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Alcoholic liver disease (ALD) encompasses a spectrum of liver injury ranging from 
steatosis to steatohepatitis, fibrosis, and finally cirrhosis. Accumulating evidences 
have demonstrated that Kupffer cells (KCs) play critical roles in the pathogenesis of 
both chronic and acute ALD. It has become clear that alcohol exposure can result in 
increased hepatic translocation of gut-sourced endotoxin/lipopolysaccharide, which is a 
strong M1 polarization inducer of KCs. The activated KCs then produce a large amount 
of reactive oxygen species (ROS), pro-inflammatory cytokines, and chemokines, which 
finally lead to liver injury. The critical roles of KCs and related inflammatory cascade in the 
pathogenesis of ALD make it a promising target in pharmaceutical drug developments 
for ALD treatment. Several drugs (such as rifaximin, pentoxifylline, and infliximab) have 
been evaluated or are under evaluation for ALD treatment in randomized clinical trials. 
Furthermore, screening pharmacological regulators for KCs toward M2 polarization may 
provide additional therapeutic agents. The combination of these potentially therapeutic 
drugs with hepatoprotective agents (such as zinc, melatonin, and silymarin) may bring 
encouraging results.

Keywords: Kupffer cells, alcoholic liver disease, lipopolysaccharide, polarization, tumor necrosis factor α, 
cytochrome P4502e1

iNTRODUCTiON

Alcoholic liver disease (ALD) remains one of the predominant causes of liver-related morbidity 
and mortality worldwide (1). ALD encompasses a spectrum of progressively aggregated liver 
diseases, from simple steatosis, to steatohepatitis, fibrosis, and finally cirrhosis (2, 3). It has been 
generally accepted that ALD is a multifactorial disease, and both parenchymal cells (hepatocytes) 
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ERK1/2, extracellular signal regulated kinases 1 and 2; IFN, interferon; IKK, IκB kinase; IL-1β, interleukin 1β; IL-10, interleukin 
10; IL-1Ra, IL-1 receptor antagonist; iNOS, inducible nitric oxide synthase; IRAK-4, IL-1 receptor-associated kinase-4; IRF-3, 
interferon regulatory factor 3; KCs, Kupffer cells; LPS, lipopolysaccharide; LBP, LPS-binding protein; MAPK, mitogen-activated 
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FigURe 1 | A schema graph for the critical roles of KCs in the 
pathogenesis of ALD. Chronic ethanol exposure increases the gut 
permeability, resulting in translocation of gut endotoxin/LPS to liver. In liver, 
LPS leads to KCs activation via activating NOX and the TLR-4 pathway. 
Activated KCs produce a large amount of ROS, pro-inflammatory cytokines, 
and chemokines and induce the infiltration of other inflammatory cells. The 
ROS, pro-inflammatory cytokines, and the infiltration of other inflammatory 
cells finally cause liver injury. DPI, a NOX inhibitor, can significantly block 
ethanol-induced oxidative stress and the liver injury. In addition, chronic 
ethanol exposure can also sensitize the LPS-induced toxicity by increasing 
the half-life and cell surface receptor number of TNF-α, the expression of 
TLR-related co-receptors, and forming oxidative stress-related pro-
inflammatory adducts, such as MAA adducts (MDA reacts with acetaldehyde 
and proteins to form hybrid protein adducts).
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and non-parenchymal cells in the liver are involved in the 
pathogenesis of ALD. Accumulating evidence suggests that 
Kupffer cells (KCs), the resident macrophages in the liver, play 
crucial roles (4–6). KCs originate from bone narrow-derived 
monocytes and account for about 20–25% of non-parenchymal 
cells in the liver (7). KCs play key roles in host defense by remov-
ing foreign, toxic and infective substances from the portal blood 
and have been demonstrated to be involved in the pathogenesis 
of many kinds of liver diseases (8, 9). It has been demonstrated 
that KCs are activated by gut-derived endotoxin/lipopolysac-
charide (LPS), and then release many hepatotoxicants including 
reactive oxygen species (ROS), tumor necrosis factor α (TNF-α), 
interleukins, and chemoattractants for cytotoxic neutrophils, 
which will impair the function and viability of the neighbor-
ing cells. The “gut–liver axis” theory provides a number of 
potential therapeutic targets for ALD treatment, which have 
been evaluated or are under evaluation in clinical trials (10, 11). 
Furthermore, KCs are exceptionally plastic cells that can polar-
ize to specific activation states and express different functions 
in different microenvironment. Two extremes of macrophage 
polarization have been designated as M1 (classically activa-
tion) and M2 (alternative activation). M1-polarized KCs can 
produce a large amount of pro-inflammatory cytokines, such 
as TNF-α, while M2-polarized KCs exhibit high expression of 
anti-inflammatory mediators, such as interleukin 10 (IL-10) 
(4, 12). Results of recent studies suggest that pharmacological 
intervention targeting M2 KCs polarization may represent an 
attractive strategy for ALD treatment (5). In this review, we 
discuss the critical roles of KCs in the pathogenesis of both 
chronic and acute ALD, KCs polarization in ALD, and potential 
therapeutic targets for ALD treatment.

