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Abstract: Acoustic Emission (AE) nondestructive tests have attracted great interest for their use in the
determination of structural properties and behavior of reinforced concrete (RC) elements. One of the
applications this method can contribute to is in high-strength concrete (HSC) columns. These elements
have a great advantage in the lower stories of high-rise buildings. However, the premature failure
of the concrete cover and the brittleness nature of the failure is of a concern for engineers.
This paper presents a study on the AE monitoring of HSC columns subjected to compressive axial
loading. The study consists of four large-scale reinforced HSC columns with different confinement
reinforcement and height. It is shown that the AE distributions in the columns are categorized by
three stages. Moreover, the levels of loads reached at the first AE macro event are similar to the lower
range levels of the nominal axial compressive strengths of the tested specimens, while the majority of
macro AE events are located at the concrete cover. Based on the results of this study, AE monitoring
can provide indications for the damage and load levels attained by reinforced high-strength concrete
columns subjected to compressive axial loading.

Keywords: reinforced-concrete; acoustic emission; AE; columns; high-strength concrete; HSC;
transverse steel reinforcement; confinement

1. Introduction

The use of high-strength concrete (HSC) for the lower story columns in high-rise buildings is very
attractive for architects and engineers [1]. One of the main concerns of using HSC for such critical
structural elements is the brittleness nature of the failure mode. Confinement through transverse
steel reinforcement (TSR) can transfer the failure mode to a more ductile one; however, the failure of
the column’s concrete cover cannot be prevented by the confinement. Spalling off the concrete cover
occurs prematurely, i.e., before the concrete reaches its full compressive strength (derived from tests
of standard cylinders—150 mm diameter by 300 mm height) [2,3]. It should be noted that concrete
spalling can result also from exposure to fire [4,5]. This phenomenon is dominant in HSC and one of
the protection methods is the addition of polypropylene fibers to the concrete mixture. These fibers
melt during the exposure to fire allowing the release of the steam pressure, thus reducing the risk
of concrete spalling [6]. Nondestructive tests (NDT) methods based on acoustic, electromagnetic,
thermographic, and optical phenomena are becoming more popular for determining several structural
properties and behavior of reinforced concrete (RC) elements [7–9]. For example, thermographic
testing can monitor the temperatures which can influence the reinforcement corrosion in concrete [8].
Electromagnetic NDT can be used to detect location and diameter of reinforcement bars in RC elements
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and fiber spacing in steel fiber-reinforced concrete elements [9,10]. Ultrasonic methods are used to
detect concrete cracking due to steel reinforcement corrosion [11,12].

The Acoustic Emission (AE) nondestructive test method was used by several research studies to
examine the failure mode and the development of cracks in structural RC elements [13,14]. Studies have
investigated the use of AE technique on normal strength concrete (NSC) columns cast in stay-in-place
fiber-reinforced polymer (FRP) tubes [15] or wrapped with FRP [16]. These studies showed that the
cumulative AE counts can indicate the stage of damage [15] and provides a better understanding of
the crack process of FRP-confined NSC columns [16]. Puri and Weiss [17] performed axial compressive
loading and unloading tests on NSC cylinders (76 mm diameter by 406 mm height). They found a linear
relationship between the AE energy and the dissipated fracture energy, and thus the AE energy can be
used to evaluate the column’s damage. Other studies [18,19] found a high correlation between the
AE-strain hysteretic energies of RC beam-column connections and slabs under simulated earthquake
loadings. These studies proposed formulas based on the recorded AE to predict the damage level
for the examined RC elements. Moreover, AE signals were used to analyze the damage of confined
circular concrete-filled steel tubular (CCFT) columns [20] and FRP-CCFT columns and showed the
possibility of AE to predict initial steel yielding and to provide failure warning [21]. The AE technique
was also implemented for RC beams and revealed that AE parameters increased with increasing beam
thickness [22]. The present study examines the damage levels of HSC-reinforced columns subjected to
axial compressive loading. Moreover, the study aims to investigate the premature failure of HSC cover
in RC circular columns. This premature failure is the main reason of the higher safety factors used in
the design of reinforced HSC compared to NSC columns [1,23–25].

