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Abstract: Itraconazole (ITZ) is a class II drug according to the biopharmaceutical classification system.
Its solubility is pH 3-dependent, and it is poorly water-soluble. Its pKa is 3.7, which makes it a
weak base drug. The aim of this study was to prepare solid dispersion (SD) pellets to enhance the
release of ITZ into the gastrointestinal environment using hot-melt extrusion (HME) technology and
a pelletizer. The pellets were then filled into capsules and evaluated in vitro and in vivo. The ITZ
changed from a crystalline state to an amorphous state during the HME process, as determined using
DSC and PXRD. In addition, its release into the gastrointestinal tract was enhanced, as was the level
of ITZ recrystallization, which was lower than the marketed drug (Sporanox®), as assessed using an
in vitro method. In the in vivo study that was carried out in rats, the AUC0–48h of the commercial
formulation, Sporanox®, was 1073.9 ± 314.7 ng·h·mL−1, and the bioavailability of the SD pellet
(2969.7 ± 720.6 ng·h·mL−1) was three-fold higher than that of Sporanox® (*** p < 0.001). The results
of the in vivo test in beagle dogs revealed that the AUC0–24h of the SD-1 pellet (which was designed to
enhance drug release into gastric fluids) was 3.37 ± 3.28 µg·h·mL−1 and that of the SD-2 pellet (which
was designed to enhance drug release in intestinal fluids) was 7.50 ± 4.50 µg·h·mL−1. The AUC of
the SD-2 pellet was 2.2 times higher than that of the SD-1 pellet. Based on pharmacokinetic data, ITZ
would exist in a supersaturated state in the area of drug absorption. These results indicated that the
absorption area is critical for improving the bioavailability of ITZ. Consequently, the bioavailability
of ITZ could be improved by inhibiting precipitation in the absorption area.

Keywords: hot-melt extrusion; itraconazole; solid dispersion; modified drug release; absorption area

1. Introduction

Biopharmaceutical classification system (BCS) class II drugs have low solubility and
high permeability; however, their bioavailability can be sufficiently increased through
solubilization. Amorphous solid dispersion (SD) is a widely feasible formulation technique
for improving the apparent solubility of poorly water-soluble drugs [1]. Amorphous SDs
have higher free energy than crystalline active pharmaceutical ingredients. They exhibit
high solubility and supersaturation in the gastrointestinal environment. However, they are
thermodynamically unstable and generally precipitate over time. As a result, the solubility
of amorphous SDs decreases without reaching equilibrium. In addition, supersaturation
and precipitation are also influenced by several physiological factors, including pH, gastric
emptying rate, and the composition of the simulated biological fluid [2–4]. Therefore, the
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bioavailability of poorly water-soluble drugs can be increased by preparing an SD using a
polymer that suppresses precipitation while maintaining a higher supersaturation state in
the gastrointestinal tract [5,6].

Hydrophilic polymers, such as Soluplus®, hydroxypropyl methylcellulose phthalate
(HPMCP), and polyvinyl alcohol (PVA) enhance supersaturation and inhibit precipitation
by employing hydrophobic interactions with drugs or intermolecular interactions, such as
hydrogen bonds, ionic bonds, and van der Waals interactions [7–10]. Solvent evaporation
and melting are mainly used to prepare amorphous SDs. Solvent evaporation involves
dissolving a poorly water-soluble drug and a polymer (or polymers) using an organic sol-
vent and then evaporating the solvent to prepare an SD at a relatively low temperature [11].
The melting method involves preparing a dispersion of a poorly water-soluble drug and a
polymer (or polymers) in a molten state at a high temperature; hot-melt extrusion (HME)
is one such representative technology.

HME is a promising SD technology in the pharmaceutical industry owing to its ease
of application, economic benefits, and speed. Moreover, it does not require organic sol-
vents [12–16]. Currently, Kaletra®, Eucreas®, Noxafil®, and Viekira™ are commercially
available drugs that are manufactured using the HME technology that has been applied for
SD preparation and targeted drug delivery, sustained release, and taste masking [17,18].
HME technology is also applied downstream when manufacturing various types of pharma-
ceutical formulations, such as pellets, films, granules, tablets, implants, stents, transdermal
absorbents, and 3D printing filaments [19–21].

