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Near infrared light induced plasmonic hot hole
transfer at a nano-heterointerface
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Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism
for achieving artificial photosynthesis using the whole solar spectrum, even including the
infrared (IR) region. In contrast to the explosive development of photocatalysts based on the
plasmon-induced hot electron transfer, the hole transfer system is still quite immature
regardless of its importance, because the mechanism of plasmon-induced hole transfer has
remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS hetero-
structured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spec-
troscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The
spectroscopic results provide insight into the novel hole transfer mechanism, named
plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-
lived charge separations (9.2 ps). As an ultrafast charge recombination is a major drawback
of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of
conventional plasmon-induced energy conversion.
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ocalized surface plasmon resonance (LSPR)-induced pho-

toenergy conversion is among the great challenges causing a

paradigm shift in both scientific fields and industry
regarding solar-energy utilization'™. The LSPR band can be
tuned over a wide spectral range by changing the carrier density,
morphology, and other material properties, enabling solar energy
utilization from ultraviolet (UV) to infrared (IR) regions.
Although plasmonic materials have superior light-harvesting
abilities, the low conversion efficiency caused by ultrafast
relaxation of the hot carrier and charge recombination is a major
drawback. Hot carrier transfer competes with ultrafast relaxation
via carrier scattering with timescales of just hundreds of femto-
seconds (fs) ®7, and recombination after the charge separation
completes in picoseconds (ps) region. Therefore, it is difficult to
achieve sufficient extraction of hot carriers for practical applica-
tions from the kinetic perspective®’. Furthermore, the unclear
behavior of hot holes, which has remained an obscure subject
regardless of the unmistakable importance, becomes an obstacle
for the comprehensive understanding of LSPR-induced carrier
transfer.

Recently, a novel series of compound semiconductors, copper
chalcogenide nanocrystals, which show excellent tunable hole-
based LSPR absorption in the near-IR (NIR) region, have
attracted much attention as candidates for IR-responsive photo-
catalysts!®!!, For heterostructured nanocrystals (HNCs) com-
posed of plasmonic copper sulfide (CuS) phase and another
metal or semiconductor phase (for example, acceptor phase), hot
hole transfer has been proposed as a possible mechanism for
providing IR-induced catalytic activity. However, the mechanism
has yet to be determined. Elucidation of this mechanism would
clarify the role of hot holes contributing the photocatalytic
activity!?,

Herein, we elucidate the LSPR-induced behavior of hot holes in
CuS NCs and CdS/CuS HNCs using time-resolved infrared (TR-
IR) spectroscopy. TR-IR spectroscopy enables us the direct
observation of carrier in a photo-excited nanocrystal. The CdS/
CuS HNC:s are one of the promising combinations for the spec-
troscopic tracing of the LSPR-induced hole transfer from the CuS
phase to the CdS phase. We discover in the detailed investigation
that a multi-step carrier transfer (plasmon-induced transit carrier
transfer: PITCT) realized efficient hole transfer from the CuS
phase to the CdS phase. Surprisingly, the PITCT of CdS/CuS
HNCGC:s achieves high quantum yields (19%) and long-lived charge
separations (9.2 ps), which has not been observed in plasmon-
induced carrier-injection systems. Because ultrafast charge
recombination is a major drawback of all plasmonic energy
conversion systems, the PITCT mechanism proposes here should
change the conventional consensus regarding LSPR-induced
energy conversion due to the overwhelming advantage of high
hot carrier transfer efficiency caused by in situ trapping of hot
carriers and long-lived charge separation.

