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Abstract: Pituitary adenomas (PAs) can be unpredictable and aggressive tumors. No reliable markers
of their biological behavior have been found. Here, a proteomic analysis was applied to identify
proteins in the expression profile between invasive and non-invasive PAs to search for possible
biomarkers. A histopathological and immunohistochemical (adenohypophyseal hormones, Ki-67,
p53, CD34, VEGF, Flk1 antibodies) analysis was done; a proteomic map was evaluated in 64 out
of 128 tumors. There were 107 (84%) invasive and 21 (16%) non-invasive PAs; 80.5% belonged to
III and IV grades of the Hardy–Vezina classification. Invasive PAs (n = 56) showed 105 ± 43 spots;
86 ± 32 spots in non-invasive PAs (n = 8) were observed. The 13 most prominent spots were selected
and 11 proteins related to neoplastic process in different types of tumors were identified. Hint1
(Histidine triad nucleotide-binding protein 1) high expression in invasive PA was found (11.8 ± 1.4,
p = 0.005), especially at high index (>10; p = 0.0002). High Hint1 expression was found in invasive
VEGF positive PA (13.8 ± 2.3, p = 0.005) and in Flk1 positive PA (14.04 ± 2.28, p = 0.006). Hint1 is
related to human tumorigenesis by its interaction with signaling pathways and transcription factors.
It could be related to invasive behavior in PAs. This is the first report on Hint expression in PAs.
More analysis is needed to find out the possible role of Hint in these tumors.

Keywords: pituitary adenomas; neuroendocrine tumors; proteomic analysis; mass spectrometry;
invasive; biological behavior; biomarkers; classification

1. Introduction

Pituitary adenomas (PAs) are the most common alteration of the pituitary gland. At
the National Institute of Neurology and Neurosurgery in Mexico City, they are the sec-
ond most treated tumor after meningeal tumor (22.35%) [1] and account for 91% of sellar
and parasellar tumors and 10–15% of intracranial neoplasms with prevalence 2.7–24%
in autopsy investigations [2–4]. They have monoclonal origin and are classified accord-
ing to their hormonal type (lactotrophs, gonadotrophs, somatotrophs, corticotrophs, and
thyrotrophs). Prolactinomas and adrenocorticotropic hormone (ACTH) PAs are the most
common in women, while non-functioning pituitary adenomas (NFPAs) and growth hor-
mone PAs are the most frequent in men [5–8]. They are classified into functioning or
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non-functioning pituitary adenomas according to their clinical manifestations related or
unrelated to hormone production, and by their size evaluated with imaging studies (mi-
croadenomas: ≤10 mm diameter; macroadenomas: ≥10 mm diameter; or giant adenomas:
≥40 mm diameter) [9,10]. They have been considered benign and slow-growing tumors
with complex and varied clinical manifestations in relation to hormonal mismatch (galact-
orrhea, amenorrhea, Cushing’s syndrome, acromegaly, gigantism) or mass effect (headache,
visual impairment). Despite their apparent behavior, PAs can cause considerable damage
with significant morbidity (diabetes: up to 80%; hypertension: 50%; visual defect: 30.5%;
neurosurgery effects: 86.1%), and mortality (up to 16%) [11–13]. They can be invasive
(30–45% of the cases), destroying adjacent structures as sphenoid and/or cavernous sinus
and bones at the base of the skull (grades III and IV of Hardy–Vezina classification system)
and invading the cavernous sinus (grades III and IV of Knosp classification system) [14–16].
In addition, PAs can be aggressive, presenting rapid growth, significant invasion, resistance
to conventional treatment, recurrences (sometimes needing more than one surgery in a
period of seven years), increased mitotic index, Ki67 proliferation index (Ki67i) greater than
3%, and extensive p53 immunostaining. These tumors were considered a high risk and
were classified as atypical (third edition of WHO classification), but the atypical pituitary
term is no longer used in the new WHO classification (2017) [17,18]. Due to the aggressive
and invasive character of PAs, the term neuroendocrine pituitary tumor (PitNet, pituitary
neuroendocrine tumor) has been proposed, which better describes their behavior [15].

In PA investigation, several experimental strategies (histochemistry and immuno-
histochemistry techniques) have been performed, which allow for the identification and
classification of PAs according to stain affinity (basophils, chromophobes, and acidophils),
type of hormonal content (prolactin, growth hormone, LH, FSH, TSH, ACTH), PCR tech-
nique (endpoint PCR, RT-PCR, ddPCR), microarrays, RNA-Seq, bidimensional polyacry-
lamide gel electrophoresis (2-DE), mass spectrometry, and laser-capture microdissection
(LCM) [19–26]. Furthermore, DNA sequencing has been applied to find genetic alterations
and epigenetic changes [27], but only partial tumor genesis information has been found,
since the transcriptome and the proteome are dynamic. Then, new experimental strategies
have been used in an effort to elucidate the biological behavior of PAs. The term proteome
was first introduced by Wasinger and Wilkins to define the analysis of gene expression
based on the analysis of proteins, where the proteome is the PROTEin analysis, the com-
plement expressed by the genOME of a cell or tissue [28,29]. This is why transcriptomics
and proteomics play a key role in functional genomics to understand the regulation of
biological systems.