Itraconazole (ITZ) is a broad-spectrum antifungal agent used to treat Candida vaginitis,
corpus callosum, ringworm infection, oral candidiasis, and fungal keratitis. It is a weak
base with a pKa of 3.7 and displays an increase in solubility in gastric juice because of its
low pH. However, the ITZ that is dissolved in gastric juice presents reduced solubility as it
moves toward the intestine, causing its precipitation in intestinal fluids [22–24]. Several
studies have investigated the effect of excipients on hot-melt extrusion formulations of
ITZ [25,26]. Most of them have mainly focused on improving the dissolution rate of ITZ
by selecting a suitable polymer [27]. The limited pH solubility of ITZ means that it can
only achieve a narrow absorption area in the gastrointestinal tract. Considering the narrow
absorption window of ITZ, we hypothesized that the combination of different HME pellets
with their various ITZ release behaviors could help us fine-tune the bioavailability of ITZ,
leading to the better administration of ITZ compared to a single HME pellet. A clear
mechanistic study that assesses ITZ absorption behaviors in the supersaturated phase
during continuous dissolution has not been conducted. Therefore, ITZ was considered to
be a model drug for this study.

In this study, ITZ, a poorly water-soluble BCS II drug, was used as the model drug.
This study aimed to develop ITZ SD pellets using HME technology in order to maximize
the bioavailability of ITZ in biological systems. The physicochemical properties of the ITZ
SD pellets were evaluated using FE-SEM, DSC, PXRD, and FT-IR. The ITZ release rates of
the physical mixture (PM) and SD were determined using the pH-shifting method of the
dissolution study. Furthermore, the dissolution behavior of ITZ was investigated based
on its appearance and XRD patterns. The stability of ITZ SD formulations was monitored
for 6 months under long-term and accelerated conditions using a well-closed container.
Pharmacokinetic (PK) studies of ITZ formulations were performed on rats and beagle dogs.

2. Results and Discussion
2.1. Assessment of Drug Contents, Release Behaviors, and Morphological Changes

The SD pellets were prepared using PVA (Parteck® MXP, which has excellent HME
processability) [28], HPMCP (which can inhibit drug recrystallization) [29], and Soluplus®

(which has excellent solubilization abilities) [30]. Two types of ITZ SDs with hydrophilic
carriers were prepared. SD-1 constituted the PVA-based polymer, prepared with Parteck®

MXP to enhance the solubility of ITZ in the stomach. SD-2 was prepared using a ternary
mixture of HPMCP HP-55, Soluplus®, and ITZ. It was designed to increase the solubility
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and inhibit the precipitation of ITZ in the small intestine. The contents of the drugs in
SD-1 and SD-2 that were prepared using the HME technology were 99.2 ± 2.5% and
98.4 ± 3.1%, respectively, and the SDs did not decompose or degrade. In addition, drug
release from the SDs, their PMs, and commercial ITZ (Sporanox®) are shown in Figure 1. In
the dissolution test, there were significant differences in the dissolution rate of ITZ between
the PM and SDs. Therefore, it was confirmed that the solubility enhancement of ITZ had
been achieved using HME technology with different carriers.
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Figure 1. Drug release behaviors of SDs, PMs, and Sporanox® in pH-shift dissolution medium
(n = 6).

The dissolution rate of the crystalline ITZ powder was less than 1.5%, regardless of the
pH of the dissolution medium (data not shown). Sporanox® is an ITZ reference product
that is prepared using a spray–drying process with hypromellose. The dissolution rate of
Sporanox® reached a maximum of 80% after 2 h in gastric fluid (pH 1.2) but decreased to
less than 60% in intestinal fluid (pH 6.8). These results indicated that the ITZ in Sporanox®

was highly dissolved at a low pH in the gastric environment and rapidly recrystallized
when the pH increased to over 6.8 [31]. Capsules with the SD-1 pellets showed a dissolution
rate of 77.8 ± 5.8% after 15 min in simulated gastric fluid. As a result, it had released up to
96.1 ± 0.6% of the drug after 45 min. After changing the pH from 1.2 to 6.8, the dissolution
rate of ITZ in the SD-1 capsule gradually decreased due to ITZ precipitation. The ITZ
precipitation of SD1 was slower than that of Sporanox®.