CRiTiCAL ROLeS OF KCs iN THe 
PATHOgeNeSiS OF CHRONiC ALD

Considerable evidence has demonstrated the critical roles of KCs 
in the development of chronic ALD. Chronic alcohol exposure 
can lead to intestinal hyperpermeability, resulting in the eleva-
tion of circulating endotoxin/LPS levels. LPS translocates from 
gut to liver, leading to the activation of KCs. Activated KCs 
produce a large amount of ROS, pro-inflammatory cytokines, and 
chemokines and induce the infiltration of other inflammatory 
cells, which finally cause liver injury (Figure 1).

evidence Demonstrates that KCs 
Activation by gut-Derived endotoxin/LPS 
Plays Pivotal Roles in the Pathogenesis of 
Chronic ALD
The number of KCs in portal tract of liver was increased in ALD 
patients as well as in chronic ethanol-intoxicated animals (13, 
14). Parallelly, the levels of many pro-inflammatory cytokines 
and chemokines secreted by KCs in chronic ethanol-intoxicated 
animals were significantly increased (15, 16). Furthermore, 
KCs elimination by gadolinium chloride almost completely 
prevented chronic ethanol-induced fat accumulation, inflamma-
tion, and necrosis scores (17–19). Now, it is clear that chronic 

ethanol-induced activation of KCs is attributed to gut-sourced 
LPS, which is a major component of outer membrane of Gram-
negative bacteria and passes through the intestinal epithelial 
barrier in trance amounts under normal condition (20, 21). 
Chronic ethanol exposure can increase translocation of LPS 
from gut to liver by enhancing the intestinal permeability 
and altering the gut microflora. It has been demonstrated that 
chronic ethanol exposure can induce hemorrhagic lesions and 
pronounced alteration in the ultrastructure of enterocytes in 
small intestine of animals and human beings, leading to the 
increased permeability of intestinal mucosa to macromolecules 
(22–25). Additionally, chronic ethanol consumption may alter 
gut microflora, favoring the overgrowth of Gram-negative bac-
teria and thus increasing the source of LPS (26, 27). Elevation 
of serum LPS levels was observed in chronic ethanol-feeding 
rats and also in ALD patients (28). Suppressing LPS-producing 
bacteria by probiotics significantly reduced the serum LPS level 
and attenuated liver injury (29). Furthermore, animal studies 
showed that intestinal sterilization by antibiotics or LPS recep-
tors deficiency significantly suppressed chronic ethanol-induced 
liver injury (30–32). These studies clearly demonstrate that the 
activation of KCs by gut-derived LPS plays causal roles in the 
pathogenesis of chronic ALD.
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FigURe 2 | Overview of TLR-4/LPS signaling pathway activated by LPS in ALD. Chronic ethanol exposure leads to increased translocation of LPS to liver. In 
liver, LBP (the shuttle protein) transfers LPS to CD14, which facilitates the binding of LPS to TLR-4/MD-2 complex. TLR4 undergoes dimerization and transduces 
signal by two different pathways, i.e., MyD88-dependent and TRIF-dependent pathways. The former pathway included the recruitment of IRAK4, IRAK1, and 
TRAF-6, which ultimately leads to the production of pro-inflammatory cytokines by the activation of NF-κB and MAPK. In the second scenario, TRIF triggers a 
signaling pathway which controls the production of type I interferon and some other cytokines, as well as the late-phase activation of NF-κB and MAPK.
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Signaling studies reveal that LPS can activate the toll-like 
receptor 4 (TLR-4) in KCs by incorporating in an activation 
complex involving LPS-binding protein (LBP), cluster of dif-
ferentiation 14 (CD14) and myeloid differentiation factor 2 
(MD-2) (21, 33). LPS is transferred by LBP (a shuttle protein) to 
CD14 and then binds with TLR-4/MD-2 receptor complex (34, 
35). TLR-4 undergoes oligomerization and triggers myeloid 
differentiation primary response gene 88 (MyD88)- and toll-
interleukin-1 receptor domain-containing adaptor inducing 
interferon-β (TRIF)-dependent production of pro-inflamma-
tory cytokines, and type I interferon (IFN), respectively (33, 
36). In the MyD88-dependent scenario, MyD88 recruits down-
stream adaptors including IL-1 receptor-associated kinase-4 
(IRAK-4), IRAK-1, and TNF receptor-associated factor 6 
(TRAF-6), leading to the activation of transforming growth 
factor β-activated kinase 1 (TAK-1) (33, 36, 37). TAK-1 can 
activate IκB kinase (IKK) and mitogen-activated protein kinase 
(MAPK) (38). Activated IKK phosphorylates IκB, resulting in 

the degradation of IκB proteins and the subsequent nuclear 
translocation of active NF-κB dimmers (39), while MAPK acti-
vates the early growth response 1 (Egr-1) and activation protein 
1 (AP-1) (33, 40–42). On the other scenario, TRIF initiates a 
signaling pathway which activates interferon regulatory factor 
3 (IRF-3) transcription factor and the late-phase activation of 
NF-κB and MAPK, leading to the expression of type 1 IFN and 
IFN-inducible chemokines (Figure 2).