The proteomic analysis of the PA has revealed the expression of proteins classified by
functional groups (pituitary hormones, cellular signals, enzymes, cellular-defense proteins,
and cell-structure proteins, among others) among different subtypes of tumors. They
are related to pathway networks (Wnt and Notch pathways; mitochondrial dysfunction,
oxidative stress, MAP kinase, PI3K-Akt, mTOR ERK/MAPK, endocytosis, and spliceosome
signaling pathways, among others), some of them associated with tumor invasiveness and
aggressiveness [30–37]. Variants of prolactin have been identified in prolactinomas, and
they may be involved in different signaling pathways [38]. In ACTH-secreting PAs, differ-
entially expressed proteins have been found to be related to the Myc signaling pathway
and participate in metabolic changes and tumorigenesis in these tumors [39]. Differentially
expressed proteins, genes, and mRNA isoforms have been identified through integrative
proteomics and transcriptomics; they have been proposed as markers of invasiveness and
possible therapeutic targets [40–43]. However, further research is necessary to consider
some proteins as diagnosis, prognosis, and/or treatment biomarkers.

The aim of this study was to analyze proteomic profiles in invasive and non-invasive
PAs to search for proteins associated with the pathophysiology of these tumors. We
analyzed proteomic profiles from PA tissues by 2DE, protein spots were selected and
identified by mass spectrometry, and Hint1 protein expression was assessed in PA. The
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results of this work show the search for proteins participating in the neoplastic process that
are possible candidates for diagnostic, prognostic, and/or treatment markers.

2. Materials and Methods

The project was approved by the ethics committee of the National Institute of Neu-
rology and Neurosurgery (101-17), and the study was conducted in accordance with the
Declaration of Helsinki. Informed consent for the use of the samples for research purposes
was obtained from the patients.

A total of 128 PA samples were collected and processed for histopathological analysis.
The PAs were classified according to their clinical manifestations and radiological (MRI)
and histopathological analysis (Figure 1).
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2.1. Histopathological Processing

Surgical specimens for the patient’s diagnosis of PAs were collected during surgery.
The surgical procedure performed for tumor resection was transnasal–transsphenoidal
and transcranial. PA tissue intended for histopathological analysis was fixed with 10%
formaldehyde, dehydrated in an automatic tissue processor using alcohol (Histokinette
2000, Reichert-Jung, American Optical Buffalo, New York, NY, USA), and embedded
in paraffin. Four micrometer-thick sections were stained with hematoxylin–eosin and
observed under a wide-field Nikon photo microscope (Nikon Co., Tokyo, Japan). Neu-
ropathologist experts analyzed the biopsies and determined the histopathological diagnos-
tic. PA were characterized by immunohistochemistry with adenohypophyseal hormones,
proliferation, and angiogenic markers.

2.2. Immunohistochemistry

Sections of each case were deparaffinized, rehydrated, and rinsed in phosphate-buffer
saline (PBS); antigenic retrieval was performed heating the sections in a pressure cooker in
a commercial solution (Reveal, Biocare Medical, Concord, CA, USA) for 7 min, and rinsed
again in PBS. Afterwards, endogenous peroxidase was blocked with 0.25% H2O2/distilled
water for 20 min, rinsed in PBS at first, and then in 0.1%-Triton X-100 PBS. The sections
were incubated in a wet chamber, in primary antibodies against adenohypophyseal hor-
mone antibodies (Prl, GH, LH, FSH, ACTH, TSH), proliferation marker antibodies (Ki67,
p53), angiogenic marker antibodies (CD34, VEGF, Flk1), and Hint1 protein (Table 1) at
4 ◦C overnight. Slides were washed after incubation with the primary antibody, and the
reaction was detected by streptavidin–biotin system with the Peroxidase Mouse & Rabbit
kit (Diagnostic BioSystems, Pleasanton, CA, USA) and revealed with diaminobenzidine
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using a 2 Component DAB Pack kit (BioGenex, Carpinteria, CA, USA) according to the
manufacturer’s instructions; by the last, sections were hematoxylin counterstained. Normal
human pituitary tissue sections were used as a positive control of the immunohistochemical
technique, and sections incubated without primary antibody were used as negative control.
Immunodetection was analyzed by two experts, under a wide-field photo microscope
Nikon (Nikon Co. Tokyo, Japan).

