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Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to
energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when
simultaneously exposed to a restricted feeding schedule and allowed free access to
running wheels. These conditions lead to a life-threatening reduction in body weight,
resembling AN in human patients. Here, we investigate the effect of ABA on whole body
energy homeostasis at different housing temperatures. Our data show that ABA rats
develop hyperactivity and hypophagia, which account for a massive body weight loss and
muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown
adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased
housing temperature reverses not only the hyperactivity and weight loss of animals
exposed to the ABA model, but also hypothermia and loss of body and muscle mass.
Notably, despite the major metabolic impact of ABA, none of the changes observed are
associated to changes in key hypothalamic pathways modulating energy metabolism,
such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress.
Overall, this evidence indicates that although temperature control may account for an
improvement of AN, key hypothalamic pathways regulating thermogenesis, such as
AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this
devastating disease.

Keywords: activity-based anorexia, temperature, cachexia, brown adipose tissue, white adipose tissue,
hypothalamus, AMPK, ER stress

INTRODUCTION

Anorexia nervosa (AN) is an eating disorder characterized by decreased food intake, severe weight
loss and hyperactivity (1, 2). Due to chronic underfeeding, patients with AN present
neuroendocrine changes, in an attempt to adapt to malnutrition, which in many cases are not
completely reversed even with the recovery of body weight (3); this leads to several medical
complications (4, 5).
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Activity-Based Anorexia (ABA) is considered the best
analogue animal model for AN (6), which is obtained by
providing availability of food to rats 1-2 h/day and free access
to a running wheel (7). Under these circumstances, rats develop
an excessive running and reduced meal efficiency, eliciting
massive weight loss and hypothermia, both mimicking the
principal signs of AN disorder in humans. Notably, ABA also
reproduces the metabolic and endocrine abnormalities observed
in humans (8). AN-associated hyperactivity has been proposed
as an adaptative behavioral response to compensate for
hypothermia (9). Previous research has shown that exposure to
a high ambient temperature (AT) prevents and reverses the
hyperactivity and improves feeding patterns, allowing body
weight recovery in both male and female rats under ABA
conditions (10-15). These beneficial effects of temperature
have been also found in the semi-starvation induced
hyperactivity model (SIH) (16).

Due to the ability of the ABA model to reproduce many of the
symptoms of the AN disorder in humans, as well as the
identification of several genes involved in food intake
regulation and energy balance as potential pathways that
contribute to the etiology and maintenance of AN (17, 18), it
would be interesting to examine the effect of high AT on energy
sensors potentially involved in AN, as well as the possible clinical
implications on the treatment of AN in humans. Here, we
focused on AMP-activated protein kinase (AMPK) and
endoplasmic reticulum (ER) stress, well-known mechanisms
regulating both sides of the energy metabolism, namely feeding
and thermogenesis (19-26).

MATERIALS AND METHOD

Animals

Male Sprague-Dawley rats (130-190 g) were acquired from the
Animalario General USC, (Santiago de Compostela, Spain). They
were kept with food and water ad libitum on a 12-hr light-dark
cycle (LD, lights on from 08:00 to 20:00 hours). Ambient
temperature set at 21 + 1°C. The Ethics Committee on the use
and care of animals of Santiago de Compostela University
approved all described procedures (project license 15004/17/
002). All experiments were carried out in accordance with
Royal Decree 53/2013 of February 1, Law 32/2007 of
November 7, and European Communities Council Directive
2010/63/UE of September 22, on the protection of animals
used for experimental and other scientific purposes.

Running Wheels

Cages (48 x 31.5 x 47 cm) equipped with a Whatman-type
activity wheel (1.12-m circumference 35.7 cm diameter, 10-cm-
wide running surface of a 10-mm mesh bounded by clear
Plexiglas and stainless-steel walls; Panlab Harvard Apparatus;
Barcelona, Spain) were placed inside wooden incubators (60 x 60 x
60 cm) with polycarbonate roofs, provided with a 150 W heat wave
lamp, connected to a thermostat and a probe positioned at the level
of the animal, which allowed individual control of AT.