The recrystallization of the ITZ in the SDs that had been prepared with other hy-
drophilic polymers has been reported to occur even in the gastric environment [32,33].
However, the pellets prepared using the HME method with PVA did not precipitate or
recrystallize in the gastric environment in this study. These results demonstrated that the
PVA in the SDs that were prepared using HME technology inhibits ITZ recrystallization in
gastrointestinal environments. Drug release from capsules with SD-2 pellets was less than
9% after 2 h in the gastric medium and increased in the small intestinal medium (pH 6.8),
reaching 46.3 ± 2.1% after 45 min and 72.7 ± 2.6% after 120 min. While SD-1 showed a
rapid drug release pattern in the gastric medium, SD-2 was designed to be released in the
small intestine media.

The SD-3 capsules showed a continuous drug release pattern regardless of the pH.
The ITZ in SD-1 was dissolved in the simulated gastric fluid. The SD-2 pellets gradually
dissolved as the pH increased. In addition, no precipitation was observed in the SD-3
capsules. As the pH of the medium increased, the precipitation of ITZ in SD-1 was
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masked relatively well by the disintegration of SD-2. We found that the ITZ in the SD-3
capsules was continuously released into the gastrointestinal tract, thereby maintaining a
supersaturated state.

Furthermore, the clarity of the dissolution medium changed after the pH of the
dissolution was changed. A colorless and transparent medium was observed at a pH of 1.2.
After the medium changed from pH 1.2 to pH 6.8, the medium gradually became opaque
and white (Figure 2). The dissolution samples were then dried at 60 ◦C. As shown in
Figure 3, each sample exhibited different XRD patterns. The differences in ITZ solubility
induced changes in the turbidity of the dissolution medium. A strong X-ray diffraction
peak was observed at around 32◦ for ITZ, while weak diffraction peaks at 15◦ and 23◦ were
observed for Sporanox®. Peaks were observed at 32◦ and 35◦ for SD-1 pellets. These results
suggest that the dissolution rate of Sporanox® and SD-1 pellets decreased at pH 6.8, owing
to the recrystallization of ITZ. In addition, relatively weak diffraction peaks were observed
at approximately 30◦ and 32◦ for the SD-2 pellets, and it was confirmed that in the SD-2
pellets, the level of ITZ recrystallization in the intestinal environment was lower than that
for the SD-1 pellets and Sporanox®.
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Figure 2. Visual observation of the release behaviors of the ITZ formulations (Sporanox®, SD-1, and
SD-2) in the pH-shifting method.

2.2. Physicochemical Properties of ITZ SD

DSC and PXRD analyses were performed to confirm the change of the hot-melt extru-
dates from the crystalline to the amorphous form. DSC analysis revealed an endothermic
peak at 167 ◦C, which is the melting point of ITZ, but such an endothermic peak was not
observed in SD-1 and SD-2 (Figure 4). These results indicated that the crystalline ITZ
changed to an amorphous SD upon undergoing the HME process, indicating that the drug
was evenly dispersed in the polymer [34]. The PXRD analysis showed sharp peaks between
10◦ and 30◦ for ITZ, indicating that the drug was present in a crystalline form. Crystalline
peaks were not observed for the SD-1 and SD-2 pellets, and it was confirmed through the
XRD and DSC analyses that the crystal structure of ITZ changed to an amorphous form in
the SD that had been prepared using HME technology (Figure 5) [35].
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FT-IR was performed to confirm the interaction between ITZ and the polymers (Figure 6).
Distinct absorption bands of ITZ were observed at 944.9 cm−1 (970~920 cm−1, trans = C–H
out-of-plane bending), 1450.9 cm−1 (C-N triazole), 1510.2 cm−1 (CO-NH2), 1613.8 cm−1