Chronic ethanol exposure led to increased DNA binding 
activity of NF-κB, and KCs were considered as the major cell 
type for NF-κB activation in liver (43). Importantly, NF-κB 
activation preceded the histopathological changes of liver in 
ALD rats and inactivation of NF-κB by delivery of IκB super-
repressor gene with adenovirus significantly reduced chronic 
ethanol-induced liver injury, indicating the causal roles of 
NF-κB activation in the pathogenesis of ALD (44, 45). NF-κB 
may mediate liver injury by enhancing the production of TNF-α, 
as TNF-α antibodies and TNF receptor 1 (TNFR-1) knockout all 
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significantly reduced chronic ethanol-induced liver injury (46, 
47). Interestingly, the activation of NF-κB and subsequent TNF-
α production could be suppressed by antioxidants or delivery 
of superoxide dismutase (SOD), which suggests that ROS may 
act as signaling molecules for NF-κB activation (48). NADPH 
oxidase (NOX) and cytochrome P4502E1 (CYP2E1) have been 
suggested to be major sources of ROS in ALD (49–52). NOX 
inhibitor (diphenyleneiodonium sulfate, DPI) and loss of p47phox 
subunit of NOX all significantly blunted the ethanol-induced 
oxidative stress, NF-κB activity, and TNF-α expression in the 
liver (53). These results strongly support the hypothesis that 
ROS from NOX in KCs promotes the NF-κB activation and 
TNF-α production (54).

Hepatocytes May Be Sensitized to Chronic 
Alcohol-induced injury
Alcohol may increase the sensitivity of hepatocytes to liver injury 
by increasing LPS-induced production of TNF-α, modifying 
cell surface receptors of TNF-α and forming reactive aldehydes 
adducts.

First, chronic alcohol might increase the sensitivity of KCs 
to secrete TNF-α and other pro-inflammatory cytokines (55). 
In vivo studies showed that chronic ethanol feeding enhanced 
LPS-stimulated TNF-α production and liver injury, which could 
be attenuated by TNF-α synthesis inhibitor (56, 57). In vitro stud-
ies using isolated KCs suggested that KCs from ethanol-fed rats 
secreted more TNF-α compared with those isolated from control 
animals (58–60). Further mechanisms investigation revealed 
that chronic alcohol exposure increased the half-life of TNF-α 
mRNA by activating p38MAPK, extracellular signal regulated 
kinases 1 and 2 (ERK1/2) and Egr-1 in KCs (58, 59, 61). It has 
been demonstrated that ERK1/2 plays critical roles in mediating 
the expression of TNF-α, interleukin 1β (IL-1β), etc., as specific 
inhibitor of ERK1/2 treatment led to the reduction of mRNA 
levels of these cytokines (40). As DPI could abrogate LPS-induced 
production of TNF-α as well as the activation of ERK1/2, it is 
possible that ERK1/2 is an important target of NOX (60). Second, 
chronic alcohol exposure could markedly elevate the affinity and 
capacity of binding sites of TNFR on hepatoctyes, and increase 
the mRNA and/or protein levels of LBP, CD14, and MD-2 in liver 
tissues, which may sensitize the liver to LPS-induced injury (59, 
62–65). Third, chronic alcohol exposure can induce oxidative 
stress and lipid peroxidation in liver, resulting in overproduc-
tion of reactive aldehydes, including malondialdehyde (MDA) 
and 4-hydroxynonenal (4-HNE), which exhibit reactivity with 
proteins. It has been demonstrated that MDA can react with 
acetaldehyde and proteins to form hybrid protein adducts, des-
ignated as MAA adducts (66). In vitro exposure of KCs to MAA 
adducts induced pro-inflammatory and profibrogenic response, 
and MAA could synergistically interact with LPS to increase 
cytokines and chemokines expression (67).

CYP2e1 Potentiates Liver injury induced 
by LPS-Activated KCs
Cytochrome P4502E1, a member of the hemo-containing cyto-
chrome P450 superfamily, has been suggested to play important 

roles in the pathogenesis of ALD. In addition to hepatocytes, 
CYP2E1 is also expressed in the KCs and in other tissues, includ-
ing intestine and adipose (68, 69). CYP2E1 is an inducible enzyme 
and is the major component of the microsomal ethanol-oxidizing 
system (MEOS) (70–72). The activity of hepatic CYP2E1 in 
rats exposed to ethanol (5%, w/v)-containing Lieber-DeCarli 
diet was significantly increased by threefold to fivefold (73). 
The central roles of CYP2E1 in the pathogenesis of ALD have 
been highlighted by series of studies in which specific CYP2E1 
inhibitors [such as diallyl sulfide and clomethiazole (CMZ)] or 
genetic knockout of CYP2E1 significantly attenuated chronic 
ethanol-induced liver injury (3, 49, 74–77). The important role 
of CYP2E1 in the development of ALD has been attributed to 
CYP2E1-mediated production of ROS (78–81).

Interestingly, LPS/TNF-α and CYP2E1, the two contributors 
to ALD, are not exclusive of each other, as a number of studies 
have revealed interactions between CYP2E1 and LPS/TNF-α 
(20, 73). First, activation of CYP2E1 in hepatocytes sensitizes the 
hepatocytes to LPS/TNF-α toxicity (82). CYP2E1 overexpression 
converted the hepatocyte TNF-α response from proliferation 
to apoptotic and necrotic cell death via activating JNK, which 
can be suppressed by antioxidants (83). Combination exposure 
to ethanol and TNF-α resulted in more serious cytotoxicity to 
CYP2E1-expressing HepG2 cells than the wild-type HepG2 
cells (84). In vivo studies showed that chronic alcohol feeding 
enhanced LPS-stimulated TNF-α production and liver injury in 
wild-type mice, while CYP2E1−/− mice appeared to be resistant 
to LPS-induced hepatotoxicity (49, 56, 57). In addition, chronic 
alcohol exposure can lead to CYP2E1 activation in small intestine 
as well as in KCs (85, 86). Studies regarding the intestinal CYP2E1 
showed that intestinal CYP2E1 might promote ethanol-induced 
intestinal hyperpermeability via a mechanism involving induc-
tion of oxidative stress and upregulation of circadian clock 
proteins CLOCK and PER2 (52, 85, 87). In KCs, CYP2E1 could 
induce more TNF-α secretion after stimulation by LPS, which 
was significantly blunted by CYP2E1 inhibitor, CMZ (86). Take 
together, CYP2E1 may play multiple roles in the pathogenesis of 
ALD, such as increasing ROS production, enhancing intestinal 
permeability, and promoting the TLR-4/LPS signaling to produce 
more TNF-α (Figure 3).