2. Experimental Program

An experimental program was designed and performed to investigate the effectiveness of the
AE technique for monitoring the cracking development and the damage levels of HSC columns.
The experimental program included four circular reinforced HSC column specimens of 250 mm
diameter. The test variables are as follows. The height of the columns are H = 750 and 1000 mm,
and the volumetric transverse reinforcement ratios are ρs = 0.44 and 2.03%. These variables were
chosen in order to examine their influence on the damage levels and the cracking development
monitored by the AE technique in HSC columns subjected to axial compressive loading. The specimens
are defined by the TSR hoops bar diameter (6 and 12 mm) and spacing (120 and 100 mm) and by the
height of the specimen (S for H = 750 mm and L for H = 1000 mm). Details of the specimens tested at
the National Building Research Institute laboratory at the Technion—Israel Institute of Technology are
presented in Table 1 and Figure 1.

Table 1. Details of reinforced concrete specimens.

Longitudinal Transverse ReinforcementReinforcement

Specimen f ′c D H fy ρs` φh s fyh ρs
No. MPa mm mm MPa % mm mm MPa %

1 F06S120S 84.8 250 750 433 1.88 6 120 288 0.44
2 F06S120L 72.1 250 1000 433 1.88 6 120 288 0.44
3 F12S100S 75.9 250 750 433 1.88 12 100 435 2.03
4 F12S100L 86.3 250 1000 433 1.88 12 100 435 2.03
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Figure 1. Reinforcement cage properties of tested columns.

2.1. Material Properties

2.1.1. Concrete

The target concrete unconfined strength of the designed specimens was set to 78 MPa. The concrete
mixture of the specimens was prepared in the laboratory. The concrete mixture properties, which had a
0.27 water–cement ratio, are given in Table 2 [1,26]. It should be noted that the amount of polypropylene
fibers used can be sufficient to minimize concrete spalling of HSC exposed to fire [4]. However, in this
study, the intention of adding polypropylene fibers to the concrete mixture is to reduce the possible
plastic shrinkage. Three standard concrete cylinders 150 mm× 300 mm (diameter× height) were tested
under axial compression to derive the concrete average compressive strength at 28 days (=testing time),
f ′c (Table 1).

Table 2. Properties of concrete mixture.

Variable (kg/m3)

Cement 460
Fine aggregate—quartz sand 220
Intermediate aggregate (9 mm) 900
Coarse aggregate (19 mm) 550
High-Range Water Reducer 9
Fly Ash 100
Polypropylene Fibers 1
Water 150

Slump (mm) 175
Water to cementitious materials w/cm 0.27

2.1.2. Steel Reinforcement

The longitudinal steel reinforcement consisted of six 14 mm diameter deformed bars. Hoops of
6 mm diameter plain bars and 12 mm deformed bars were used as TSR. At least three tensile tests were
performed on reinforcement bar coupons for each batch of steel to obtain the average yield strength
(Table 1).
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2.2. Test Set-Up and Instrumentation

The RC columns and the concrete cylinders were cured for 7 days and after that were laid in the
laboratory ambient conditions to the day of testing. Specimen axial displacement was recorded using
four Linear Variable Differential Transformers (LVDTs). Two LVDTs (with a gauge length of 500 mm for
specimens F06S120S and F12S100S and 750 mm for specimens F06S120L and F12S100L) were attached
to the steel collars installed at the top and bottom of the specimens to prevent local failure, and another
two LVDTs were attached to the press’s rigid steel plates (Figure 2). A load cell was used to measure
the compressive load applied during the test. AE test method was applied to monitor initiation and
development of damage in RC columns to failure. For this purpose, a multichannel acoustic emission
system PCI8 manufactured by Mistras corporation was used. Monitoring was performed using nine
150 kHz resonant sensors mounted using cyano-acrylic adhesive and placed as specified in Figures 1–3.
The acoustic emission parameters of the detected and measured signals during the test included time of
AE wave arrival, peak amplitude, energy, absolute energy, signal strength, rise time, duration, counts,
average frequency, root mean square (RMS), and average signal level (ASL). Signal detection was
performed using fixed threshold at all channels. For each detected signal, a corresponding waveform
was recorded. Moreover, steel cups were used for sand capping the ends of the columns to ensure
uniform distribution of the loading (Figure 2). The specimens were tested under compressive axial
loading rate of 3 kN/s. The rigid hydraulic press used for testing has load-controlled capabilities and
a capacity of 5000 kN (see Figure 2).