Results

Characterization of materials. We synthesized CdS/CuS HNCs
using plate-shaped CuS NCs as seeds (see details in the Supple-
mentary Figs. 1-5 and Supplementary Note 1). Figure 1a shows
transmission electron microscopy (TEM) images of monodisperse
CuS NCs (size, 16.3 = 1.5 nm; thickness, 5.7 + 1.1 nm). When CdS
phases were grown on the CuS NCs, multiple CdS satellites of
3.8+ 0.8 nm in size were deposited on the peripheral regions of
the CuS NCs, as shown in Fig. 1b. The X-ray diffraction (XRD)
patterns in Fig. 1f clearly show that the CdS/CuS HNCs were
composed of hexagonal covellite CuS (cv-CuS, Joint Committee
on Power Diffraction Standards (JCPDS) no. 06-0464) and
wurtzite CdS (w-CdS, JCPDS no. 89-944) phases, with the Cd/Cu
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molar ratio determined as 38:62 by X-ray fluorescence (XRF)
spectroscopy.

The high-resolution TEM (HRTEM) image in Fig. 1c shows
the high crystallinity of the CdS/CuS HNCs and the different
lattice fringes corresponding to w-CdS (10-10) and cv-CuS
(10-10) lattices. The fast Fourier transform (FFT) of Fig. lc
shows splitting spots that correspond to the CdS and CuS phases
(Fig. 1d) and are aligned toward the same radial direction from
the central spot, indicating the epitaxial growth of CdS on the
CuS phase. High-angle annular dark-field (HAADF) scanning
TEM (STEM) (Fig. le) and STEM-energy dispersive X-ray
spectrometry (EDS) mapping (Fig. 1g) also showed that the CuS
NCs were surrounded by multiple CdS satellites.

To clarify the atomic arrangement at the interface between w-
CdS and cv-CuS, HAADF-STEM measurements were carried out
as shown in Fig. 1h, i'3. In the HAADF-STEM image, since only
Cd and Cu atomic columns in w-CdS and cv-CuS were clearly
observed but S columns were not observed, it is impossible to
distinguish the polarity. The CuS and CdS phases had orientation
relationships of w-CdS [0001]//cv-CuS [0001] and w-CdS
[11-20]//cv-CuS [11-20], which resulted in intimate contact
between the two phases. It is considered that cv-CuS (0001) and
(000-1) planes were terminated by S anion from the view point of
the atomic arrangement of Cu ion. And it seems that S anions are
connected to Cd*"-terminated w-CdS (0001) planes with a lattice
mismatch of 8.33% and w-CdS phases are epitaxially grown on
the ¢v-CuS NCs to form CdS/CuS HNCs.

Optical properties of materials and TR-IR measurements.
Next, we investigated LSPR-induced hole transfer from the CuS
phase to the CdS phase. Figure 2a shows the extinction spectra of
CuS NCs and CdS/CuS HNCs (see also Supplementary Fig. 1).
The CuS NCs showed an LSPR peak at 1080 nm, while the LSPR
peak of the CdS/CuS HNCs was red-shifted to 1254 nm. This red-
shift of the LSPR peak might be attributed to the change of size,
shape, and different dielectric environment with the existence of
CdS phases'®. Band diagrams of the CuS NCs and CdS NCs
(Fig. 2b, Supplementary Figs. 6 and 7 for estimations of the
conduction band (CB) and valence band (VB) positions) showed
that the VB edge of the CdS NCs was 0.73 eV lower than the
Fermi level of the CuS NCs (E,), and could be accessed by hot
holes generated by NIR LSPR in the CuS phases.

We conducted TR-IR measurements of CuS NCs and CdS/CuS
HNCs in the ps region to investigate the LSPR-induced hole
dynamics. Figure 2c and d show the TR-IR absorption spectra of
the CuS NCs and CdS/CuS HNC:s in the ps region after excitation
of hole-based LSPR in the CuS phases with a 1200-nm laser (1.03
eV) to produce hot holes. The TR-IR spectra of the CuS NCs
showed bleaching peaks at around 740 nm. In contrast, the TR-IR
spectra of the CdS/CuS HNCs showed bleaching peaks at around
840 nm and absorption in the visible region. These transient
absorption (TA) signals completely recovered within 1 ms after
excitation, indicating that the observed spectral changes reflected
a reversible process. As the LSPR-excitation-induced sequential
event (that is, hole dephasing, hole-hole scattering, hole-phonon
coupling, and lattice heat dissipation) was completed in the
ps-ns region®!>16 the observed spectral changes cannot be
explained by the conventional LSPR-induced decay process.
Furthermore, the bleaching peak was significantly blue-shifted
compared with the LSPR peak. Therefore, we considered that this
TR-IR spectral change originated from the reduction in the
number of holes in the intrinsic state by trapping.