ABA Procedure

One week prior to the start of the experiments body temperature
and activity transmitters (PTD 4000 E-Mitter, Respironics Mini
Mitter Inc; Bend, OR, US) were implanted under ketamine-
xylazine anesthesia (50 mg/kg, intraperitoneal) and inserted in a
subcutaneous pocket on the ventral surface created using blunt
dissection. The rats were allowed seven days to recover. On the
eighth day, rats were weighed and assigned to two weight
matched groups: an active and restrictive-fed (AC) group and
an inactive and restrictive-fed (IN) group. All the rats were
transferred to running wheel cages, but only the rats assigned to
the active condition had access to functional wheels. The rats
assigned to the inactive condition remained with the activity
wheel blocked during the whole experiment, avoiding any
possibility of movement inside those devices. The ABA
procedure started (day 0) with the removal of food at 12:30 h
for restricted-fed groups. At the same time, the doors to the
wheels were opened for the active group. From day 1 onward, all
rats were given access to food according to a restricted feeding
schedule from 11:00 to 12:30 h. The doors of the wheels were
closed during this feeding period. Food intake was measured by
weighing the food at the beginning and the end of every 1.5 h
feeding period. Rats were also weighed daily at 10:30 h (as they
were on day 0). This phase continued for each restricted-fed
active rats until it reached a body weight loss criterion (BWLC)
of 20% of their day 0 body weight. At this time, rats were
assigned to one of two ambient temperature, 21°C or 32°C, as
indicated in the two digits of the abbreviated group name (AC21
and AC32). These conditions were maintained until rats reached
either the recovery criterion, which was defined as body weight
on any particular day (day n) greater than the weight of the
animal 4 days before, (day n-4), or the removal criterion which
was defined as body weight under 75% of body weight on day 0
(7). The experiment was terminated after 15 days. The restricted-
fed inactive rats were also assigned to two ambient temperature
conditions, 21°C or 32°C (IN21 and IN32). For the rats
maintained at 21°C the experiment lasted only six days
(median of days that the restricted-fed active animals took to
reach the BWLC). While rats assigned to 21°C AT remained in
these conditions for three days more (median of days that de
AC21 group took to reach the removal criterion), rats assigned to
32°C remained six days on experiment (median of days that the
AC32 group took to reach the recovery criterion). At the end of
the experiments rats were sacrificed by decapitation after the
weighing routine; trunk blood, brain, brown adipose tissue
(BAT), hind leg muscle and gonadal white adipose tissue
(gWAT) were collected, frozen and stored at -80°C until assay.

Blood Biochemistry

Trunk blood was collected into specific tubes (BD Vacutainer;
Plymouth, UK) and centrifuged at 3,200x g for 15 min at 4°C to
separate the serum. Then serum was stored at -80°C. Glucose free
T3 and free T4 were measured using an automated chemistry
analyzer (ADVIA 2400 Chemistry System, Siemens Medical
Solutions Inc; Ann Arbor, MI US). Leptin, corticosterone
(CORT), adrenaline and noradrenaline levels were measured
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using ELISA kits (EZRL-83K; Linco Research; St. Charles,
Missouri, US, for leptin; ab108821, Abcam, Cambridge, UK, for
CORT; EIA-3175; DRG Instruments GmbH, Marburg, Germany,
for adrenaline and noradrenaline).

Hypothalamic Dissection

The brain was placed in an adult rat brain matrix (Kent-Scientific
Corporation, #RBMA-300C; Torrington, CT, US) with the
hypothalamus upward and dissected as previously described
(23, 24, 26-28).

Western Blotting

BAT, gWAT and the hypothalamic nuclei (arcuate, ARC, and
ventromedial, VMH) were homogenized in lysis buffer
containing protease inhibitor cocktail tablets (Roche
Diagnostics; Indianapolis, IN, US) and the protein
concentration was determined using the Bradford method
(Protein assay dye concentrate, Bio-Rad Laboratories; Hercules,
CA, US). The protein lysates were subjected to SDS-PAGE and
electro-transferred to polyvinylidene difluoride membranes
(PVDEF; Millipore; Billerica, MA, US) with a semidry blotter.
Membranes were blocked in TBS/Tween with 3% of BSA (Bovine
serum albumin, Sigma Aldrich, St. Louis, US) and probed with
the following antibodies against: pAMPKo (Thr172), glucose-
regulated protein 78 (GRP78; Cell Signaling; Danvers; MA, US),
UCP1 (uncoupling protein 1; Abcam; Cambridge, UK), C/EBP
Homologous Protein (CHOP; SCBT; Dallas, Texas, USA),
o-tubulin and B-actin (Sigma-Aldrich; St. Louis, MO, US), as
previously shown (23, 24, 26-29). Membranes were incubated
with the corresponding secondary antibody: anti-rabbit, anti-
mouse, or anti-goat (DAKO; Glostrup, Denmark). Detection of
proteins was performed with Enhanced chemiluminescence
(ECL) reagents (Pierce ECL Western Blotting Substrate, Cultek;
Madrid, Spain) according to the manufacturer’s instructions,
exposed to x-ray films (Fujifilm; Tokyo, Japan), developed and
fixed under appropriate dark room conditions. Autoradiographic
films were scanned and the bands signal was quantified by
densitometry using ImageJ-1.33 software (NIH; Bethesda, MD,
US), as shown (23, 24, 26-29). Values were expressed in relation
to B-actin (hypothalamus) or o-tubulin (BAT). Representative
images for all proteins are shown, all the bands for each picture
always come from the same gel, although they may be spliced for
clarity, as represented by vertical lines.