The Roles of inflammasome and iL-1β in 
the Pathogenesis of ALD
Inflammasomes are intracellular multiprotein complexes in both 
parenchymal and non-parenchymal cells activated upon cellular 
infection or stress that trigger the activation of caspase-1 and 
release of pro-inflammatory cytokines (88–90). Inflammasome 
activates procaspase-1 generating IL-1β, which causes inflamma-
tion in an autocrine fashion via IL-1 receptor (11). IL-1β, pro-
duced in inactive pro-IL-1β, is an important pro-inflammatory 
mediator in ALD. Inflammatory stimuli can induce the expres-
sion of inactive pro-IL-1β, and also can drive the formation of 
inflammasome leading to the cleavage of pro-IL-1β into the 
bioactive IL-1β (88, 91). It has been found that the serum levels 
of IL-1β in ALD patients and chronic ethanol-treated rats were 
significantly increased compared with controls (92, 93). In a 
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FigURe 3 | interactions between CYP2e1 and LPS/TNF-α. CYP2E1 has been demonstrated to be expressed in hepatocytes, KCs, and also in small intestines. 
Intestinal CYP2E1 activation promotes ethanol-induced gut hyperpermeability, while CYP2E1 in KCs potentiates LPS-induced production of TNF-α. Furthermore, 
CYP2E1 can sensitize the hepatocytes to LPS/TNF-α toxicity from proliferation to apoptotic and necrotic cell death. All these adverse effects of CYP2E1 can be 
suppressed by CMZ, a specific inhibitor of CYP2E1.
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mouse model of alcoholic hepatitis (AH), Petrasek et al. found 
that inflammasome was activated in KCs of ALD mice, which pro-
moted caspase-1-mediated activation of IL-1β (91). Importantly, 
in vivo intervention with a recombinant IL-1 receptor antagonist 
(IL-1Ra) blocked IL-1β signaling and markedly attenuated 
ethanol-induced inflammation, steatosis, and liver damage (91). 
Results of these studies suggest that inflammasome activation is 
a component of the liver pathophysiology in ALD (89, 94, 95).

ROLeS OF KCs iN ACUTe eTHANOL/
BiNge DRiNKiNg-iNDUCeD LiveR 
iNJURY

Biphasic effect of Acute ethanol/Binge 
Drinking on the Activation of KCs
A binge drinking is defined as consumption of five and four 
drinks for men and women, respectively, in 2  h to produce a 
blood ethanol level over 80  mg/dl (96). Binge drinking is on 
the rise at an alarming rate worldwide (97–99). Although acute 
and chronic ALD may share similar mechanisms, the deleteri-
ous effects of alcohol may be affected by the doses and duration 
of ethanol (100). In contrast to the increased inflammation 
induced by chronic ethanol consumption, acute/binge drink-
ing and regular moderate drinking has been reported to exert 

anti-inflammatory effects (96, 101). Numerous studies have 
demonstrated that acute/binge drinking (2–7 g/kg body weight, 
by introperitoneal injection or by gavage) could significantly 
suppress bacteria, LPS, and TLR ligand-induced increase of 
TNF-α levels in serum, bronchoalveolar lavage (BAL), and 
peritoneal lavage fluid (56, 102–111). For example, Nelson et al. 
found that acute ethanol (5.5  g/kg body weight, by introperi-
toneal injection), but not chronic ethanol consumption, mark-
edly inhibited LPS-induced increase of TNF-α level in serum 
and BAL, and also suppressed systemic and intrapulmonary 
polymorphonuclear leukocyte aggregation (103). Honchel et al. 
found that acute ethanol (2 g/kg body weight, by gavage) sup-
pressed LPS-induced TNF-α production, while chronic ethanol 
led to further elevation of serum TNF-α and significant liver 
injury (56). The anti-inflammatory effect of binge drinking was 
also examined in in vitro studies. Acute ethanol intoxication sig-
nificantly suppressed LPS-induced elevation of inducible nitric 
oxide synthase (iNOS) mRNA in KCs and reduced LPS-induced 
serum TNF-α activity and ROS release (104, 112). Results of 
these studies seem to suggest that acute/binge drinking induce 
inactivation and tolerance of KCs to LPS, which is paradoxical 
to the effects of chronic ethanol exposure. However, time-effects 
studies revealed that acute/binge drinking might cause transient 
tolerance of KCs to LPS, followed by the enhanced sensitivity to 
LPS. For example, the study by Enomoto et al. found that KCs 
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FigURe 4 | Maturation and polarization of KCs. KCs, the resident 
macrophage in the liver, originate from the precursor cells in the bone 
marrow, which give rise to blood monocytes. Blood monocytes migrate into 
liver and develop in to liver macrophage, namely KCs. In the liver, KCs can 
polarize in two ways: classical activation/M1 polarization and alternative 
activation/M2 polarization, which exhibit pro-inflammatory and anti-
inflammatory effects, respectively. The imbalance between M1 and M2 
polarization of KCs contributes to the pathogenesis of ALD.
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isolated from rats exposed to acute ethanol (4 g/kg body weight) 
2 h ago exhibited decreased release of TNF-α, while KCs isolated 
from rats exposed to acute ethanol 24 h ago displayed enhanced 
secretion of TNF-α (113). Similarly, the study by Yamashina 
et  al. revealed that ethanol administration at 1  h before LPS 
exposure alleviated LPS-induced liver injury, while ethanol 
administration at 21 h before LPS aggregated liver injury. This 
biphasic effect of ethanol was correlated with the expression of 
IRAK, NF-κB, and the TNF-α levels (114).