(1650~1610 cm−1, C=C stretching), and 1698.1 cm−1 (1710~1680 cm−1, C=O stretching) [36].
In the PVA (Parteck® MXP), a peak was observed at 3418.4 cm−1 that was related to OH
stretching. In contrast, another peak for the PVA was observed at 1738.4 cm−1, which
was related to the unhydrolyzed ester group. The peak of SD-1 was observed to shift to
3445.7 cm−1, which seems to represent a hydrogen bond between ITZ and PVA. This hydro-
gen bond improves the stability of the SD [37]. Soluplus® showed distinct absorption bands
at 3462.5 cm−1 (O-H) and 1443.8 cm−1 (C-O-C) [38]. HPMCP-HP55 showed a distinct band
at 1732.3 cm−1, which may be due to the symmetric and asymmetric stretching vibrations
of the C=O group [39]. The ITZ has acceptor hydrogen bond groups in its structure.

Additionally, Soluplus® has an ether, hydroxyl, and carbonyl group that can donate
a proton to the hydroxy groups, while HPMCP has a phthalate functional group that
can act as the proton-accepting polymer. As a result, hydrogen bonds can be formed
in SD-2 because both the proton donor and acceptor groups coexist. The peak shift of
SD-2 was shown to be at 3447.9 cm−1 [40]. This hydrogen bonding triggered drug release
while inhibiting the recrystallization of ITZ, even when the pH of the dissolution medium
was increased.

SEM measurements revealed crystal forms on the surface of the ITZ powder and PMs.
However, in the cross-section of the SD-1 and SD-2 pellets, the crystal form of the drug
was not observed. It was confirmed that the drug and polymer were evenly distributed
(Figure 7).
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tion), (A-2) itraconazole (ITZ) (700× magnification), (B) PM-1, (C) SD-1, (D) PM-2, and (E) SD-2.

2.3. Stability Test

Table 1 and Figure 8 show that there were no significant changes in the drug content
and dissolution rates for the SD-1 and SD-2 formulations under long-term (25 ± 2 ◦C,
60% ± 5% RH) and accelerated (40 ± 2 ◦C, 75% ± 5% RH) storage conditions. There were
no significant differences in the drug content or release behavior of ITZ between the initial
stage of the SD and its condition after 6 months. In addition, PXRD analysis was performed
to evaluate the changes in the crystal form during the stability test (Figure 9). Diffraction
peaks of the crystalline ITZ in SD-1 and SD-2 did not appear under both storage conditions,
confirming the stability of the SDs that were prepared using HME.
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Table 1. Content of itraconazole in the solid dispersions during the stability tests (unit: percentage).

Time and Stability Testing Conditions SD-1 SD-2

Initial 99.20 ± 2.51 98.43 ± 3.11
Long-term 3 months 97.30 ± 1.71 95.41 ± 3.66
Long-term 6 months 98.83 ± 0.93 96.71 ± 2.21

Accelerated 2 months 97.15 ± 2.00 98.55 ± 1.15
Accelerated 4 months 97.15 ± 2.71 98.31 ± 1.05
Accelerated 6 months 97.97 ± 1.39 97.90 ± 1.91
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2.4. In Vivo Studies

The PK profiles in the rats are shown in Figure 10, while the PK parameters are
shown in Table 2. Crystalline ITZ was not detected in the plasma because of its low
solubility and bioavailability. Sporanox® reached the maximum blood concentration at 2.8 h
(Tmax), with a Cmax of 167.8 ± 53.4 ng·mL−1 and AUC0–48h of 1073.9 ± 314.7 ng·h·mL−1.
The Tmax, Cmax, and AUC0–48h of the ITZ in SD-3 were 2.0 h, 1073.9 ± 314.7 ng·mL−1, and
2969.7 ± 720.6 ng·h·mL−1, respectively. These results showed that the ITZ AUC0–48h of the
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SD-3 capsules was three-fold higher than that of Sporanox®. However, in the SD-3 capsule-
administered group, it was expected that SD-1 would be released in the stomach under
acidic conditions to create supersaturation, and SD-2 would be released at a neutral pH.
Although a bimodal PK profile was expected, the PK profile of the SD-3 capsule showed
only a single peak. Therefore, in vivo assessments were also performed in beagle dogs to
investigate the release mechanism of the ITZ SDs.
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Table 2. Pharmacokinetic parameters of itraconazole in rats (n = 6).