Real-Time Quantitative RT-PCR

Real-time PCR (TaqMan®; Applied Biosystems; Foster City, CA,
USA) was performed using specific primers and probes
(Supplementary Table 1), as shown (27-30). Values were
expressed in relation to hypoxanthine-guanine phosphoribosyl-
transferase (Hprt) levels.

Hematoxylin-Eosin Staining and UCP1
Immunohistochemistry

gWAT depots were fixed in 10% buffered formaldehyde and
subsequently treated for histological study by dehydration
(increasing alcohol concentrations), mounting in xylene and
immersion in paraffin. The paraffin blocks were sliced into 3

mm sections that were processed, deparaffinized in xylene,
rehydrated and rinsed in distilled water and then stained either
for hematoxylin-eosin or UCP1 immunohistochemistry. For the
hematoxylin-eosin processing, slices were first stained with
hematoxylin for 5 min, washed and stained again with eosin
for 1 min. For UCP1 immunohistochemistry, slices were
incubated overnight with the primary antibody (UCP1; Abcam;
Cambridge, UK), washed and incubated with the secondary
antibody (DAKO; Glostrup, Denmark). Images were taken in
an optical microscope with a digital camera Olympus XC50
(Olympus Corporation; Tokyo, Japan) at 40X. Adipocyte area
and UCP1 staining area were quantified using Image] 1.33
software (NIH, Bethesda, MD, US), as shown (25, 29, 31, 32).

Statistical Analysis

Data are presented as mean + SEM. When two groups were
compared, statistical significance was determined by two-sided
Student’s t-test; when more than groups were compared,
statistical significance was determined by ANOVA followed by
Bonferroni’s test. P < 0.05 was considered significant. Statistical
analyses were performed using SPSS 21.0 software (IBM;
Armonk, NY, US).

RESULTS

Increased Housing Temperature Reverses
the Effect of ABA on Energy Balance

and Activity

ABA rats exposed at a housing temperature of 32°C (AC32) ran
six-fold less than rats housed at 21°C (AC21). During Phase II
running activity of AC32 rats did not reach the activity level
shown on the last day of Phase I, (day they met the body weight
loss criterion of 20%, 20%BWLC), despite being an average of 4
more days being subjected to standard ABA conditions
(restricted feeding plus wheel access) (Figure 1A). Active rats
lose weight during Phase II while inactive rats keep it stable.
Besides, the increase in room temperature to 32°C allowed for
less weight loss in active rats and slightly increased weight in
inactive rats, when compared to their counterparts at 21°C
(Figures 1B, C). Both active and inactive rats exhibited higher
body temperature when they were maintained at 32°C, as
(Figures 1D, E). Rats kept at lower temperature of 21°C
initially ate more than rats at 32°C although no significant
differences were detected on the final day (Figures 1F, G).

Increased Housing Temperature Reverses
the Effects of ABA on Circulating
Parameters