evidence Suggests that KCs Play Crucial 
Roles in Acute ethanol/Binge Drinking-
induced Liver injury
Although limited, several studies have suggested that KCs may 
play crucial roles in acute ethanol/binge drinking-induced liver 
injury (52, 100, 115, 116). Binge drinking (6 g/kg body weight) 
could also lead to transient increase of the serum endotoxin/LPS 
levels (115, 116). Interestingly, endotoxin-neutralizing protein 
abrogated binge drinking-induced increase of hepatic TNF-α 
level, oxidative stress, and liver injury (115). Using a more 
stringent binge drinking mice model (mice exposed to three 
doses of ethanol, 6  g/kg body weight each, at 12  h intervals), 
wild-type mice in ethanol group developed hepatic steatosis 
and significant increase of serum endotoxin/LPS level as well 
as hepatic enterobacteria level (52). As binge drinking-induced 
TNF-α production and liver injury could be effectively attenu-
ated by antioxidant (N-acetylcysteine) and specific inhibitor of 
CYP2E1 (chlormethiazole), it could be concluded that oxidative 
stress might mediate endotoxin/LPS-induced TNF-α production 
in acute ethanol-induced liver injury (52, 115). Furthermore, pro-
biotics, which could maintain the intestinal integrity, significantly 
suppressed acute ethanol-induced liver injury (117). Results of 
these studies suggest that the “gut–liver axis” plays crucial roles 
in acute/binge drinking-induced liver injury.

To test the roles of gut microbiota in the pathogenesis of acute 
ALD, the sensitivity to binge drinking (3  g/kg body weight)-
induced liver injury was compared between germ-free and 
conventional C57BL/6 mice (118). Unexpectedly, germ-free mice 
were found to be more susceptible to binge drinking-induced 
hepatic fat accumulation, elevation of serum aminotransferase 
activity, and hepatic inflammation compared with the conven-
tional mice. The germ-free animals exhibited higher basal levels of 
hepatic fat content and CYP2E1 protein level compared with the 
conventional mice, which might explain the increased sensitivity 
to binge drinking-induced liver injury (118). As complete loss of 
intestinal microbiota seems to affect the metabolic homeostasis 
of mice liver, it may be not appropriate to use these germ-free 
animals to test the “gut–liver axis” theory (119).

THe POLARiZATiON OF KCs AND THe 
PATHOgeNeSiS OF ALD

The Polarization of KCs in ALD
Macrophages including KCs are exceptionally plastic cells which 
can polarize to specific activation state and express different 
functions in response to microenvironmental signals. Two 

well-established polarized phenotypes are often referred to as 
classically activated macrophage (M1 polarization) and alter-
natively activated macrophage (M2 polarization) (120, 121). 
The nomenclature of M1/M2 polarization is derived from the 
cytokines that are associated with these macrophage phenotypes 
as these cytokines, namely interferon γ (IFN-γ) or interleukin-4 
(IL-4), are linked with T helper 1 (Th1)- and Th2-type immune 
responses, respectively (120, 122). M1-polarized macrophages 
are characterized by increased expression of pro-inflammatory 
cytokines, including TNF-α and iNOS, while M2-polarized 
macrophages exhibit low expression of pro-inflammatory 
cytokines, but increased expression of anti-inflammatory 
mediators, such as IL-10 (4, 12). Inflammatory stimuli such 
as microbes, damaged tissues, and activated lymphocytes, can 
induce macrophages to acquire the pro-inflammatory M1 polar-
ization (123). The inflammation driven by the M1 macrophages 
is counterbalanced by the anti-inflammatory M2-polarized 
macrophages which can promote the inflammation resolution 
and tissue repair (124) (Figure 4).