Table 1. Antibodies used in immunohistochemical technique.

Antibody Dilution Company Catalog Number

Prolactin Ready to use Thermo Scientific MS-9083-R7

Growth Hormone Ready to use BioGenex AM028-5M

Follicle-stimulating
hormone Ready to use BioGenex AM026-5M

Luteinizing hormone Ready to use Thermo Scientific MS-1448-R7

Thyroid stimulating
hormone Ready to use Thermo Scientific MS-1453-R7

Adrenocorticotropic
hormone 1:50 Dako M3501

Ki67 (MIB-1) 1:50 Dako M7240

P53 Ready to use BioGenex AM195-5M

CD 34 1:50 Biocare medical CM084B

VEGF 1:100 Biocare medical CME356B

Flk-1 1:100 Santa Cruz
Biotechnology Sc-6251

Hint1 1:300 Abcam 124912

The assessment of immunohistochemical reaction (adenohypophyseal hormones, p53,
VEGF, Flk1) was reported as positive in tissues with constant brown stain (nuclear or
cytoplasmic) throughout the histological section, ruling out a scant or sporadic mark.
Ki67i and Hint1 proteins were evaluated by quantifying the number of positively stained
nuclei in five to 10 high power fields at ×400 per case and were reported as mean value
of positive nuclei. For the evaluation of microvascular density (CD34d), blood positive
vessels were quantified in the three most vascularized areas (hot spots) of the tumors
at ×400 magnification (×40 objective lens) per case, and the average of each slide was
obtained [44].

All data were presented as mean ± SD. To analyze the variables, the Kolmogorov–
Smirnov test was performed, and the data were analyzed by one-way ANOVA (IBM SPSS
Statistics v. 25.0; GraphPad Prism 5). To identify whether gender, age, MRI characteristics,
or hormone expression on tissue were associated with the expression of Ki-67i, p53, CD34,
VEGF, Flk1, and Hint1, Student’s t-test, analysis of variance, and chi-square test were used;
p < 0.05 was considered statistically significant.

2.3. Proteomic Process
2.3.1. Protein Pituitary Adenoma Extraction

During neurosurgery, a dry tumor sample was collected in a sterile Eppendorf tube
and kept on ice immediately to avoid degradation. The sample was evaluated by a neu-
ropathologist to separate tumor tissue and stored at −80 ◦C until process. PA proteins
were analyzed by 2-DE using immobilized pH gradient strips [45]. Tumor tissue samples
were homogenized in lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 2% IPG buffer
pH 3–10 (GE, Healthcare, Piscataway, NJ, USA), 40 mM DTT) with protease inhibitor
cocktail (Complete, Roche Diagnostics, Indianapolis, IN, USA) and phosphatase inhibitors
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(PhosStop, Roche Diagnostics, Penzberg, Germany) followed by three freeze/thaw cycles
in liquid nitrogen. Then, the samples were centrifuged at 14,000 × g at 4 ◦C for 30 min,
and the supernatant was recovered and subsequently precipitated with acetone at −20 ◦C
with methanol/ chloroform. Finally, the proteins were cleaned with a 2-D Clean-Up kit
(GE Healthcare, Piscataway, NJ, USA) according to the manufacturer’s instructions. The
samples were solubilized in rehydration buffer (Destreak Rehydration Solution, GE Health-
care, USA) with protease and phosphatase inhibitors. Protein quantification was done using
a 2-D Quant Kit (GE Healthcare, Biosciences, USA) according to the supplier’s instructions.
One hundred fifty µL samples (5.153 µg/10 µL ± 1.784; 77 ± 26.8 µg protein) were applied
to IPG strips pH 3–10, 7 cm (GE Healthcare, Sweden), and rehydrated at room temperature
for 16 h. Afterwards, IEF was carried out in a Protean IEF Cell (Bio-Rad, Hercules, CA,
United States), following the manufacturer’s protocol. Second dimension was performed
in 15% SDS-PAGE, and gels were stained with Bio-Safe Coomassie (Bio-Rad, USA).

2.3.2. Image and Data Analysis of Gel

Images of 2-DE gels were obtained using the Fusion FX 6 Edge V. 070 imaging system
(Vilber Lourmat, Collégien, France), and the proteomic profile of each biopsy was analyzed,
using Bio1D EvolutionCapt (Vilber Lourmat, Collégien, France). Protein spots were quanti-
fied in each 2-DE gel and compared in invasive and non-invasive PA; differential protein
spots (different between invasive and non-invasive PAs) were selected, considering those
that showed outstanding intensity and a better definition. The quantification number of
2-DE spots was analyzed by Student’s t-test.