Figure 2. Test set-up of the reinforced concrete column specimens.
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(b)

(a)

Figure 3. Position of Acoustic Emission (AE) sensors (a) specimens F6S120S and F12S100S,
and (b) specimens F6S120L and F12S100L.

3. Test Results

3.1. General

Figure 4 shows the appearance of the columns after testing. Figure 5 show the axial
compressive load versus the axial strain (measured from the central LVDT’s) of the tested specimens.
Moreover, Table 3 presents the maximum compressive axial load, Pmax; its corresponding strain, εc1;
the post-peak strain at 50% of the maximum load, εcp50; and the area under the load-strain curves,
Ap50. The latter two parameters indicate the level of ductility reached by the specimens. It is shown
in Figure 5 and Table 3 that, as expected, the overall behavior of specimens F12S100S and F12S100L
(with higher amounts of TSR) is better than that of specimens F06S120S and F06S120L in terms of
axial load capacity and ductility. It should be noted that the axial strain in Figure 5 is calculated based
on the LVDTs gauge lengths equal to 500 mm for the shorter specimens (F06S120S and F12S100S)
and 750 mm for the longer specimens (F06S120L and F12S100L). As the local failure of the specimens
with a similar amount of TSR (i.e., F06S120S-F06S120L and F12S100S-F12S100L) was about the same
length, different axial strain values can be obtained from the displacements recorded based on LVDTs
of different gauge lengths. This fact results in the lower ductility derived for the longer specimens
(F06S120L and F12S100L) compared to the shorter ones (F06S120S and F12S100S).
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F12S100L F06S120L F12S100S F06S120S

Figure 4. Appearance of specimens after testing.

Figure 5. Axial load versus axial strain of the tested specimens

Analysis of damage development in specimens during loading was performed by calculation
of distributions related to AE Absolute Energy (E) and specifically, by calculation of AE cumulative
absolute energy, En, and AE absolute energy rate, Er, shown in Figures 6–8. AE absolute energy (E) is an
AE hit parameter derived by a squared sum of AE signal’s voltage along the signal’s duration divided
on input impedance (10 kΩ) and presented in attoJoules (aJ) units. It is related phenomenologically
to a portion of mechanical energy released in form of AE waves during a single fracture event in the
RC element during its loading. Therefore, accumulation of fracture damage and its development
can be instrumentally monitored by cumulative AE absolute energy, En. At the same time, the rate
of damage accumulation and severity of fracture events, such as crack propagation in the material,
change during increasing loading and so released AE absolute energy. Therefore, in order to track
changes and trends in damage development, AE absolute energy rate, Er, was calculated as a sum
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of E of all AE events detected during time periods of 1 second. AE absolute energy rate (Er) allows
detection of short duration time trends in acoustic emission data that consist of a large number of AE
signals. It should be noted that, for specimen F06S120L, the AE system stopped to save AE data after
209 seconds due to technical issue. Therefore, the AE analysis of this specimen is based on the readings
that were manually taken during testing (as presented in Table 3). Data presented in Figures 6–8 was
recorded by sensor number 5 (see Figure 3), which was located in the middle of the specimen. Similar
results were observed by all other sensors, which is reasonable taking into consideration the relatively
small sensor spacing.

These figures show that AE distributions are categorized by three stages obtained in all specimens.
These stages are defined by the following four reference points. (A) Initiation of AE activity, (B) peak
AE absolute energy rate distribution (C) beginning of steady damage accumulation, and (D) the first
AE macro event and initiation of macro-damage development. Reference points A, B, and D were
obtained from AE absolute energy rate, while event C was obtained from the cumulative AE absolute
energy distribution at the moment, when a principle drop in the distribution’s slope was detected.
Thus, point C was determined at the intersection of two tangential lines defined along the cumulative
absolute energy curve (between points B and D). Moreover, point D was determined as the first
AE event with discrete burst energy that is significantly higher than the preceding stage (which is
characterized by concrete micro-cracking). The recorded loads at these events are given in Table 3 for
all specimens. The change in the cumulative absolute AE energy, En, can indicate the damage level
reached by the column [15]. It should be noted that this behavior, of three damage stages, was also
reported by Mirmiran et al. [15] for NSC FRP-confined columns.
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Figure 6. Absolute and cumulative absolute energy versus time—specimen F06S120S.
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Figure 7. Absolute and cumulative absolute energy versus time—specimen F12S100S.
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Table 3. Test results.