Parameter ITZ Sporanox® SD-3

Cmax (ng·mL−1) None 167.8 ± 53.4 469.8 ± 108.0
Tmax (h) None 2.8 ± 1.0 2.0 ± 0.0

AUC0–48h (ng·h·mL−1) None 1073.9 ± 314.7 2969.7 ± 720.6

The SD-1, SD-2, and SD-3 capsules were prepared and administered to beagle dogs.
The results of the in vivo analysis performed in beagle dogs are shown in Figure 11
and Table 3. The AUC0–24h of SD-1 was 3.37 ± 3.28 µg·h·mL−1, and that of SD-2 was
7.50 ± 4.50 µg·h·mL−1, indicating that the AUC0–24h of SD-2 was 2.2 times higher than
that of SD-1 in the beagle dog model. The dissolution rate of SD-1 was significantly higher
than that of SD-2 at pH 1.2. The ITZ in the SD-1 formulation was dispersed only in the
PVA-based Parteck® MXP. The solubility of ITZ in a binary SD system is easily affected by
the external environment, such as the pH of the simulated biological fluid. As a result, the
mean plasma concentration of ITZ in SD-1 was lower than that in SD-2.
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Table 3. Pharmacokinetic parameters of itraconazole in beagle dogs.

Parameter SD-1 SD-2 SD-3

Cmax (ng·mL−1) 0.26 ± 0.18 0.77 ± 0.58 0.55 ± 0.18
Tmax (h) 3.0 ± 2.8 3.0 ± 0.0 2.5 ± 0.7

AUC0–24h (ng·h·mL−1) 3.37 ± 3.28 7.50 ± 4.50 6.05 ± 1.71

In contrast, the HPMCP-HP55 and Soluplus® in the SD-2 formulation could have
sterically inhibited the recrystallization of ITZ because HPMCP-HP55 could dissolve at
pH 5 or even higher at pH 6. The precipitation of the BCS class II drug, ITZ, which
exhibited dissolution-rate adsorption, could be synergistically inhibited by polymer-based
surfactants [41]. The in vivo adsorption area of ITZ was narrow. Considering the ITZ
dissolution rate and plasma concentration of SD-2, which had low solubility in gastric
fluids, these results indicate that the plasma concentration of ITZ was highly affected by
the solubility of ITZ in the dissolution medium. By adjusting the proportion of the ITZ SD
pellets with different compositions, it was possible to achieve a target dissolution rate in a
narrow absorption area.

The SD-3 pellets consisted of a 50% mixture of SD-1 and SD-2. The PK profile of
SD-3 exhibited a plasma concentration of ITZ that was between those of SD-1 and SD-2.
The in vivo experiment was performed with the animals in a fasted state, and the pH of the
gastric fluid in the fasting beagle dog was approximately 2.0, which is higher than the actual
pH that was used in the in vitro dissolution experiment [42]. Furthermore, Yoo et al. (2000)
reported that the dissolution rate of Sporanox® was 86.5 ± 1.8% at pH 1.2 and 18.9 ± 3.97%
at pH 2.0 in 60 min. A slight increase in pH from 1.2 to 2.0 substantially reduced the dissolu-
tion rate of ITZ four-fold [41]. According to a US patent (US patent no. 9,492,446 B2, 2016),
the solubility of the patented ITZ SD that was produced using a spray–dry technique with
PVA and ITZ (in a ratio of 1:1) decreased by 5.6 times when the pH of the medium was
changed from 1.6 to 2.4. Therefore, it is highly recommended that ITZ is administered
immediately after a meal to improve its bioavailability [43,44].