2.3.3. Nanoflow LC-MS/MS

Protein identification was done at PlanTECC National Laboratory of the Center for
Research and Advanced Studies at the National Polytechnic Institute, Campus Irapuato,
Guanajuato Mexico. All experiments were performed on a nanoACQUITY nano-flow liquid
chromatography (LC) system, coupled to an LTQ velos linear ion trap mass spectrometer
(Waters, Thermo Fisher Scientific, Bremen, Germany) equipped with a nanoelectrospray
ion source.

The selected spots were manually excised from Coomassie blue 2-DE gels under sterile
conditions; proteins were extracted and trypsin was digested [46]. Immediately afterwards,
3 µl digested proteins were resuspended in solvent A (0.1% formic acid) and bound to
a pre-column (Symmetry® C18, 5µm, 180µm × 20 mm, Waters). Subsequently, the flow
was then switched to a 10-cm capillary UPLC column (100 µm ID BEH-C18 1.7µm particle
size). The column temperature was controlled at 35 ◦C. The peptides were separated by
a 60-min gradient method at a flow rate of 400 nL/min. The gradient was programmed
as follows: 3–50% solvent B (100% acetonitrile in 0.1% formic acid) over 30 min, 50–85%
B over 2 min, 85% B over 4 min, and 3% B over 22 min. The peptides were eluted into
the mass spectrometer nano-electrospray ionization source through a standard coated
silica tip (NewObjective, Woburn, MA, USA). The mass spectrometer was operated in
data-dependent acquisition mode in order to automatically alternate between full scan
(400–1600m/z) and subsequent Top 5 MS/MS scans on the linear ion trap. Collision-
induced dissociation was performed using helium as collision gas at a normalized collision
energy of 35% and 10 ms activation time. Data acquisition was controlled using Xcalibur
v2.3 (Thermo Fisher Scientific).

2.3.4. Automated Data Evaluation Work-Flow

Tandem mass spectra were extracted in Proteome Discoverer v1.4 and searched against
a database on a Sequest HT engine. Searches were executed with the following parameters:
2 Da parent MS ion window, 1 Da MS/MS ion window, and two missed cleavages allowed.
The iodoacetamide derivative of cysteine (carbamidomethylcysteine) was specified on
Sequest as a fixed modification and oxidation of methionine as a variable modification.



Diagnostics 2021, 11, 330 6 of 17

3. Results
3.1. Clinical Characteristics

Demographic and clinical dates of PA are presented in Table 2.

Table 2. Pituitary adenoma dates.

Dates. n Frequency %

Cases 128 100

Male 63 49.2

Female 65 50.8

Age (range) 48 ± 12.9 (16–80)

Size:
Macroadenoma 111 86.7

Giant 17 13.2

Invasiveness:
Invasive 107 83.5

• Non-functioning 81 75.7

• Functioning 26 24.2

Non-invasive 21 16.4

• Non-functioning 13 61.9

• Functioning 8 38.1

Radiological Classificación
Hardy–Vezina n = 114

I 2 1.7
II 21 18.4
III 50 43.8
IV 41 35.9

Knosp n = 48
I 5 10.4
II 11 22.9
III 16 33.3
IV 16 33.3

Recurrence (number of neurosurgery):

1 73 76.8

2 12 12.6

3 7 7.3

4 2 2.1

5 1 1.1

Surgical procedure

transnasal–transsphenoidal 106 82.8

Transcranial 22 17.2

Recurrences have no relation with gender (p = 0.437), hormonal PA types (p = 0.116),
or between invasive and non-invasive PAs (p = 0.983). These results are in accord with
those previously reported. Although PA invasiveness has been associated with recurrence,
studies have concluded that the invasive behavior itself is not a significant factor in pre-
dicting recurrence. Furthermore, suprasellar extension and/or cavernous sinus invasion



Diagnostics 2021, 11, 330 7 of 17

are also not associated with tumor recurrence and, although larger tumors are found to
recur more frequently, no statistically significant differences were found. [47].

