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Saccharina genomes provide novel insight
into kelp biology
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Seaweeds are essential for marine ecosystems and have immense economic value. Here we

present a comprehensive analysis of the draft genome of Saccharina japonica, one of the most

economically important seaweeds. The 537-Mb assembled genomic sequence covered

98.5% of the estimated genome, and 18,733 protein-coding genes are predicted and

annotated. Gene families related to cell wall synthesis, halogen concentration, development

and defence systems were expanded. Functional diversification of the mannuronan

C-5-epimerase and haloperoxidase gene families provides insight into the evolutionary

adaptation of polysaccharide biosynthesis and iodine antioxidation. Additional sequencing

of seven cultivars and nine wild individuals reveal that the genetic diversity within wild

populations is greater than among cultivars. All of the cultivars are descendants of a wild

S. japonica accession showing limited admixture with S. longissima. This study represents an

important advance toward improving yields and economic traits in Saccharina and provides an

invaluable resource for plant genome studies.
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B
rown macroalgae (kelps) belong to the phylum Strameno-
piles, a phylogenetic lineage that is distantly related to
terrestrial plants and animals1. These macroalgae exhibit

differentiated tissues during development, making them distinct
from unicellular stramenopiles. The extensive submarine kelp
forests are the largest biogenic structures within benthic marine
communities, occupying 70% of the total biomass in cold and
temperate marine systems2. Specifically, Laminariales kelp species
are essential for ecosystems and are economically important as a
marine crop. These kelps are cultivated in East Asia and harvested
from natural populations in Europe and North America to
produce of alginate, which is used in a wide variety of
pharmaceuticals, foods and industrial applications3. These kelps
may also provide an important component for the future
renewable energy mix4. Furthermore, Laminariales are the
largest accumulators of iodine, contributing tremendously to
the biogeochemical iodine cycle, and thus have a significant
impact on atmospheric chemistry5. In particular, S. japonica, one
of the most common Laminariales alga along the northwest
coasts of the Pacific Ocean6, is becoming the most economically
important seaweed in the sea farming cultivation industry. On the
basis of artificial seedling-rearing techniques, S. japonica sea
farming has evolved rapidly to make it the most common
seaweed in the world7, with most of this seaweed used as food and
raw industrial materials. The output of S. japonica reached 7.9
million tons (dry weight) and had a market value of more than
US $1.3 billion in 2012 (ref. 8).

Despite the ecological, economic and evolutionary importance
of kelps, we currently have a very limited knowledge of their
genetic architecture and metabolism, including their iodine
concentration system and alginate-producing pathway, a limita-
tion that hinders both genetic research and mariculture practices.
Furthermore, years of interspecific hybridization and biomass
yield-targeted artificial selection have not only degeneratted the
economic characteristics of these kelps but have also narrowed
their genetic variation. The recently sequenced small filamentous
model brown alga Ectocarpus siliculosus9, a close relative of kelp
species10, greatly facilitated the functional and evolutionary
investigation of S. japonica in this study. Here we report a draft
genome sequence of the female gametophytes of the artificially
cultivated S. japonica strain Ja and the resequencing of seven wild
populations and nine representative cultivars of Saccharina
species. Comparative genomic analyses of these data provide
novel insight into the evolutionary adaptation and the functional
diversification of the polysaccharide biosynthesis and iodine
concentration mechanisms of S. japonica. The Saccharina
genomic sequence that was obtained represents an important
advance toward securing bioproducts and biofuels from
macroalgae and provides an invaluable resource for plant gene
and genome evolution studies.