SD-2 was not released at a low pH but was released and absorbed in the duodenum.
The bioavailability of SD-2 was three times higher than that of SD-1. Actually, ITZ was
absorbed in a supersaturated state in the absorption area [45–47]. Based on these in vivo
results, we confirmed that the bioavailability of ITZ increased when supersaturation
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occurred in the small intestine. In addition, the SD-2 pellet showed enhanced bioavailability,
with enhanced solubility and greater inhibition of ITZ precipitation in the absorption area.

3. Materials and Methods
3.1. Materials

ITZ (USP grade) was purchased from SK Chemical (Seoul, Korea). PVA (Parteck® MXP,
average molecular weight: ~32,000) was supplied by Merck KgaA (Darmstadt, Germany).
Triethyl citrate (≥99%, molecular weight: 276.28) was purchased from Sigma-Aldrich
(Seoul, Korea). Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copoly-
mer (PCL-PVAc-PEG, Soluplus®, average molecular weight: ~118,000) was supplied by
BASF (Ludwigshafen, Germany). HPMCP-HP55 (hypromellose phthalate, average molec-
ular weight: ~45,580) was obtained from Shin-Etsu Chemical (Tokyo, Japan). All chemicals
and solvents used were of analytical grade.

3.2. Preparation of SD Pellets Using HME Technology

Mixtures of ITZ–Parteck® MXP and ITZ–Soluplus® HPMCP-HP55 were prepared
using the composition that is summarized in Table 4. The HME SDs were produced using the
Pharma 11 Twin-screw Extruder system (Thermo Fisher Scientific, Waltham, MA, USA). In
both formulations, 10% triethyl citrate was used as a plasticizer. SD-1 and SD-2 extru-
dates were pelletized using a VariCut Pelletizer (Thermo Fisher Scientific) at L2–3 speed,
resulting in a pellet thickness of 0.5 mm. The weight of the PVA (Parteck® MXP) was
conventionally required 70(w/w)% as per the total weight when the degree of PVA hy-
drolyzation significantly impacts the inhibition of poorly water-soluble drug precipitation.
As considering the drug-polymer miscibility, 80(w/w)% of Parteck® MXP is enough to act
as a strong precipitation inhibitor for the ITZ. Even the 20 w/w% of HPMCP can provide
the modulated release behaviors in different pH environments. The ratios of Soluplus to
HPMCP-HP55 were determined by achieving the suitable miscibility for maintaining the
assay of the ITZ in the HME process.

Table 4. Composition of solid dispersions prepared using HME technology.

Formulation and Condition SD-1 SD-2

Itraconazole (ITZ) 20% 20%
Parteck® MXP 80% 0%

Soluplus® 0% 60%
HPMCP-HP55 0% 20%

Processing parameter SD-1 SD-2

Screw speed (RPM) 50 30
Processing temperature (◦C) 200 170

3.3. Determination of Drug Content in SDs

The drug content in the SDs was evaluated as follows. A standard solution that
contained 10 mg of ITZ in 100 mL of mobile phase (acetonitrile: phosphoric acid buffer
solution (pH 2.0) = 65:35 w/w) was mixed using an Ultrasonic Ben 5510 DTH sonicator
(Branson, Danbury, CT, USA) for 15 min. If the miscibility between the drug and the
polymer is low, then the content uniformity of the drug in the HME formulation would
drop significantly during the process. Additionally, the distribution and homogeneity
of the drug in the HME formulation could be evaluated using spectroscopic imaging
techniques [48,49]. In fact, the compatibility between the drug and the polymer can be
the critical parameter for maintaining the assay of the drug. The 0.1 mg/mL of ITZ in
the mobile phase was a stock solution for quantitatively analyzing the assay of ITZ in
the SD formulation. The test samples (SD-1 and SD-2) were prepared using the same
concentration of ITZ as per the standard solution. The samples were passed through a
0.45 µm filter paper. After removing gas from the solution using a sonicator, an Agilent
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1200 series HPLC (Agilent Technologies, Santa Clara, CA, USA) system was used to analyze
the samples under the following settings: UV detection wavelength, 261 nm; flow rate,
1.0 mL·min−1; column temperature, ambient; injection volume, 20 µL; and column,
C18 (5 µm, 150 mm × 4.6 mm).