3.2. Histopathological Findings

The tissue sections showed an epithelial neoplasm with solid, papillary, and nodular
histological patterns. Scarce biopsies with cellular atypia (7%), nuclear pleomorphism
(1.6%), and mitosis (0.8%) were observed (Figure 2A). According to the immunohisto-
chemistry analysis, 70 (54.7%) were FSH and/or LH-positive PA, 26 (20.3%) showed
plurihormonal content, 20 (15.6%) exhibited no hormonal detection, four (3.1%) were GH-
PA, three (2.3%) presented prolactin hormone, four (3.1%) were ACTH, and one (0.8%) was
prolactin-GH (Figure 2B). Cell proliferation was assessed by immunohistochemistry, and
Ki-67i expression (Figure 2C) was 0.7 ± 0.08% (range, 0–3.6%). No significant difference
was found between invasive (range, 0–3.6; 0.8 ± 0.08) and non-invasive PAs (range, 0–3.2;
0.6 ± 0.2) (p = 0.341). The expression of p53 showed 97 (75.8%) positive cases (Figure 2D),
out of which 82 (84.5%) were invasive Pas, but no statistically significant difference was
observed between invasive and non-invasive PAs (p = 0.611). No relation between the
positive expression of p53 and Ki-67i was found (p = 0.919).
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Figure 2. (A) Photomicrographs of PA with hematoxylin–eosin stain, showing solid pattern with
nuclear pleomorfism (arrows). Immunohistochemistry show cytoplasmic detection to FSH (B), Ki-67
nuclear detection (C), and p53 nuclear detection (D) (arrows; original magnification 400×, scale bar
250 µm).

Angiogenic grade in solid tumors, as PA, is commonly evaluated by microvascular
density in which the number of vessels in a certain area are quantified. The CD34d
(Figure 3A) was 5.1 ± 3.9 (range, 1–33.3), while no statistical difference was found between
invasive (CD34d 5.3 ± 3.1) and non-invasive PAs (CD34d 6.3 ± 6.6) (p = 0.274). VEGF
expression was found in 49 (38.3%) cases (Figure 3B), out of which 41 (83.7%) were invasive
PA; still no statistically significant difference was found between invasive and non-invasive
PAs (p = 0.563). The expression of Flk1 was positive in 36 (28.1%) PAs, out of which 33
(91.7%) were invasive (Figure 3C). There was no statistically significant difference between
invasive and non-invasive PAs (p = 0.147). An inverse relationship was found between the
positive expression of Flk1 and Ki67i (p = 0.030) such that a lower Ki67i was observed in
positive Flk1 PAs. Additionally, a relation between Flk1 and positive p53 expression was
found (p = 0.031). No relation was found between recurrence with CD34 (p = 0.374), VEGF
(p = 0.696), and Flk1 (p = 0.972).
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Figure 3. Photomicrographs showing the inmmunohistochemistry reaction (arrows) to (A) CD34, (B) VEGF, and (C) Flk1.;
original magnification 400×, scale bar 250µm).

No statistically significant difference was found between hormonal PA types and Ki-67
(p = 0.182), p53 (p = 0.733), CD34 (p = 0.620), VEGF (p = 0.138), Flk1 (p = 0.266), and gender
(p = 0.095).

These results show that even though 80.5% of the cases studied are invasive, they do
not show aggressive behavior. It has been shown that the term invasiveness in PA is not
synonymous with aggressiveness. Aggressive PAs show a Ki-67 index >3%, extensive p53
positivity, and a high rate of mitosis, recurrence, and resistance to treatment. These factors
were not observed in the cases studied; still, it is necessary to follow up these patients,
since this was the first surgery for most of them [16,18].

3.3. Proteomic Analysis

Demographic and clinical data of PAs analyzed by proteomics are shown in Table 3.

Table 3. Pituitary adenoma data.

Date n Frequency %

Patients with dry sample 64 100

Male 30 46.8

Female 34 53.1

Age (range) 48 years (19–76)

Tumor size:
Macroadenoma 54 84.3
Giant adenoma 10 15.6

Invasiveness:
Invasive 56 87.5

• Non-functioning 49 87.5

• Functioning 7 12.5

Non-invasive 8 12.5

• Non-functioning 4 50

• Functioning 4 50
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Table 3. Cont.

Date n Frequency %

Radiological classification:
Hardy–Vezina

I 1 1.7
II 6 10.3
III 29 50
IV 22 37.9

Knosp
I 5 8.6
II 5 21.7
III 9 39.1
IV 7 30.4

Recurrence (surgery number):
1 53 82.8
2 4 6.2
3 6 9.3
4 0 0
5 1 1.5

Sixty four samples out of 128 cases were collected and analyzed by 2-DE. The avail-
ability of tissue for proteomic analysis depended on the amount of tumor tissue obtained
during surgery. The tissue was divided into two parts: one sample was used in histopathol-
ogy to make the diagnosis and the other in proteomic analysis. In the proteomic analysis,
103.4 ± 42.3 spots (range, 32–260) were found distributed in the area of pH 4.0–8.0 and
mass 10–100 kDa. Invasive PAs (n = 56) showed 105 ± 43 spots, while 86 ± 32 spots
were observed in non-invasive PA (n = 8). No statistical difference was found between
invasive and non-invasive PAs (p = 0.226). A master 2-DE gel was selected for invasive
and non-invasive Pas, and the most representative and differential spots of each group
were selected (Figure 4). Thirteen differential spots were selected, and 11 proteins were
identified in the proteomic profile (Table 4).