Next, we evaluated the effect of housing temperature on
circulating parameters in the ABA model (Table 1). We first
focused on leptin levels, since this hormone has been shown to
have a controversial role in this model of disease (16, 33-39).
Resembling the clinical evidence (34, 36, 37), our data showed
that active rats had significantly lower circulating leptin levels
that inactive ones, which were elevated after exposure of the rats
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FIGURE 1 | Effect of ABA and temperature on energy balance. (A) Activity (n = 9-12 rats/group) (B, C) Body weight (% of day 0) (n = 8-12 rats/group) (D, E) Body
temperature (n = 7-10 rats/group) (F, G) Food intake (n = 8-12 rats/group) of active rats at 21°C and 32°C (AC21 and AC32) and inactive rats at 21°C and 32°C
(IN21 and IN32) *P < 0.05, **P < 0.01, **P < 0.001 vs. AC21; P < 0.05, "P < 0.01, *P < 0.001 vs. IN21. Data expressed as mean + SEM. 20% BWLC, 20%

to 32°C (Table 1). No major changes were detected in glycaemia.
Regarding CORT, active rats housed at 21°C displayed the
highest circulating levels of this hormone (Table 1), similarly
to AN patients and other preclinical models (40-44), indicating
greater stress. Notably, when maintained at 32°C, active rats
normalized their circulating CORT, reaching even lower
concentration than the inactive groups (Table 1). Thyroid
hormones (T4 and T3) play a major role in the modulation of

temperature (45, 46), and we investigated how their circulating
levels were affected in our setting. Inactive rats displayed the
expected correlation between ambient temperature and thyroid
status. Interestingly, that effect was not evident in active rats,
which showed lower T4 and T3 when kept at 21°C as compared
to 32°C (Table 1). Finally, active rats at 21°C also showed higher
levels of noradrenaline, that were reduced when housed at 32°C
(Table 1).
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TABLE 1 | Serum parameters in the experimental groups.

Active 21°C Active 32°C Inactive 21°C Inactive 32°C
Leptin (ng/mL) 0.20 + 0.002!!! 0.24 + 0.005*** 0.28 + 0.02 0.29 + 0.02
Glucose (mg/dL) 120.33 + 8.29 137.75 + 3.28" 129.86 + 5.82 140.00 + 3.49
Corticosterone (ng/mL) 1466.87 + 125.28l!! 273.05 + 43.77* 412.98 + 63.40 435.91 + 35.57
T4 (ng/dL) 0.98 + 0.05!!! 1.54 + 0.07*** 1.89 + 0.07 1.71 + 0.04"*
T3 (pg/mL) 1.51 = 0.09!l! 2.24 + 0.05"* 3.68 + 0.05 3.07 + 0.09*#
Adrenaline (ng/mL) 2.46 + 0.50 2.16 £ 0.19 418 £ 1.21 3.43 +£0.77
Noradrenaline (ng/mL) 2.64 +0.32 1.75 + 017" 3.54 + 0.58 3.58 + 0.58

n = 9-11 animals/group.

*P < 0.05 and **P < 0.001 vs. AC21.
P < 0.05, and """P < 0.001 vs. IN21.
IIP < 0.001 IN21 vs. AC21.

Increased Housing Temperature Reverses
the Effects of ABA on WAT and

Skeletal Muscle

AN is also characterized by a great loss of fat mass (38, 47, 48).
Therefore, we decided to explore lipogenesis and lipolysis
markers in the WAT of ABA rats. Active rats at 21°C had an
extreme decrease in all examined lipogenic markers levels, such

as acetyl-CoA carboxylate oo (ACCov), fatty acid synthase (FAS),
sterol regulatory element-binding protein 1 (SREBP1),
peroxisome proliferator-activated receptor-gamma (PPARY)
and CCAAT/enhancer binding protein alpha and beta (C/
EBPo. and C/EBPP), compared to inactive rats. Active rats at
32°C showed a marked recovery in the expression of these factors
(Figure 2A). Increased housing temperature did not impact on
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FIGURE 2 | Effect of ABA and temperature on WAT and muscle. mRNA levels of (A) lipogenesis and lipolysis markers in the WAT (n = 8-11 rats/group) and
(B) cachexia markers in skeletal muscle (n = 8-11 rats/group) of active rats at 21°C and 32°C (AC21 and AC32) and inactive rats at 21°C and 32°C (IN21 and IN32).

*P < 0.05, *P < 0.01, **P < 0.001 vs. AC21; *P < 0.05, P < 0.01, P < 0.001 vs. IN21; *P < 0.01, P < 0.001 IN21 vs. AC21. Data expressed as mean + SEM.
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gene expression levels in inactive rats, except for an increase in
FAS and SREBP1 mRNA expression (Figure 2A). On the other
hand, the levels of lipolysis markers, such as hormone-sensitive
lipase (HSL), lipoprotein lipase (LPL), adrenergic receptor beta 1
(ADRP1) and adrenergic receptor beta 3 (ADRf3), but not beta 2
(ADRP2), fibroblast growth factor 21 (FGF21) and carnitine
palmitoyltransferase 1B (CPT1B), were reduced in active rats at
21°C, likely due to the massive loss of adiposity of these animals,
while heat reversed this expression (Figure 2A).