As the LSPR of compound semiconductors, which have a
smaller number of carriers than metals, are sensitive to changes in
carrier density, the redistribution of holes by trapping would

| DOI: 10.1038/541467-018-04630-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-04630-w ARTICLE

D

d

CdS/CuS HNCs
CuS NCs

cv-CuS #06-0464

Intensity (a.u.)

I||h L1l l' “II. Ly 11l
30 40 50 60 70
2 Theta (Degree)

Fig. 1 Structural characterization of the nanocrystals. a, b Representative transmission electron microscopy (TEM) images of a plate-shaped CuS
nanocrystals (NCs) (inset: stacked CuS NCs), b CdS/CuS herostructured NCs (HNCs) (inset: stacked CdS/CuS HNCs). ¢ High-resolution TEM (HRTEM)
image of CdS/CuS HNCs from the c axis. d Fast Fourier transform (FFT) patterns of a single CdS/CuS HNC from c. e High-angle annular dark-field
scanning TEM (HAADF-STEM) image of a single CdS/CuS HNC. f X-ray diffraction (XRD) patterns of CuS NCs and CdS/CuS HNCs. g HAADF-STEM
energy dispersive X-ray spectrometry (EDS) elemental mapping images of CdS/CuS HNCs. h HAADF-STEM image of stacked CdS/CuS HNCs, where the
interface is labeled with a dashed white rectangle and the electron beam incident direction is parallel to [11-20]. i Enlarged part of h with a dashed blue
rectangle, showing Cu and Cd atomic arrangements. Scale bars: 10 nm
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Fig. 2 Extinction spectra, band diagrams, TR-IR spectra, and a schematic illustration of time-dependent changes in TA. a Extinction spectra of CuS
nanocrystals (NCs) and CdS/CuS heterostructured NCs (HNCs) in hexane. b Band diagrams of CuS and CdS phases, Ef, Eqr: Fermi level, the red arrow
means plasmon excitation by near-infrared (NIR) light. ¢, d Time resolved IR spectroscopy (TR-IR) spectral changes for ¢ CuS NCs and d CdS/CuS HNCs
from visible to near-infrared regions in the microseconds (ps) region. e Kinetic profile of transient absorption (TA) for CdS/CuS HNCs at a specific probing
wavelength (560 nm) tracking holes generated in the CdS phase by NIR local surface plasmon resonance (LSPR) excitation. Red line is the best fit. Pumping
wavelength: 1200 nm. The AmO.D. means the change of optical density. f, g Schematic illustration of spectral changes at different timescales: f Bleaching
of LSPR peak caused by hole and photon scattering in the CuS NCs observed in the ps region, and g surface hole trapping to reduce the number of holes in
the intrinsic state, leading to a red-shift of the LSPR peak and blue shift of the bleaching position in the ps region

cause a significant shift in the LSPR band!”~!°. Figures 2f and g
show a schematic illustration of the spectral change and
corresponding TA in different time regions. In the ps region,
the aforementioned LSPR-excitation-induced sequential events
caused LSPR bleaching (Fig. 2f)'!. When some of the hot holes
were trapped at trapping sites, the number of holes in the intrinsic
state decreased, causing the red-shift in the LSPR peak, which was
responsible for the significant blue-shift of the bleaching position
in the ps region (Fig. 2g). The time-resolved blue-shift of
bleaching signal was also clearly observed by using the ns-
transient absorption spectroscopy (See Supplementary Fig. 8).
The red-shift of bleaching of the CdS/CuS HNCs in comparison
with the CuS NCs is derived from the different LSPR position.
It is noteworthy that a broad and structureless absorption
derived from the trapped holes in the CdS phases was observed as
positive signal in the visible region?*?!, providing direct evidence
of LSPR-induced hole transfer from the CuS to CdS phase. The