Specimen
Pmax εc1 εcp50 Ap50

PA * PB ** PC
† PD

‡ P0,EC2 P0,ACI P0,CSA P0,NZS
(PA/Pmax) (PB/Pmax) (PC /Pmax) (PD/Pmax) (P0,EC2/Pmax) (P0,ACI /Pmax) (P0,CSA/Pmax) (P0,NZS/Pmax)

(kN) (mm/mm) (mm/mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

F06S120S 3079 0.0020 0.0168 36 154 1249 2054 2636 3268 3872 3352 3463
(0.05) (0.41) (0.67) (0.86) (1.06) (1.26) (1.09) (1.12)

F06S120L 2994 0.0014 0.0065 13 89 1549 2074 2783 3026 3352 2976 3114
(0.03) (0.52) (0.69) (0.93) (1.01) (1.12) (0.99) (1.04)

F12S100S 3604 0.0018 0.0384 109 87 1057 2100 3206 3105 3507 3091 3202
(0.02) (0.29) (0.58) (0.89) (0.86) (0.97) (0.86) (0.89)

F12S100L 3774 0.0026 0.0087 30 20 1014 1889 3448 3292 3933 3395 3517
(0.01) (0.27) (0.50) (0.91) (0.87) (1.04) (0.90) (0.93)

* Load at initiation of significant AE activity. ** Load at peak AE energy distribution. † Load at beginning of steady damage accumulation. ‡ Load at the first AE macro event.
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3.2. Acoustic Emission and Compressive Behavior

The leading RC design standards [23–25,27] give different estimations for the nominal axial
load strength of HSC columns [1]. The general expression of the nominal axial load strength
is P0 = α1(Ag − As`) f ′c + As` fy, where Ag is the column’s gross cross-sectional area, As` is the
longitudinal steel reinforcement cross-sectional area, fy is longitudinal steel reinforcement yield
strength, and α1 is a parameter, which for the majority of the standards decreases as the concrete
strength increases (except in the ACI [27] where α1 is constant and equal to 0.85). The α1 parameter is
given as [1,23–25,27]

α1,ACI = 0.85
α1,CSA = 0.85− 0.0015 f ′c ≥ 0.67 for 20 MPa < f ′c ≤ 80 MPa

α1,NZS =

{
0.85 for f ′c ≤ 55 MPa

0.85− 0.004 ( f ′c − 55) ≥ 0.75 for 55 MPa < f ′c ≤ 70 MPa

α1,EC2 =

{
αcc for f ′c ≤ 50 MPa

αcc [1.0− ( f ′c − 50) /200] for 50 MPa < f ′c ≤ 90 MPa

(1)

where αcc, which has a range of 0.8 to 1.0 [23], is a coefficient that considers the long-term influence
on the axial strength and of negative effects resulting from the way the load is applied [23]. One of
the main reasons for decreasing α1 as the concrete strength increases is the premature failure of the
concrete cover. To evaluate the AE records with the compressive behavior of the HSC specimens,
the axial load and the AE absolute energy rate are presented with relation to the axial strain in
Figures 9–12. The figures also show the ranges of the following axial strengths derived from the
different standards [23–25,27]. The nominal axial load strength, P0; the design axial compressive
strength, Pn, which is based on P0 with material safety factors; and serviceability axial compressive
strength Pser, which is estimated as Pn/1.4, where the factor 1.4 is the equivalent safety load factor
(taking into account that the dead and live loads are the dominant loads). Moreover, the loads that
were reached at certain events recorded by AE sensors and were defined in Table 3 are also marked in
Figures 9–12 (PB = load at peak AE energy rate distribution, PC = load at beginning of steady damage
accumulation, and PD = load at the first AE macro event).