Both chronic ethanol exposure and acute/binge drinking can 
lead to increased hepatic translocation of LPS, which is a strong 
inducer of M1 activation of KCs (125, 126). Chronic ethanol 
feeding has been demonstrated to result in increase of both M1 
markers genes [iNOS, tumor necrosis factor α (TNFA) and mono-
cyte chemoattractant protein-1 (MCP1)] and M2 markers genes 
[Arginase 1 (Arg1), mannose receptor C type 2 (Mrc2)] in mice 
liver, but the induction of M1 marker genes was more profound 
than the M2 marker genes (127, 128). The imbalance between 
M1 and M2 polarization leads to the overproduction of pro-
inflammatory cytokines, which finally induce hepatocytes injury. 
Although there is no direct study about the polarization of KCs 
in acute/binge drinking animal models, it could be speculated 
that KCs may also undergo M1 polarization after acute ethanol 
exposure.
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KCs Polarization toward the Alternative 
State (M2 Phenotype) May Be an 
Attractive Strategy for ALD Treatment
As macrophages of M1 and M2 phenotypes are not stably dif-
ferentiated subsets, pharmacological interventions targeting M2 
polarization during early stages of ALD may represent an attractive 
strategy to limit ethanol-induced inflammation and hepatocytes 
injury (5). Indeed, regulation of M1/M2 balance in KCs by agonist 
of cannabinoid CB2 receptor (a G-protein-coupled receptor pre-
dominantly expressed by cells of the immune system) significantly 
suppressed chronic ethanol-induced hepatic steatosis (127). In a 
recent study, Wan et al. found that KCs in ALD-resistant BALB/c 
mice displayed preponderant M2 polarization compared to KCs 
in ALD-sensitive C57BL6/J mice, and ongoing alcohol drinkers 
with minimal hepatic injury displayed higher hepatic expression 
of M2 genes as compared to patients with severe liver lesions 
(128). Mechanisms studies showed that M2-polarized KCs pro-
moted death of selective M1-polarized KCs by producing IL-10 
and triggered hepatocytes senescence (128, 129). Furthermore, 
many studies have demonstrated that ω-3 polyunsaturated fatty 
acids (PUFAs) such as docosahexaenoic acid (DHA) and DHA-
rich fish oil could attenuate ALD (130–132). As unsaturated fatty 
acids and saturated fatty acids could induce macrophages M2 
activation and M1 activation, respectively (133–135), it would be 
possible that these PUFAs may confer protection against ALD by 
modulating the polarization of KCs.

POTeNTiAL THeRAPeUTiC TARgeTS FOR 
ALD TReATMeNT ReLATeD wiTH gUT 
eNDOTOXiN/LPS–LiveR KCs AXiS

The critical roles of KCs and related inflammatory cascade in the 
pathogenesis of ALD make it a promising target in pharmaceuti-
cal drug developments for ALD treatment. Several potentially 
therapeutic drugs, including antibiotics, probiotics, anti-TNF-α, 
and anti-IL-1β agents, have been evaluated or are under evalu-
ation for the efficacy in ALD treatment in animal studies and/
or clinical trials. Specially, several anti-TNF-α agents, including 
pentoxifylline, infliximab, and etanercept, have been tested for 
the treatment of severe AH. Unfortunately, although animal stud-
ies usually showed promising effects, clinical trials have brought 
conflicting results.

Antibiotics
Theoretically, antibiotics can block the development of ALD, as 
gut-derived endotoxin/LPS initiates the TLR-4 signaling pathway, 
leading to the production of pro-inflammatory cytokines. Indeed, 
animal studies showed that antibiotics (polymyxin B and neomy-
cin) completely prevented the elevation of aspartate aminotrans-
ferase activity and significantly reduced the average hepatic 
pathological scores in ethanol-exposed rats (30). Rifaximin, a 
non-absorbed antibiotic with few side effects and little evidence 
for resistance, has been evaluated for the treatment of alcoholic 
cirrhosis in clinical trials (136). One study found that rifaximin 
(1200  mg/day) could improve thrombocytopenia in patients 
with alcoholic cirrhosis (137). Portal hypertension is crucial in 

the transition from the compensated phase to the decompensated 
phase of cirrhosis, as it is associated with the most severe compli-
cation of cirrhosis, including hepatorenal syndrome (138, 139). 
Results of two studies showed that intestinal decontamination with 
rifaximin (1200 mg/day) for 4 weeks led to significant decrease 
of hepatic venous pressure gradient (HVPG), cardiac output, and 
plasma rennin activity, accompanied with significant increase 
of glomerular filtration rate and natriuresis (140, 141). A study 
suggested that long-term rifaximin administration (1200 mg/day, 
followed up for 5 years) might be associated with reduced risk of 
developing complications of portal hypertension and improved 
survival in patients with alcohol-related decompensated cirrhosis 
(142). Results of these studies suggest that rifaximin may be 
beneficial for the reduction in portal pressure and improvement 
of renal function in decompensated alcoholic cirrhotic patients. 
These results are quite promising, and are needed to be further 
evaluated by well-designed randomized-controlled trials with 
larger sample size.

Probiotics
Probiotics are defined as “live microorganism which can confer 
health benefits on the host when administered in adequate 
amounts” (143). Probiotics are non-pathogenic beneficial flora 
that act to regulate and maintain a stable intestinal environment 
and promote micro-ecological balance (144). The beneficial 
effects of probiotics against ALD have been gaining increased 
interest in recent years. Many probiotics such as Lactobacillus 
rhamnosus and probiotic mixtures VSL#3 have been demonstrated 
to protect against both chronic and acute ALD in animal studies 
(117, 145–152). The mechanisms included the improvement of 
intestinal integrity, reduction of TLR-4 expression, and activation 
of AMP-activated protein kinase (AMPK) (117, 149, 151, 152). 
A pilot prospective, randomized, clinical trial showed that pro-
biotics supplementation could restore bowel flora and improve 
liver enzymes in ALD patients (153). A randomized-controlled 
multicenter study showed that 7  days of oral supplementation 
with probiotics restored the bowel flora and improved the LPS in 
patients with AH (29). Results of these studies provide a scientific 
rationale to further test probiotics for treatment and/or preven-
tion of ALD in humans.