4 | (2018)9:2314

blue-shift of bleaching and the absorption of trapped hole of CdS
makes significant difference between the CuS NCs and the CdS/
CuS HNC:s in the transient absorption spectra at the timescale of
us region (see detail explanation in Supplementary Fig. 8). As the
decay of the trapped hole corresponds to charge recombination,
the charge recombination rate between the CuS phase and CdS
phase was estimated to be 1.1 x 10°s™! (Fig. 2e), indicating that
the charge separation was long-lived.

As the hot carrier generated in CuS NCs should decay within a
few ps, TA measurement in the ps region is essential for
elucidating the hot hole transfer mechanism. Therefore, we
measured the TA of the CuS NCs and CdS/CuS HNCs in the ps
region to investigate the LSPR-induced hot hole transfer
mechanism (Fig. 3a). As the LSPR peak of the CuS phase is
sensitive to carrier density'®, the hole transfer can be determined
using the time-resolved change in the LSPR band. As shown in
Fig. 3a, the LSPR recovery upon excitation closely resembled the
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Fig. 3 Kinetic profiles and quenching study of nanocrystals after LSPR excitation. a Kinetic profiles of CuS nanocrystals (NCs), CdS NCs, and CdS/Cu$S
heterostructured NCs (HNCs) at 1000 nm; red line is the best fit. b Decay profiles of CuS NCs and CdS/CuS HNCs at 560 nm; red line is the best fit. The
rising component corresponds to the trapped holes in the CdS phase of CdS/CuS HNCs. ¢, d Quenching experiments by hole scavenger (methanol vapor:
20 Torr) for € CuS NCs and d CdS/CuS HNCs probing at 1000 nm. The AmO.D. means the change of optical density. Excitation wavelength: 1200 nm

laser pulse shape, followed by a slower recovery. A similar trend
was previously observed in the TA measurements of CuS NCs by
Cozzolli and coworkers, although slow components were not
discussed!!. The LSPR bleaching and recovery of the CuS NCs at
1000 nm was well-fitted by a triexponential function with two
clear components, 0.5ps (7;) and 110 ps (13), and one unclear
component, for which the time constant (73) could not be
measured in the time frame of fs TR-IR (3 ns) (Supplementary
Table 1). Since carrier trapping significantly affects LSPR
recovery, we concluded that this multi-step recovery of LSPR
reflected carrier-trapping-mediated relaxation, in addition to
conventional LSPR decay. As the LSPR-mediated hole-trapping
rate of CuS NCs has been reported as<2ps, the fastest
component corresponded to both ultrafast carrier trapping and
a carrier-scattering-mediated decay process'”. The decay compo-
nents 7, and 73 corresponded to the relaxation process through
hole trapping in deep and shallow states, as discussed below.
The kinetic trace of the LSPR bleaching and recovery of CdS/
CuS HNCs was also well-fitted by a triexponential function with
components of 0.4 ps (77), 80 ps (1,), and > 3 ns (73). The 7, value
of the CdS/CuS HNCs was smaller than that of the CuS NCs. We
conducted quenching experiments using methanol as a hole
scavenger to determine whether hole extraction affected the LSPR
recovery. As shown in Fig. 3¢, d, in the presence of methanol
vapor, a slight increase in the recovery rate was observed for the
CuS NCs. This feature was dramatically increased in the CdS/CuS
HNCs. This change could be caused by the spectral change in the
LSPR band due to the loss of holes. The dramatic increase in the
LSPR band recovery rate for CdS/CuS HNCs by methanol
reflected charge separation in the HNC, which led to efficient hole
scavenging by methanol. Based on these results, it was
conceivable that hole extraction from the CuS phase promoted
LSPR recovery at 1000 nm. Therefore, we concluded that the
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smaller 7, value of the CdS/CuS HNCs, compared with that of the
CuS NCs, reflected hole transfer from the CuS phase to the CdS
phase. From the 7, values of the CuS NCs and CdS/CuS HNCs,
the hole transfer rate (k,) in the CdS/CuS HNCs was estimated to
be 3.4x10%s7L.