It is interesting to note (Figures 9–12) that the levels of loads reached at the peak AE absolute
energy rate distribution (PB) are similar to the levels of the assumed serviceability axial compressive
strengths, Pser, of the tested specimens. The levels of loads reached at the beginning of steady damage
accumulation (PC) are similar to the levels of the design axial compressive strengths, Pn, of the tested
specimens. Moreover, and most interesting, the levels of loads reached at the first AE macro event
(PD) are similar to the lower range levels of the nominal axial compressive strengths, P0, of the tested
specimens. It is believed that the first AE macro event indicates the beginning of the premature failure
of the concrete cover. Thus, from these results, it can be concluded that the lower range levels (obtained
by the standards [23–25]) are on the safer side for determining the nominal axial compressive strength
of HSC columns. This result is consistent with studies reported elsewhere [28–32].

AE data was also analyzed to study 3D source location of the AE events detected during loading
tests. Location calculations were performed using Vallen AE software with 3D solid algorithm [33]
and using the nine AE sensors installed along the column specimens. To investigate the distribution
of AE events across a cross section of specimen, a radial distance for every AE event was calculated.
Figures 13–16 show the AE source events along the radial distance of the column’s cross section (taking
into account the events at the entire column’s height) for all specimens. The figures show that the
majority of AE events were located at the the concrete cover and especially those associated with
the macro cracking at load levels around PD (see Figures 13b, 15b, and 16b). This result conform to
the phenomenon mentioned above, i.e., the premature failure of the concrete cover in HSC columns.
It should be also noted that from the presented results there is a slight difference in the overall
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AE activity before the onset of the macro cracking events for columns with different confinement
reinforcement or height.
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Figure 9. Absolute energy and axial load versus axial strain—specimen F06S120S.
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Figure 10. Absolute energy and axial load versus axial strain—specimen F06S120L.
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Figure 11. Absolute energy and axial load versus axial strain—specimen F12S100S.
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Figure 12. Absolute energy and axial load versus axial strain—specimen F12S100L.
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Figure 13. AE events along specimen F06S120S cross section for (a) t < 500 s and (b) t ≥ 500 s.
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Figure 14. AE events along specimen F06S120L cross section for t < 180 s.
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Figure 15. AE events along specimen F12S100L cross section for (a) t < 722 s and (b) t ≥ 722 s.
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Figure 16. AE events along specimen F12S100L cross section for (a) t < 750 s and (b) 750 ≤ t ≤ 950 s.

4. Conclusions

This paper presents a study on the acoustic emission (AE) monitoring of high-strength concrete
columns subjected to compressive axial loading. The study consists of four large-scale reinforced
high-strength concrete columns with different confinement reinforcement amounts and heights.
The results of the study show the following.

• The AE distributions in the columns are categorized by three stages defined by the initiation
of AE activity, the peak AE absolute energy rate distribution, the beginning of steady damage
accumulation, and the first AE macro event and initiation of macro-damage development.

• The levels of loads reached at the peak AE energy distribution are similar to the levels of the
assumed serviceability axial compressive strengths of the tested specimens.

• The levels of loads reached at the beginning of steady damage accumulation are similar to the
levels of the design axial compressive strengths of the tested specimens.

• The levels of loads reached at the first AE macro event are similar to the lower range levels of the
nominal axial compressive strengths of the tested specimens.

• The majority of AE events are located at the concrete cover and especially those associated with
the macro-cracking.

It is believed that the first AE macro event indicates the beginning of the premature failure
of the concrete cover. Thus, this phenomenon should be taken into account in the determination
of the nominal axial load compressive strength as prescribed in part of the leading standards.
Moreover, based on the results of this study, AE monitoring can provide correlation between the
damage and load levels (e.g., design axial compressive strength) attained by reinforced high-strength
concrete columns subjected to compressive axial loading and the AE results. Future studies can include
additional loading schedules like loading/unloading to provide more information regarding stages
of damage/cracks development in the columns and specifically regarding the load levels at which
irreversible damage is initiated.
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