Results
Genome sequencing and assembly. Genomic DNA was extracted
from filamentous female gametophytes of S. japonica strain Ja
cultured in Qingdao, China. The DNA sequencing reads were
obtained using both Roche and Illumina technologies and were
assembled after filtering out the low-quality and duplicated reads.
A total of 84 Gb of high-quality Illumina reads and 10 Gb of
PacBio long reads (Supplementary Table 1) were generated,
representing an B178� coverage of the S. japonica genome,
with an estimated size of 545 Mb based on kmer depth dis-
tribution analyses and flow cytometry (Supplementary Figs 1
and 2). Approximately 98.5% (537 Mb) of the genome was
de novo assembled, consisting of 13,327scaffolds (Z500 bp) with
a scaffold N50 length of 252,007 bp (longest, 1.47 Mb) and a
contig N50 length of 58,867 bp (Supplementary Table 2).

Genome annotation and gene prediction. By combining
homology-based and de novo approaches, we identified B40% of
repetitive elements in the assembled S. japonica genome, which is
nearly twice as many as in E. siliculosus (22.7%) (Supplementary
Fig. 3). Among these repeats, 63.1% could be classified into
known repeat families, with long-terminal repeats (LTRs) con-
stituting the most abundant repeat family, representing 21.1% of
the repetitive sequences. Long interspersed elements were the
second largest family found in S. japonica and could be sub-
divided into Jockey, RTE, L1 and CRE elements. Compared with
the LTRs (for example, Copia and Gypsy), the L1 and the CRE
elements and the RTE-2 and the RTEX-1 retrotransposons
identified in S. japonica shared a high sequence similarity
(495%), indicating that they were recently inserted into the
S. japonica genome and are likely to be active in the amplification
(Fig. 1). Previous studies have demonstrated that RTEs exhibit
a mosaic distribution throughout the Animalia kingdom and
tend to spread via horizontal gene transfer (HGT)11,12.
A comprehensive search of the RTE RT domains in published
algal genomes revealed that E. siliculosus possesses a significant
fraction of RTE elements (1.6%) that share high sequence
similarity with those found in S. japonica, whereas the
RTEs identified in two green algal genomes (Volvox carteri
and Chlamydomonas reinhardtii) were relatively divergent.
A phylogenetic analysis of the RTE elements showed that they
were not consistent with the species tree, indicating the lateral
gene transfer of the RTE elements in these organisms.
(Supplementary Fig. 4).

To more accurately annotate the S. japonica genome, we
performed deep transcriptome sequencing of both female
gametophytes and sporophytes, which generated 11.3 Gb of
RNA sequencing data. By combining homologue-based, ab initio
and transcriptome-based approaches, we predicted 18,733
protein-coding genes (gene models) in the S. japonica genome,
which is greater than the number of genes predicted in
E. siliculosus7 (16,256). The average gene size (exons and
introns) was 9,587 bp, with 6.54 exons per gene and an average
intron size of 1,057 bp, which is significantly larger than in
E. siliculosus (average intron size, 703 bp). More than 90.7% of the
predicted coding sequences were supported by transcriptome
sequencing data (Z5 reads), indicating the high accuracy of
the gene predictions in the sequenced S. japonica genome
(Supplementary Fig. 5). To independently evaluate the genome
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Figure 1 | The repetitive elements in S. japonica. (a) Age distribution of

the LTR elements in S. japonica. (b) Age distribution of the LINE elements in

S. japonica. The average number of substitutions per site for each

fragmented repeat was estimated using the one-parameter Jukes–Cantor

model. Insertions and deletions were excluded from the substitution rate

calculation. The per cent substitution from the consensus roughly

correlates with the age of the repetitive elements. LINE, long interspersed

elements.
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completeness, we found that 96.5% of de novo assembled
transcripts (25,010 out of 25,914) could be aligned to the
assembled genome. Among the annotated genes, 86.1% of the
encoded proteins had homologues in the NCBI non-redundant
protein database, with 70.1% of the putative proteins showing
best-hit matches to E. siliculosus. Previous studies have revealed
that E. siliculosus possesses an integrated virus (EsV-1) in its
genome9,13. In this study, we did not find any homologous genes
of EsV-1 in the Saccharina genome. However, using PFAM
domain searches, we identified 121 putative proteins in
S. japonica containing the FNIP repeat domain (PF05725),
which is B22 residues long and has previously only been found
in Dictyostelium and a few double-stranded DNA viruses. Similar
FNIP repeat domains have also found in the E. siliculosus
genome. A phylogenetic analysis based on the FNIP repeat
domain revealed that the closest relatives of these FNIP sequences
came from a giant virus (Supplementary Figs 3B and 6) that
infects the marine zooplankton Cafeteria roenbergensis13,
suggesting an ancient association of brown algae with viruses.