3.4. Hint1 Expression

In order to rectify the presence of Hint1 in PA, Hint1 expression index (Hint1i)
was assessed by immunohistochemistry in the same 64 cases where Hint1 was identi-
fied (Figure 5). PAs show Hint1i 10.9 ± 1.3 (range 0.5–38.1). Non-invasive PAs show
Hint1i 4.8 ± 0.94 (range 2.6–9); a statistically significant difference was found between non-
invasive and invasive PAs (11.8 ± 1.46, p = 0.005). Since non-invasive PAs showed a range
of expression of 2.6–9, and the invasive PAs showed a wider range of expression, the values
were grouped in two levels: low level <10 and high level >10. A statistically significant
difference was found between non-invasive and invasive PAs with a high Hint1i (Hint1i
>10; p = 0.0002). Statistically significant differences were found between Ki-67i in low
Hint1i (0.95 ± 0.15) with Ki-67i in high Hint1i (0.47 ± 0.16; p = 0.044). Hint1i was compared
against p53 expression. No statistically significant differences were found between Hint1i
in p53 positive cases (12.2 ± 1.5) and Hint1i in p53 negative cases (6.4 ± 2.5; p = 0.08);
however, a statistically significant difference was observed in p53 positive cases between
low (5.4 ± 0.5) and high Hint1i (20 ± 0.8; p = 0.0001).

Expressions of angiogenic factors were assessed. Statistically significant difference of
CD34d between Hint1i positive cases (5.7 ± 0.5) and Hint1i negative cases (3.73 ± 0.5; p = 0.007)
was found. Hint1i showed a statistically significant difference in VEGF positive cases
between invasive (13.8 ± 2.3) and non-invasive PA (4.8 ± 0.28; p = 0.005), and between Flk1
positive cases (14.04 ± 2.27) and Flk1negative cases (6.5 ± 1.3; p = 0.006). No relation was
found between Hint1 expression and tumor size (p = 0:822), gender (p = 0.560), hormonal
type (p = 0.953), and recurrence (p = 0.295).
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Table 4. Mass-spectrometric identification from the selected spots.

Spot Accession Protein Name Score Coverage MW (KDa) pI Description Ref

1 P49773

Histidine triad nucleotide-binding
protein 1 OS = Homo sapiens OX = 9606

GN = HINT1 PE = 1 SV =
2–(HINT1_HUMAN)

290.95 85.71 13.8 6.95 Tumoral suppressor [48–56]

2 O60739
Eukaryotic translation initiation factor

1b OS = Homo sapiens OX = 9606 GN =
EIF1B PE = 1 SV = 2–(EIF1B_HUMAN)

67.60 66.37 12.8 7.37 Related with translation regulation, cell
growth, and oncogenesis [57,58]

3 P04080
Cystatin-B OS = Homo sapiens OX =

9606 GN = CSTB PE = 1 SV =
2–(CYTB_HUMAN)

61.87 45.92 11.1 7.56

Implicated in various cancer types (lung,
colon, liver, ovarian, gastric, breast);

proposed as potential prognostic
marker.

[59,60]

5 NP_002558.1 Phosphatidylethanolamine-binding
protein 1 (Homo sapiens) 1766.8 91.98 21 7.53

Involved in various types of cancer.
Could act as a metastasis suppressor

gene.
[61]

5 NP_001008274.1 Transgelin-3 (Homo sapiens) 268.99 76.38 22.5 7.33
Expressed in tumors with aggressive
behavior; related to poor prognosis.

Possible tumor suppressor.
[62,63]
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Table 4. Cont.

Spot Accession Protein Name Score Coverage MW (KDa) pI Description Ref

6 NP_001966.1 Gamma-enolase (Homo sapiens) 4624.29 90.09 47.2 5.03 Metabolic enzyme
Tumoral marker [30]

7 NP_001677.2
ATP synthase subunit beta,

mitochondrial precursor (Homo
sapiens)

5822.52 79.40 56.5 5.40
Energy metabolism

Found in non-small cell lung cancer;
colon, breast, and prostate cancer

[30,64,65]

9 NP_000691.1 Annexin A1 (Homo sapiens) 804.87 76.59 38.7 7.02 Expression contributes to the
development and progression of cancer [66]

11 NP_002620.1 Phosphoglycerate mutase 1 isoform 1
(Homo sapiens) 314.94 80.71 28.8 7.18

Metabolic enzyme
Related with cell proliferation,

migration, invasion, and apoptosis. In
renal, hepatocellular, lung, breast, and

colorectal cancer.