The plasmon-induced hot hole transfer mechanism. Figure 3b
shows the kinetic profiles of CuS NCs and CdS/CuS HNC:s at 560
nm, tracing hole trapping in the CdS phase. The decay profile of
the CuS NCs was well-fitted by a biexponential decay function.
These components have been reported as trapped holes in the
CuS NCs'”. In contrast, the decay profile of CdS/CuS HNCs at
560 nm was not well-fitted by this function, but by a biexpo-
nential decay and a single exponential growth function, reflecting
the evolution of absorption corresponding to the trapped holes in
the CdS phases. As the hole tra};ping rate in the CdS NCs was
faster than 1.4 x 1012571 (ref. 21), the growth rate (k,=5.6x
10% s7!) mainly reflected hole transfer from the CuS phase to the
CdS phase (Supplementary Table 1). The agreement of the hole
extraction rate from the CuS phase (k,) with the hole accepting
rate of the trapped state (k) of the CdS phase strongly supported
our hypothesis. The quantum efficiency of observed hole transfer
was estimated to be 19% by using the following equation:

o= Np:’:{ where n, is the number of trapped holes generated in
the CdS domain, and Njhotons is the number of photons absorbed
by the CuS domain (see Supplementary Note 2 for detailed cal-
culation)?!.

It should be emphasized that the @ of hole transfer is
significantly high although hole transfer rate in the present
system is much slower than the decay rate of hot holes
(approximately 2 x 10'2s71). This contradiction strongly sug-

gested that the hot holes were not directly injected into the CdS
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phase, but transferred stepwise via transit through the carrier
trapping state. We have named this carrier transfer process
plasmon-induced transit charge-transfer (PITCT). This mechan-
ism was further confirmed by LSPR-induced hole transfer to a
hole-scavenging organic molecule (triphenylamine (TPA)). In
TPA-protected CuS NCs, hole transfer to TPA was observed at a
rate of 3.3x100s7! after excitation of the LSPR band.
Furthermore, the slower hole transfer rate to TPA compared
with the decay rate of hot holes strongly supported the PITCT
mechanism (Supplementary Figs. 9-13).

Furthermore, the theoretical calculation of mean free path of
hot holes was conducted to support our hypothesis. By using the
jellium model, the mean free path of hot holes in the CuS NCs
was estimated to be 2.87 nm (see Supplementary Note 2 for
detailed calculation)?®?®. Taking the decay channel of holes
trapping into consideration, the actual mean free path of hot
holes should be shorter than the theoretically value estimated
using the jellium model. Based on the conventional tunneling
mechanism, only the hot holes generated within the region
defined by the mean free path from the heterointerface of the
CdS/CuS HNCs can participate effectively in interfacial hole
transfer. Therefore, it is unlikely that the present hole transfer
with an efficient @ proceeds via the conventional mechanism. The
short mean free path of hot holes strongly enforces the hole
transfer via a PITCT mechanism.