AN patients have a reduction in lean mass and wasting
syndrome, leading to cachexia (3, 49, 50). Therefore, we
explored two cachexia markers in skeletal muscle, namely
Atrogin-1 and Murf-1. Our data showed that rats housed at
21°C exhibited a markedly increased expression of cachectic
markers relative to rats housed at 32°C, evident both in the

inactive and the active cohort, possibly indicating muscle
deteriorating (Figure 2B).

ABA Reduces BAT UCP1 Levels But
Increases the Browning of WAT
It is known that AN is associated with impaired thermogenesis
(50). In fact, it has been reported that young women with AN
exhibit reduced cold-activated BAT (50). Analysis of UCP1
expression in the BAT of our model showed decreased 21°C-
induced UCP1 protein levels in AC rats (Figures 3A, B). As
expected, increased environmental temperature decreased UCP1
expression in both active and inactive animals (Figures 3A, B).
Opver the last years, accumulating evidence have demonstrated
that activation of beige/brite (“brown in white”) adipocytes in the
WAT, a process known as browning (51-53), is responsible for a
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significant increase in total energy expenditure (54). Notably,
recent studies have also linked the browning of WAT to other
wasting syndromes, such as cancer-induced cachexia (55, 56);
however, to date, no data have linked AN to browning of WAT.
Our histological analysis of WAT showed that ABA rats exhibited
a “brown-like” multilocular pattern, associated with increased
UCP1 immunostaining (Figures 3C, D) and decreased adipocyte
area (Figures 3E, F). Importantly, the induction of browning was
not affected by housing temperature (Figures 3C-F). Overall, these
data indicate that ABA rats, besides hypophagia, also displayed
increased browning of WAT, that was compatible with the elevated
catabolic state.

ABA Does Not Impact Either AMPK or ER
Stress in the Hypothalamus
Finally, we aimed to investigate if ABA might result in changes at
the central level that could explain the catabolic state of this
model. One of the principal regulators of energy balance at a
central level is hypothalamic AMPK, an energy sensor that
controls both sides of the energy balance equation: food intake
and energy expenditure (20-22). Firstly, we investigated the
effect of ABA and temperature on total hypothalamic extracts;
our data did not show any significant impact of either ABA or
temperature on the protein levels of the AMPK signaling
pathway (Supplementary Figure 1A). Current data indicate
that the effects of AMPK in the hypothalamus are nucleus-
specific; thus while AMPK in the ARC is mainly involved in the
regulation of feeding, AMPK in the VMH regulates BAT
thermogenesis and browning of WAT (19-23, 32), Therefore,
we performed further analysis of AMPK in ARC and VMH
enriched protein lysates, which showed a non-significant
tendency of phosphorylated AMPK (pAMPK) to be increased
in the VMH of ABA rats, that might account for the decreased
levels of BAT UCPI1 protein levels observed in those animals
(Figures 4A, B). No major effect of housing temperature was
detected of pAMPK levels in the VMH (Figures 4A, B). Similar
data were found when pAMPK was assayed in the ARC (Figures
4C, D). Overall, these results indicated that the impaired feeding
and browning that characterized ABA model were unlikely
associated to changes in AMPK signaling in these nuclei.
Finally, we investigated the effect of ABA on hypothalamic ER
stress signaling, since recent data have linked this cellular
response with the regulation of BAT thermogenesis and
browning of WAT (24-26, 28). Our data did not show any
major impact of either ABA or housing temperature on two key
hypothalamic ER stress markers, namely GRP78 and CHOP
(Figures 4E, F), excluding their association in the BAT and
metabolic alterations of this model.

DISCUSSION

Here, we show that the catabolic state that characterizes ABA is
associated with major changes in BAT thermogenesis and WAT
browning. Notably, those changes are not related to modification

in key central regulators of adipose tissue activity, namely
hypothalamic AMPK and ER stress signaling.

AN is characterized by energy balance impairment as a result
of decreased food intake and hyperactivity, leading to severe
weight loss (1, 2). Different brain regions, such as reward-
motivated learning or hippocampal structures, have been
involved in the pathology of AN (1, 2, 8, 57). Here, we aimed
to investigate whether the canonical hypothalamic (VMH)-
AMPK-ER stress-SNS-BAT axis (21, 22) could be involved in
the reduced feeding and the changes in BAT and WAT browning
that characterize the ABA model in rats.