[30,67]

12 XP_005256841.1 14-3-3 protein épsilon isoform X1
(Homo sapiens) 302.27 61.67 27.4 4.89

Cell signaling in
apoptosis, mitosis, and cell cycle.
Found in small cell lung cancer,

squamous cell laryngeal, and renal
carcinoma and central nervous system

tumors.

[30,68,69]

13 NP_001036816.1

Tropomyosin alpha-3 chain isoform
Tpm3.2cy (Homo sapiens) charged

multivesicular body protein 5 isoform 1
(Homo sapiens)

252.15 43.38 24.6 4.83

Cell structure and mobility.
Found in hepatocellular carcinoma and
hematopoietic tumorigenesis; involved

in transformation, proliferation,
invasion, and metastasis in anaplastic

large-cell lymphoma

[30,70]

Note: List of protein identification. Spot: number of spots selected in accordance with 2-DE gel.
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4. Discussion

The pituitary gland is made up of different cell types, each one related (each cell
type) to its hormone secretion. Therefore, PAs are a heterogeneous group of tumors
due to their monoclonal origin, giving rise to different tumor types. PAs have been
classified according to their radiological, clinical, and histopathological characteristics
as well as their hormonal content. In this cellular diversity, many molecular processes
participate, complicating the study and limiting the understanding of PAs. Despite being
considered benign, PAs can be invasive, aggressive, and recurrent, causing deterioration
in human health. Markers are necessary to explain their biological behavior and help in
their prognosis and treatment. Our study aimed to identify proteins in the expression
profile between invasive and non-invasive PAs to search for possible biomarkers. By
proteomic strategy, differences in proteomic profile between invasive and non-invasive
PAs were observed, and 11 proteins were identified. Proteins related to metabolic enzymes
(Phosphoglycerate mutase 1, Gamma enolase), cellular signals (14-3-3 protein epsilon), cell
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structure and mobility (Tropomyosin alpha 3 chain), and energy metabolism (ATP synthase
beta chain, mitochondrial) were found, as reported in PAs [30]. Proteins involved in a
neoplastic process were identified, and no reports of their expression in PA were found.

Hint1 (Histidine triad nucleotide-binding protein 1) was first identified as a human
PKC-interacting protein whose cDNA encodes a 13.7 KDa protein located in 5q31.2 human
chromosome. Later, it was found in normal and tumor cell lines, and its function as PCK
inhibitor was discarded [48,71]. Hint1 is a protein member of the histidine triad family
(HIT; Hist-X-Hist-X-HistX-X; X = hydrophobic amino acid), and it is a part of a binding loop
for the α-phosphate of purine nucleotides. It can bind to nucleotides as AMP, ADP, and
diadenosine polyphosphates Ap3A and Ap4A. Rabbit Hint1 can also bind to several purine
nucleosides and nucleoside ‘5-phosphates, while rabbit and human Hint1 can hydrolyze
ADP in vitro; therefore, Hint1 is considered a purine nucleotide-binding protein. It has
been suggested that the biological effects of unusual purine nucleotides can be mediated
by Hint1 protein [49,72–75].

It has been reported that Hint1 can play a role in transcription regulation that could
affect tumorigenesis signaling pathways [50], and it has been observed that Hint1 protein
can act as tumor-suppressor [48,49]. Hint1 exerts its tumor suppressor activity by binding
to transcription factors, such as MITF and β-catenin, and its suppressive function is in turn
regulated by an acetylation-dependent mechanism [51,76,77]. Hint1 negative regulation
in TCF/β-catenin transcriptional activity was found, which represses the expression of
Wnt signaling pathways target genes such as axin2 and cyclinD1 [52]. The expression of
SLC20A1 (phosphate transporter 1) in a study on somatotroph adenomas was associated
with the activation of the Wnt/β-catenin signaling pathway. In this study, SLC20A1
expression was related to tumor size, invasive behavior, and tumor recurrence [53]. On
the other hand, the MITF–Hint1 interaction can be disrupted by the binding of the second
messenger Ap4A, and MITF is activated together with post-translational modifications of
Hint1 (acetylation and phosphorylation) [78,79]. It has been reported that MITF expression
promotes cell proliferation, invasion, and cell survival in rat prolactinomas. MITF can
reverse the antitumor effect of miR-137, which has been correlated with invasive behavior
in prolactinomas. miR-137 can upregulate Wtn-inhibitory factor1 and inhibit nuclear
translocation of β-catenin [78,80].