To prove the contribution of PITCT to the IR responsive
catalytic activity, we used methylene blue (MB, oxidation
potential of 0.523 V vs. NHE?*) as a probe. The CdS/CuS HNCs
exhibited oxidation catalytic activity superior to those of CuS NCs
and CdS NCs under NIR light irradiation (Supplementary
Fig. 14). The degradation kinetics were pseudo-first-order
dynamics, so the reaction rate could be estimated using the
following equation: In(C/Cy) = -n x t + b, where, Cy, C, n, tand b
are the initial MB concentration, the MB concentration in
solution, the degradation rate constant of degradation, the
reaction time, and the reaction constant, respectively. As shown
in Supplementary Fig. 14, the n value of CdS/CuS HNCs was 34
times higher than that of pristine CuS NCs due to the efficient hot
hole extraction from CuS to the VB of CdS via PITCT, indicating
that the PITCT process realized efficient NIR light-responsive
catalytic activity.

Discussion

We have summarized the PITCT mechanism in Fig. 4. The hole
transfer rate observed in this experiment (3.4-5.6 X 10%s71) was
much slower than the decay rate of hot holes in CuS. This slow
PITCT rate realized LSPR-induced hole transfer and a subsequent
oxidation reaction using NIR light. We anticipate that PITCT
could solve the problems of conventional LSPR-induced energy
conversion, such as ultrafast relaxation of hot carriers and energy
loss by charge recombination, and facilitate efficient energy
conversion using low-energy IR light with plasmonic materials.
Furthermore, the suitable band alignments and the defect sites
play an important role for the long-lived charge separation with
high quantum yields. PITCT adds a new dimension to optical
materials science by controlling LSPR-induced carrier dynamics
through defect engineering technology.

Methods

Synthesis of hexagonal plate-shaped cv-CuS NCs. A mixture of copper (I)
acetate (0.123 g, 1 mmol), and oleylamine (10 mL) was degassed at 160 °C for 30
min. A solution of sulfur (0.048 g, 1.5 mmol) in 1-octadecene (15 mL) was injected
rapidly into the mixture under a nitrogen atmosphere, and stirred for 10 min. After
the reaction, the resulting product was purified by adding ethanol-hexane (v:v =
1:1) mixed solvent to the solution, centrifuging twice, and then redispersed the
precipitate in hexane.
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Fig. 4 Schematic illustration of LSPR-induced stepwise hole transfer
process. Decay processes of hot holes generated in CuS NCs and CdS/Cu$S
HNCs are shown. The red arrows means plasmon excitation by near-
infrared (NIR) light. For CuS NCs, the generated hot holes decayed via
hole-hole and phonon-hole scattering (1) or ultrafast hole trapping to the
shallow (2) or deep trapping state (3), followed by relaxation to the
intrinsic hole state. In CdS/CuS heterostructured nanocrystals (HNCs), the
holes in the deep trapping state transferred to the valence band (VB) of the
CdS phases (4, PITCT) and the holes in the CdS phases moved to the
trapping state, showing structureless absorption in the visible region and
recombination to the initial state. PITCT: plasmon-induced transit carrier
transfer

Synthesis of CdS/CuS HNCs. The metal thiocarbamate precursor of the hole
acceptor phase (CdS) was prepared as follows: Sodium diethyldithiocarbamate (5 g,
22 mmol) was dissolved in water (100 mL) and a solution of Cd(NO3),-4H,O
(3.085 g, 10 mmol) in water (100 mL) was added, followed by stirring for 1 h. The
resulting product was washed twice with water, centrifuged, washed again by
ethanol, centrifuged and dried in an oven at 70 °C for 12 h to obtain the Cd
precursor. A mixed solution of CuS NCs (0.2 mmol), oleylamine (5mL), and 1-
octadecene (10 mL) was degassed at 150 °C for 30 min. A solution of the Cd
precursor (50 mg) in oleylamine (2 mL) was prepared with ultrasonication and
injected into the above mixed solution under a nitrogen atmosphere at a rate of 0.1
mL min~!, and stirred for a further 30 min after finishing the injection. The
product was purified by centrifugation with hexane—ethanol (v:v = 1:1) mixed
solvent, and redispersed in hexane.