ABA is considered the best analogue animal model for AN (6).
In addition, it is well-established that ABA-induced hyperactivity
is an adaptative behavioral response to compensate for
hypothermia (9). Our data are in line with previous studies
reporting the beneficial effect of increased ambient temperature
to 32°C on the recovery of rats subjected to the ABA model, even
after 20% weight loss has occurred (10-13, 15, 58). Although our
data confirm former evidence, the use of temperature recording by
telemetry allows a constant monitoring of the body temperature
throughout the experiment, which constitutes a big advantage
when compared to previous reports. Food-restricted rats suffered
hypothermia when given free access to a running wheel, as body
temperature decreases over days. On the contrary, rats exposed to
32°C, both active and inactive, avoid hypothermia and their body
temperature at the end of the experiment reached values higher
than when meeting the weight loss criterion. These findings
reinforce the hypothesis that hyperactivity is an adaptive
response to compensate for the hypothermia derived from
weight loss (9).

In mammals, the BAT is responsible for the adaptative
thermogenesis which regulates body temperature when other
mechanisms (i.e., heat conservation) are not enough to maintain
homeothermy (59, 60). Food-restriction elicits reductions in
energy expenditure through decreased BAT thermogenesis, as
a strategy to save energy, although it leads to a hypothermic state
(61-63). In ABA rats this response is exacerbated, entering in a
vicious cycle situation that potentiates an overall catabolic state
leading to wasting and cachexia. Notably, the increase in housing
temperature reduced the expression of UCP1 in the BAT. That
reduction in adaptive thermogenesis together with the reduction
of hyperactivity would account for a better preservation of body
mass (16) and the recovery of body weight of rats exposed to the
ABA model. This is also demonstrated by an improved metabolic
profile at the higher ambient temperature, exemplified by the
reduction in the expression of cachectic markers in skeletal
muscle and the increased WAT lipogenesis. Still, the recovery
in body mass is not total, likely due to the maintained browning
of WAT, which may account for a chronic increased energy
expenditure (54), leading to a sustained basal catabolic state.

There are a huge amount of data linking hypothalamic AMPK
and ER stress pathways in the hypothalamus, specifically in the
VMH, with the regulation of thermogenesis in BAT, as well as
the browning of WAT (19-26). This prompted us to investigate
whether those hypothalamic molecular mediators could be
associated to the BAT and WAT responses in the ABA model.
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FIGURE 4 | Effect of ABA and temperature on AMPK and ER stress in the VMH and ARC. (A, B) Protein levels of pAMPKo. in the VMH (n = 7-10 rats/group)
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32°C (AC21 and AC32) and inactive rats at 21°C and 32°C (IN21 and IN32). Data expressed as mean + SEM. The bands in gels from panel (A, C, E) have been

spliced from the same original gels.

Our analysis did not find major expression differences in the
levels of pAMPK (the active isoform), GRP78 and CHOP either
in the VMH and/or the ARC of ABA rats. In fact, this result is
opposite to a recent report where it has been described that
hypothalamic pAMPK levels are reduced in ABA mice (64).
These discrepancies could be likely explained by the different
species (rats vs. mice), but also by the nuclei-specific an analysis
performed in our study, which is critical to understand AMPK
and ER stress function in the hypothalamus (19-26) at the
studied times. Moreover, timing could be also a factor, in this
sense it is likely that at the final time point that we investigated,
initial changes in hypothalamic AMPK and/or ER stress (maybe
responsible for the BAT and browning changes observed) could

not be detected. Further work will be needed to address the exact
role of these molecular mechanisms in the pathology of AN.

In summary, our study shows a general description of the
metabolic state of rats exposed to the ABA model and of those
rats treated with heat. The results are consistent with the
hypothesis that body temperature is an important parameter in
ABA. The application of heat reverses not only the hyperactivity
and weight loss of animals exposed to the ABA model, but also
hypothermia, hypoleptinemia and loss of muscle mass. However,
none of the changes observed are associated to changes in key
hypothalamic pathways modulating energy metabolism, such as
AMPK or ER stress (19-26) at the studied times. Hence,
hypothermia in AN should be given more attention in future
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research to study the underlying brain mechanism involved in
the warming effect and to explore new treatments.
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