3.4. Drug Release

Dissolution studies of ITZ PMs and ITZ SDs (with an ITZ amount equivalent to
100 mg) were performed using HME with the paddle apparatus (USP Method II). The
ratio of PMs that contained ITZ was equal to the compositions of the SDs. ITZ PMs were
prepared by homogeneously mixing the excipient and raw ITZ using a 60-mesh sieve.
The dissolution test was conducted with 750 mL of 0.1 N HCl (pH 1.2) for 2 h. The pH
of the solution was then adjusted to 6.8 by adding 250 mL of pre-heated 0.2 M trisodium
phosphate (Na3PO4) solution, following which the dissolution test was continued for
another 2 h [27]. The dissolution test was performed using a PTWS–121C (Pharma Test,
Hainburg, Germany) with the paddle method indicated in USP Apparatus II. During the
dissolution test, the temperature was set to 37 ± 0.5 ◦C, and the paddle speed was set
to 75 rpm. Five milliliters of the samples were collected by filtering through a 0.45-µm
microfilter at the time points of 5, 15, 30, 45, 60, 90, and 120 min for each pH condition and
subjected to HPLC analysis, as described above.

3.5. Recrystallization Behavior of ITZ in pH 6.8 Medium

After the dissolution test, the dissolution medium that contained SD-1, SD-2, and
Sporanox® was passed through a 200-mesh sieve (75 µm) and transferred to a beaker.
It was dried at 60 ◦C until the medium evaporated. The XRD patterns of ITZ in SDs
and Sporanox® were evaluated to understand the recrystallization behavior of ITZ upon
changing the pH of the dissolution medium.

3.6. Physicochemical Properties of SDs

FE-SEM, DSC, XRD, and FT-IR analyses were performed to determine the morpho-
logical and crystalline characteristics of the ITZ SDs. A JSM-6510 (JEOL, Tokyo, Japan)
was used for the SEM analysis, at 20 kV and a magnification of 55×–1000×, after the
samples were coated with a thin layer of gold for 10 min. A DSC Q2000 (TA Instruments,
New Castle, DE, USA) was used for the DSC. Approximately 5 mg of the sample was
weighed in a standard open aluminum pan, and the temperature was increased at a rate of
10 ◦C·min−1 from 0 ◦C to 200 ◦C, with nitrogen as the purge gas, and the temperature and
heat flow calibrated with indium. For the XRD analysis, we used a D8-ADVANCE (Bruker,
Billerica, MA, USA) with Cu-Kα radiation (1.5406 Å), which was gently placed in an alu-
minum holder at 40 kV and 40 mA with a 2-theta value of 5–40◦ and a scanning speed of
1.2◦·min−1. The interaction between the ITZ and the polymers was identified using FT-IR
analysis. FT-IR analysis was performed using a SINCO IR 200 (Thermo Fisher Scientific),
and measurements were taken over a wavelength range of 400–4000 cm−1.

3.7. Stability Test

The SD-1 and SD-2 pellets were filled into capsules and then placed in a well-closed
container under specific conditions for long-term (25 ± 2 ◦C, 60 ± 5% RH) and accelerated
(40 ± 2 ◦C, 75 ± 5% RH) stability tests. The long-term stability test was conducted at 0, 3,
and 6 months and the accelerated test was conducted at 0, 2, 4, and 6 months. The drug
content, release rate, and XRD patterns of the samples were evaluated at each time point.

3.8. In Vivo Studies

In vivo studies were performed using rats and beagle dogs to confirm the enhance-
ment of bioavailability. The major absorption areas of ITZ can be identified in the different
gastrointestinal systems of each biological species. The gastrointestinal system was dif-
ferentiated according to its length and diameter. Through allometric scaling, these PK
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data could be correlated with those of human and animal species. Furthermore, the
in vivo performance of ITZ, depending on the animal species, could be predicted through
dose estimation.