Anti-TNF-α Agents
Several anti-TNF-α agents have gained great interest due to 
the important roles of TNF-α in the pathogenesis of AH. Three 
anti-TNF-α agents have been investigated for AH treatment, i.e., 
pentoxifylline, infliximab, and etanercept. However, the clinical 
use of these agents is yet not recommended due to the poor clini-
cal outcomes observed in the largest clinical trials.

Pentoxifylline is a non-selective phosphodiesterase inhibitor, 
which can inhibit endotoxin-induced production of TNF-α (154). 
A pilot study showed that pentoxifylline (400 mg × 3 times/day 
for 28 days) significantly reduced the mortality of severe AH (46 
vs. 25%, p = 0.037); while another study showed pentoxifylline 
treatment significantly improved the renal and hepatic functions 
accompanied with a trend of decreasing mortality as compared 
with the placebo group (155, 156). However, the studies compar-
ing the efficacy between pentoxifylline and corticosteroid (the 
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first-line treatment for severe AH) have produced conflicting 
results. One study found that pentoxifylline was superior to cor-
ticosteroid in reducing the mortality and hepatorenal syndrome 
(157), while another showed that the efficacy of the pentoxifylline 
was not statistically equivalent to that of corticosteroid (158). In 
addition, the combination of pentoxifylline and corticosteroid 
did not significantly improve the 28-day and 6-month survival 
of severe AH patients when compared with treatment with corti-
costeroid alone (159). A recently published multicenter, double-
blind, randomized trials with a 2-by-2 factorial design showed 
that pentoxifylline did not improve survival of AH patients (160). 
Due to these conflicting results, several meta-analyses have been 
performed, and the results showed that pentoxifylline could not 
improve the short-term survival of AH patients compared with 
placebo; however, combination of pentoxifylline and corticos-
teroid could reduce the incidences of hepatorenal syndrome and 
the infection risk compared with corticosteroid therapy alone 
(161–163).

Infliximab is a monoclonal human/mouse anti-TNF-α 
antibody which can bind to TNF-α with high affinity when 
administered by intravenous infusion. In contrast to the efficacy 
observed in the treatment of rheumatoid arthritis and Crohn’s 
disease, the efficacy of infliximab in the treatment of AH is con-
troversial. Animals study showed that infliximab at 1 mg/kg body 
weight exhibited immunomodulatory and anti-inflammatory 
effects, whereas infliximab at 10 mg/kg body weight significantly 
decreased lipid accumulation in experimental AH model (164). 
An earlier pilot clinical trial found that serum bilirubin levels, 
Maddrey scores, neutrophil counts, and C-reactive protein levels 
fell significantly within the first month in patients receiving single 
dose of infliximab (5 mg/kg body weight) (165). A randomized-
controlled clinical trial in 20 biopsy-proven AH patients showed 
that combination of single dose of infliximab (5  mg/kg body 
weight) and prednisone (40 mg/day for 28 days) improved the 
Maddrey scores and laboratory parameters, while prednisone 
treatment alone had no significant alteration on these parameters 
(166). However, another multicenter double-blind randomized-
controlled trial of infliximab associated with prednisolone in 
36 AH patients found that the survival rate and frequency of 
severe infections within 2 months was higher in infliximab and 
prednisolone group than in the placebo and prednisolone group 
(167). The study was stopped by the follow-up committee and the 
sponsor at the end of 2 months, as more deaths occurred in inf-
liximab co-treatment groups. Another study showed that a single 
dose of infliximab (5 mg/kg, i.v.) was associated with significant 
improvement in parameters of severity, but failed to suppress the 
infection (168).

Etanercept is a genetically engineered, soluble, systemic 
TNF-α blocker that competitively binds to and neutralizes both 
soluble and transmembrane forms of TNF-α (169). A pilot study 
examining the effects of etanercept in 13 patients with moderate 
to severe AH showed that the survival rate of 1 month was 92% 
(12/13), although 23% of patients (3/13) develop serious adverse 
effects including infection, hepatorenal decompensation, and 
gastrointestinal bleeding (170). However, a multicenter, rand-
omized, double-blind, placebo-controlled study in 48 patients 
with moderate to severe AH (defined as model for end-stage liver 

disease score ≥15) found that etanercept (given six times over 
3 weeks) did not significantly affect the 1-month survival rates 
compared with placebo treatment, while the 6-month mortality 
rate was significantly higher in the etanercept group compared 
with the placebo group (57.7 vs. 22.7%, p = 0.017) (171).

iL-1β Signaling inhibitors
The key role of inflammasome activation in ALD progression has 
been confirmed using experimental mouse models. Activation 
of inflammasome leads to the production of pro-inflammatory 
cytokine IL-1β, which has been demonstrated to play critical roles 
in alcoholic steatohepatitis (95). IL-1β signals through IL-1R, 
leading to inflammatory cascade. IL-1Ra is a naturally occurring 
cytokine that binds to IL-1R to regulate the actions of IL-1β 
and control inflammation (172). Animal studies have shown 
that recombinant IL-1Ra could significantly attenuate ethanol-
induced liver inflammation and injury (91, 172). As anti-TNF-α 
agents did not bring convincing results in some clinical trials, 
IL-1Ra has gained great interest, and a clinical trial is currently 
underway to test the efficacy of IL-1Ra (Anakinra) in the treat-
ment of AH (173).