Comparative genomics. To investigate the gene content of
S. japonica, phylogenomic analyses of 25 genomes from
Chromalveolata, Rhizaria, Glaucophyta, Rhodophyta, Chlorophyta
and higher plants were performed. First, 41 orthologues of single-
copy or species-specific gene duplications were identified
(Supplementary Data 1; Supplementary Fig. 7A) for a phyloge-
netic tree reconstruction using concatenated super genes after the
removal of redundancy to avoid the effects of loss of paralogues.
As shown in Fig. 2a, the phylogenetic tree divided the 23
organisms into three main phyla, Chromalveolata, Rhodophyta
and Viridiplantae. A total of 19,410 gene families were then
predicted from the 404,604 genes of S. japonica and the other 24
genomes (Supplementary Data 2). Among these gene families, a
Dollo parsimony analysis based on the genomes of the seven
heterokontic algae revealed that many large-scale amplification
events in different clades: 400 gene families were gained in the
ancestor of diatoms, 451 in Nannochloropsis, and strikingly, 1,240
families were gained in the common ancestor of S. japonica and
E. siliculosus (Supplementary Data 3; Supplementary Fig. 7B).
Consistently, these amplification events were also observed in a
K-means clustering of the families based on the gene abundance
of each species (Fig. 2a, right panel; Supplementary Fig. 8). In
addition, some clades were found to have lost many gene families,
namely, 499 families were lost in the diatom clade and 813 in
Nannochloropsis. The loss of so many gene families greatly
reduced the genome sizes of these species. Conversely, because
more gene families were gained rather than lost, brown algae
experienced a large genome expansion during evolution.

After the divergence of Phaeophyceae and Eustigmatophyceae,
S. japonica and E. siliculosus together exhibited a significant
increase in their gene family number (1,240 gained versus 309
lost). Because of insufficient evidence of protein similarities to
other algae, most of these newly gained families in Phaeophyceae
were classified as proteins with unknown function. It should be
noted that 102 annotated gained families were found to be
significantly enriched (Po10� 5) in the protein kinase or HeH or
peptidase CA super family domains (or clans; Fig. 2b). By
contrast, the genes from the 309 families that were lost in the two
species showed a relatively good annotation and were enriched
in the clans of the cupin domain (4.5% of 309 families), the
alpha/beta hydrolase (2.9%), the glycosyl hydrolase family (1.9%)
and a wide range of other clans (Fig. 2b).

S. japonica and E. siliculosus share 4,309 gene families, which
comprise 17,379 genes in S. japonica and 14,136 genes in
E. siliculosus, covering 92.8% and 85.5% of the gene content of

each genome, respectively. The higher number and content of
these gene families in S. japonica leads to a hypothesis that gene
family expansion events occurred more frequently in S. japonica
than in E. siliculosus. Among the shared gene families, 2,267 of
them only had one copy in each genome, whereas 863 (20%)
families were found to have more gene copies in S. japonica
(9,562 of the total genes) than in E. siliculosus (4,666), but only
652 families were identified to be the opposite (3,753 for
S. japonica versus 5,406 genes for E. siliculosus). These results
indicate that the majority of the amplified genes found in
S. japonica resulted from recent duplication events (with an
average synonymous substitution rate of 0.42; Supplementary
Fig. 9), because the mean similarity among them (79%)
was higher than the similarity observed between the two
species (74%).