An in vivo rat model assessment was used to investigate the absorption behavior of
ITZ. Three test groups were administered to rats: SD-3 (50% SD-1 and 50% SD-2 pellets),
ITZ crystalline powder, and Sporanox®. ITZ crystalline powder and Sporanox® (ITZ
100 mg, Janssen) were used as reference formulations. The mean weight of the 18 rats
(male Sprague–Dawley rats) was 276.46 ± 8.51 g. The rats were divided into three groups
of six rats each. SD-3 pellets, Sporanox®, and ITZ crystalline powder were milled with a
mortar and pestle and suspended in purified water that contained citric acid and xanthan
gum. Each ITZ formulation was administered to the rats after a 16 h fast. The feeding
resumed 4 h after the administration of ITZ. The rats in all of the groups were administered
20 mg/kg of ITZ. Blood samples (300 µL each) were collected from the jugular vein at 0, 0.5,
1, 2, 3, 4, 6, 8, 12, 24, and 48 h after drug administration and stored in 15 µL heparin-treated
1.5 mL microtubes. The blood samples were centrifuged at 1200 rpm/4 ◦C for 3 min.
After centrifugation, more than 100 µL of the supernatant (plasma) was transferred to
a microtube. The plasma samples were then stored at below −70 ◦C in a deep freezer
before quantitative analysis. These animal experiments were performed following the
protocol reviewed and approved by the Animal Experimental Ethics Committee of the
Korea Preclinical Center (KPC-E2019035).

In vivo assessment to evaluate the bioavailability of the SD-1, SD-2, and SD-3 capsules
was performed using a beagle dog model. The tested groups of ITZ formulations were
administered to male beagle dogs (Canis familiaris) (weighing 10.6 ± 0.6 kg, n = 3) after 16 h
of fasting. The feeding was resumed 4 h after drug administration. The drug administration
dose was 100 mg/head, and approximately 3 mL of blood was collected at the time points
of 0, 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 h after drug administration. The collected blood samples
were stored in 10 µL heparin-treated 1.5-mL microtubes. The supernatant (plasma) obtained
after centrifuging the blood samples at 4000 rpm/4 ◦C for 10 min was divided into two
sets of 500 µL each in 1.5-mL microtubes and stored below −80 ◦C in a deep freezer before
being used for quantitative analysis. This animal experiment was performed following
the protocol reviewed and approved by the Animal Experimental Ethics Committee of the
Korea Preclinical Center (KPC-M2019123).

Non-compartmental analysis was conducted using a WinNonlin (Pharsight Corpora-
tion, Mountain View, CA, USA). Tmax, Cmax, t1/2, and lambda z were calculated using the
empirical data. The area under the plasma concentration-time curve (AUCt) was calculated
using the linear trapezoidal method. Statistical analysis to calculate significant differences
(α = 0.05) was conducted using a two-tailed Student’s t-test.

4. Conclusions

An SD pellet containing a poorly soluble drug, ITZ, was successfully prepared using
HME technology and a pelletizer. SD-1 was designed to increase the dissolution rate of
ITZ in the gastric environment, while SD-2 was designed to increase the same in the upper
small intestine. The release rate of SD-2 gradually increased as the pH of the dissolution
medium increased from 1.2 to 6.8. However, the bioavailability of ITZ in SD-2 was higher
than that in SD-1. SD-1 presented lower bioavailability (by approximately three-fold) than
SD-2 in the in vivo studies carried out in beagle dogs because of the pH and the narrow
absorption area of the gastrointestinal system. The dissolution rates of the SD pellets
increased at the desired pH. Ultimately, the ITZ SD-3 pellets (SD-1 50%, SD-2 50%) also
increased at the desired pH. These results indicated that the absorption area where the drug
was immediately released to absorb was strongly associated with the bioavailability of ITZ.
This study has aimed to improve ITZ absorption by combining HME formulations with
conventional processes and compositions. Consequently, the bioavailability of poorly water-
soluble drugs could be modulated by maintaining the supersaturated state of the model
drug. As the pH solubility of a drug should be considered according to the absorption
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window of the drug, this formulation strategy can be a promising option for the poorly
water-soluble drug.
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