Other Drugs Potentially Used for ALD 
Treatment
In addition to the above referred drugs for ALD treatment, the 
gut–liver axis also provides many other potentially therapeutic 
targets, including intestinal permeability maintaining agents, 
LPS antibodies, TLR-4 antagonist, and caspase inhibitors. The 
efficiency of these drugs has been examining in several ongoing 
clinic trials (11).

CONCLUSiON AND ReMARKS

The causal roles of KCs in the pathogenesis of ALD have been 
highlighted, and the underlying molecular mechanisms have 
been revealed. KCs are activated in both chronic and acute ALD, 
which is driven by gut-sourced endotoxin/LPS. LPS mediates 
activation of TLR-4 signaling pathway in classically activated 
KCs (M1 phenotypes), leading to the overproduction of ROS, 
pro-inflammatory cytokines, and chemokines. The increased 
release of pro-inflammatory cytokines and the infiltration of 
other inflammatory cells such as the neutrophils finally cause 
liver injury.

The “gut–liver axis” suggests that suppression of KCs activa-
tion (such as suppressing the production of LPS, reducing the 
combination of LPS with TLRs, etc.) and elimination of cyto-
toxic products secreted by KCs (such as using TNF-α antibodies 
and IL-1Ra) may be beneficial to the treatment of ALD. Several 
drugs (such as rifaximin, pentoxifylline, and infliximab) have 
been evaluated or are under evaluation for ALD treatment in 
randomized clinical trials. Although animal studies usually 
showed beneficial effects, conflicting results were obtained 
from studies about the anti-TNF-α agents in AH treatment, 
which might be related with differences in the study design, 
the enrollment criteria and the baseline characteristics of AH 
patients, and the ethnicity of study population. For example, 
although the same threshold of AH (Maddrey scores ≥ 32) was 
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used in all the trials, the baseline characteristics of patients such 
as the age and rate of encephalopathy in these trials were not 
consistent, which might influence the accuracy of the results as 
these characteristics could influence mortality (160, 174, 175). 
Importantly, the study by Petrasek et al. suggests the therapeu-
tic potential of IL-1β inhibitors for the treatment of ALD. It is 
urgent to investigate whether IL-1β inhibitors are beneficial for 
AH patients, as severe AH is associated with high mortality and 
lack of effective treatments (172, 176). Furthermore, the study 
by Wan et  al. provided solid evidence for the protective roles 
of M2 KCs against early stage of ALD (128). Thus, screening 
pharmacological regulators for KCs toward M2 polarization 
may provide additional therapeutic agents. The combination of 
these potentially therapeutic drugs with other agents (such as 
hepatoprotective agents, including zinc, melatonin, silymarin, 
etc.) may bring encouraging results.

Although the roles of KCs in the pathogenesis of ALD have 
been clearly demonstrated, there are still some questions that 
need to be addressed. First, the autophagic response of KCs in 
ALD remains unclear. Autophagy, an intracellular self-digestion 
process, can regulate lipid metabolism in hepatocytes and also 
have anti-inflammatory effects (177, 178). Activation of autophagy 
could reduce alcoholic and metabolic steatosis by enhancing the 
decomposition of lipid and suppress LPS-induced inflammation 
and liver injury (178–181). Although ethanol exposure induces 
autophagy in the mice/rat livers and in cultured hepatocytes, no 
studies investigated the autophagic response of KCs in ALD (182, 
183). It has been demonstrated that LPS can induce autophagy in 
human and murine macrophages (184, 185). Therefore, it appears 
to be reasonable that ethanol may also lead to the activation of 
autophagy in KCs as ethanol could increase LPS translocation 
from gut to liver. The autophagic response of KCs and its roles 
in ALD are needed to be investigated. Second, the relationships 
between autophagy and polarization in KCs are needed to be elu-
cidated. One previous study showed that KCs from mice with Atg 
5 deficiency in macrophages exhibited increased M1 polarization 
and decreased M2 polarization, suggesting that autophagy has 
a critical regulatory function in macrophage polarization (178). 
It should also be necessary to explore whether KCs polarization 

regulator can influence autophagy activity. Third, the highly 
heterogeneous KCs can be classified into different subpopula-
tions. For example, two F4/80+ KCs subsets have been revealed, 
a CD68+ subset with phagocytic activity and a CD11b+ subset 
with cytokine-producing capacity (6, 186). These different KC 
subsets may play different roles in the pathogenesis of ALD, 
which need to be further studied.

In addition to ALD, KCs activation may be also involved in 
the pathogenesis of alcohol dependence, which is character-
ized by an individual’s continued drinking despite negative 
consequences related to alcohol use (187–190). It was found that 
intestinal permeability and blood LPS were largely increased in 
alcohol-dependent subjects and the pro-inflammatory cytokines 
level was positively correlated with craving (191). Evidences from 
postmortem alcoholic brain showed that chronic ethanol could 
increase degradation of tight junctions and extracellular matrix 
in human brain (192). Additionally, animal study demonstrated 
that TNF-α produced by KCs could transfer to the brain through 
TNF-R to induce the synthesis of additional TNF-α, creating a 
persistent and self-propelling neuroinflammation in the brain 
(193). Results of these studies suggest that the cytokines produced 
by KCs may cross the blood–brain barrier (BBB) via diffusion or 
active transport, or by BBB alterations (189, 190). Further studies 
about the roles of KCs in the pathogenesis of alcohol depend-
ence may reveal new therapeutic targets for pathologic drinking 
behaviors.
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