Characterization. Transmission electron microscopy (TEM) and high resolution
TEM (HRTEM) characterizations were performed on JEM1011 (JEOL) and JEOL-
2200FS (equipped with Cs-corrector for TEM) electron microscopes with operating
voltages of 100 kV and 200 kV, respectively. HAADF-STEM and EDS-mapping
were performed on a JEM-ARM200F (spherical aberration correction device)
electron microscope with an operating voltage of 200 kV. The XRD patterns were
recorded on a PANalytical X’Pert Pro MPD diffractometer, with Cu Ka radiation
(A=1.542 A) at 45kV and 40 mA. Ultraviolet-visible-near-infrared
(UV-vis-NIR) absorption spectra were recorded using a U-4100 spectro-
photometer (Hitachi). X-ray fluorescence (XRF) spectroscopy elemental analysis
was carried out using Element Analyzer JSX-3202C (JEOL). 'H NMR spectra were
measured on JEOL JNMECP300 (300 MHz) spectrometers. Matrix-assisted laser
desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was
performed on a Bruker Autoflex Speed instrument using trans-2-[3-(4-tert-butyl-
phenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) as the matrix.

Photocatalytic degradation of methylene blue. The photocatalytic activities of
Cu$ NCs and CdS/CuS HNCs were evaluated using an NIR light source (NIR light
power density, 40 mW cm™2). To fabricate the NIR-light, a 300-W Xe light source
(Cermax, Excelitas Technology) was irradiated through broadband dielectric
mirrors (region, 750-1100 nm, R300-32], THORLABS) to cut out light of
750-1100 nm. Water-soluble NCs (0.05 mmol) were suspended in water (3 mL)
containing methylene blue (MB, 90 mg), and the suspension was sealed in a quartz
cell. After different reaction times, a 0.6-mL aliquot of the suspension was sampled
into a plastic tube and centrifuged to remove the NCs. The remaining MB con-
centration was determined by the characteristic MB wavelength at 464 nm using
UV-vis-NIR spectrophotometry.

Transient absorption measurements. The behavior of NIR-LSPR-generated
holes was investigated using homemade femtosecond-to-second time-resolved
spectrometers®. In the femtosecond-to-nanosecond region, experiments were
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performed using a conventional pump-probe technique based on a Ti-sapphire
laser system (Spectra Physics, Solstice and TOPAS Prime; duration, 90 fs; wave-
length, 800 nm; repetition rate, 1 kHz). In this experiment, a 1200-nm laser pulse
was used as the pump pulse. For the microsecond measurements, in the visible-to-
NIR region, a halogen lamp (50 W) and an InGaAs detector were used as the light
source and detector, respectively. Transient absorption spectra were measured from
500 nm to 1 um. The spectra were obtained at 200-nm intervals and averaged over
300 scans for a spectrum by irradiating the sample using a pumping wavelength of
1200 nm generated by UV laser pulse from a Nd:YAG laser (Continuum, Surelite-
II; duration, 6 ns; wavelength, 355 nm; repetition rate, 0.01-5 Hz). The powdery
sample was fixed on a CaF, plate with a density of ~1 mgcm™, and the sample
plate was placed in a stainless-steel cell. Measurements were performed under
vacuum at room temperature. For the ns-transient absorption measurements, the
randomly-interleaved-pulse-train (RIPT) method was employed?. The pump-
pulse and probe source is a picosecond laser, PL2210A (EKSPLA, 1 kHz, 25 ps, 355
nm, 0.3 mJ), and a supercontinuum (SC) radiation source (SC-450, Fianium, 20
MHz, 50-100 ps pulse width depending on the wavelength, 450-2000 nm),
respectively. A 1064 nm-laser pulse was selected to excite the plasmon response.
Generally, a chloroform solution of as-obtained samples in a 10 mm-thick quartz
cell under vigorously stirred was performed to do the ns-TA measurements at
room temperature.

Data availability. The data sets within the article and Supplementary Information
of the current study are available from the authors upon request.
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