curvefits were
calculated using uncertainty propagation by first-/second-
order Taylor expansion and Monte Carlo simulation
including covariances using the package “propagate” [45].
A linear, log-linear, hyperbolic least squares fit was per-
formed for each dataset, and the model with the least AIC or
an AIC comparable to the least AIC was selected. All sum
of squares calculations were type II, and performed using
the function “Anova” in the R package “car” [46].

Diversity calculations

Species richness was determined as the number of ASVs in
each community, and they were compared against a rar-
efactioned species richness, using the R package “vegan”
[47], and an estimated species richness, using the R package
“breakaway” [16]. MPD and MNTDs of each community
were calculated by first performing a multiple-alignment
using the R package “DECIPHER” [48], then constructing a
GTR + G+I (Generalized time-reversible with Gamma rate
variation) maximum likelihood tree with the R package
“phangorn” [49], and calculating the actual values using the
R package “picante” [50].

Data availability

All amplicon sequencing data generated in this study can be
accessed upon publication on the US National Center for
Biotechnology Information SRA database under BioProject
PRINA477654. All community function measurements,
ASV tables, and code for data analysis will available at
https://github.com/cusoiv.
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