Cyclin D1 is a cell cycle regulator and can act as oncoprotein. In PAs, the correlation
between cyclin D1 expression with Ki67 and tumor size has been reported, and nuclear
accumulation of β-catenin and over expression of cyclin D1 and c-Myc was found in
non-functioning PA [81,82]. In corticotroph adenomas, cyclin D1 has been proposed as
biomarker of tumor aggressiveness [83].

In a transient transfection experiment with Hint1, apoptosis induction associated
with high p53 and Bax expression and decreased Bcl-2 expression was observed [84]. The
extensive p53 expression and Ki67i >3% have been associated with tumor recurrence in
PA [47]. Our analysis found no relation of p53 positive expression to Ki67i; however, high
Hint1i (>10) was observed in p53 positive cases and low Ki67i, which could indicate the
tumor suppressor activity of Hint1. This result likely shows a possible relationship between
the expression of p53 and Ki-67 and Hint1 expression in invasive PA.

The role of Hint1 in cancer migration and invasion has been analyzed. Downregulated
Hint1 expression was found in metastatic lymph nodes cells in hepatocellular carcinoma,
involving Hint1 in a migration and invasion process by modulating girdin and AKT
expression and phosphorylation [54]. Hint1 gene and mRNA expression were assessed in
a family history of gastric cancer (FHGC) cases. Higher Hint1 gene expression levels were
found in antrum samples with atrophic changes in FHGC cases, while lower mRNA levels
were observed in antrum samples of FHGC patients compared against control samples.
The decreased Hint1 mRNA levels in FHGC patient samples could be a predisposing
marker to develop gastric cancer [85]. We observed high Hint1i expression in invasive
PA, and high Ki67i was found in cases of low Hint1i levels. This may point to a necessary
closer follow-up of these patients, since the aggressive and invasive behavior of PA can
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also be related to tumor recurrence [55]. Hint1 has been proposed as potential biomarker
of radiosensitivity and therapeutic target. In the gastric cancer cell line SGC-7901, Hint1
inhibits cell proliferation, arrests the cell cycle in G1 phase, and reduces the DNA damage
repair induced by radiation, increasing the radiosensitivity [56]. An increase in Hint1
expression by Taraxasterol inhibits the growth of liver cancer cells and regulates Bax, Bcl2,
and cyclin D1 expression in human liver cancer [86].

Angiogenesis is an important factor in cell growth, cell differentiation, and endothelial
migration and is regulated by vascular endothelial growth factor (VEGF) and its receptor
(Flk1). In PAs, VEGF participates in vascular network formation and PA tumorigenesis, as it
is involved in cell proliferation and invasion [87–89]. In prolactin, PA angiogenesis, together
with Ki67 >3%, p53 positive, mitoses >2, and vascular invasion, has been associated with
aggressiveness and is suspicious of malignancy. A high rate of VEGF expression has
been found in pituitary carcinomas. This factor has been proposed as a marker of poor
outcome after partial tumor resection [90–93]. The VEGF receptor Flk1 (VEGFR-2) is a signal
transducer that participates in signaling cascades that can promote endothelial cell survival,
proliferation, and angiogenesis, and it has been associated with aggressiveness [87,94].
Although less vascularization has been observed in PA than in a normal pituitary gland, a
greater vascular density has been reported in invasive macroprolactinomas [95,96]. Our
study found no relation between CD34d and invasive behavior; however, high CD34d was
observed in Hint1 positive cases, while Hint1i expression was elevated in invasive VEGF,
positive PA, and Flk1-positive cases. Although a relation between Flk1 expression and p53
positive expression was found, an inverse relationship between the Flk1 positive expression
and Ki-67i was observed. No reports of Hint1 participation were found in angiogenesis nor
vascularization processes. The results of this analysis suggest the possible participation of
HINT1 in some signaling pathway that can be related to angiogenesis mechanism. In our
work, significant differences were found between invasive and non-invasive PAs. More
research is necessary in order to include a greater number of non-invasive PA cases, which
is a limitation in this type of study.

5. Conclusions

Protein expression analysis by proteomic strategy shows a reference map to assess
the cell physiology under a special condition. The heterogeneous nature of pituitary
adenomas, given that they are originated by different types of cells, has made it difficult
to understand their behavior. Then, it has been necessary to identify biomarkers, tools
that allow investigating new pathways involved in their development. Here, we identified
the expression of Hint1 protein as related to human tumorigenesis by its interaction with
signaling pathways and transcription factors. We found that Hint1 expression is higher
in invasive pituitary adenomas, showing a possible relation with the expression of cell
proliferation markers and angiogenic factors; it could also be related to invasive behavior.
This is a first report on Hint1 expression in pituitary adenomas. Further and more detailed
analyses are necessary to understand the signaling pathways in which Hint1 participates
and elucidate the possible role of Hint1 in these tumors.
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