S. japonica and E. siliculosus also accumulated hundreds of
gene families independently through gain/loss events after their
diversification, which further contributed to the difference in
their gene content, with 527 genes gained in S. japonica and 629
gained in E. siliculosus. A total of 574 large families (Fig. 2c) with
10 or more genes from the two Phaeophyceae genomes were
selected for further consideration. Compared with E. siliculosus,
S. japonica has significant gene expansion in 58 families (Fisher
exact test, corrected P-valueo0.05), including those families
involved in iodine concentration and the biogenesis and
remodelling of cell wall polysaccharides, for example, vana-
dium-dependent haloperoxidases (vHPOs) that catalyse the
oxidation of halides14, cellulose synthase (GT2 family) that
catalyses the terminal step of cellulose biosynthesis, mannuronan
C-5-epimerases (MC5Es) that epimerize D-mannuronate residues
into L-guluronate for alginate biosynthesis and alpha-(1,6)-
fucosyltransferase (GT23 family) that polymerize GDP-fucose
into the elongated fucan chain15 (Fig. 2d). Other examples come
from families encoding the endo-1,3-beta-glucanase (GH81
family), leucine-rich GTPase and Imm upregulated gene
families, which may be related to the development and defence
systems in brown algae (Fig. 2d). Endo-1,3-beta-glucanase
hydrolyses the glycoside linkages of laminarin, the major
storage polysaccharide in S. japonica, into oligosaccharides that
respond to tissue damage and provide protection against
pathogens by triggering defence responses such as an initial
oxidative burst16. They are also thought to play important roles in
diverse physiological and developmental processes in plants such
as microsporogenesis, fertilization, seed germination and somatic
embryogenesis17. The leucine-rich GTPases of the ROCO family,
which are excellent candidates for recognition/transduction
events linked to immunity in Ectocarpus18, are another
potential family involved in defence and development. The
Imm upregulated genes are brown algae-specific gene families
that were first discovered in E. siliculosus, and are related to the
development of the sporophyte and gametophyte generations19.
Imm upregulated 3 was found to be significantly upregulated in
the gametophyte generation compared with the sporophyte
generation16. It was also found to be a female-biased gene in
the brown alga Fucus vesiculosus20. In addition, this gene has
weak similarity to BIP2, a gene that appears to be specifically
associated with the acquisition of a three-dimensional
architecture in Physcomitrella21. In addition to these, several
super families with diverse functions, including Cupin-like
proteins, Ig-like proteins, C2H2 zinc-fingrer proteins and
cytochrome P450 were also expanded in S. japonica.

Expansion of vHPO genes is associated with functional
diversification. Brown macroalgal species are the most well-
known effective iodine accumulators among all living organisms
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and are major contributors to the global biogeochemical iodine
cycle, displaying an average iodine content of 1% (up to 5%) of
their dry weight, representing B30,000 times the concentration
of this element in seawater22. In addition, these species are the
only known organisms to use inorganic iodide as an extracellular
antioxidant in a living system23. Most iodine compounds are
chelated by apoplastic macromolecules and accumulate in the
apoplast of the cortical cell layer, which protects the thallus
surface from both aqueous and gaseous oxidants23. However,
the mechanisms of iodine concentration and antioxidation are
not well known and are presumably linked to the presence
of particular vHPOs. In algae, vHPOs are a particular class of
peroxidases that catalyse the oxidation of halides in the presence

of hydrogen peroxide, leading to the halogenation of various
organic substrates14. In Laminaria, the identified vHPOs
comprise two large multigenic families encoding vanadium-
dependent bromoperoxidases (vBPOs) and iodoperoxidases
(vIPOs)24. Previously, vIPOs had mostly been found in
Laminariaceae species, and they are characterized by the novel
biochemical function of showing strict specificity for iodide
oxidation (Fig. 3a).

In the S. japonica genome, 17 vBPO and 59 vIPO genes were
identified and annotated, and a phylogenetic analysis revealed
that all of the vHPO genes form a monophyletic group sharing a
common ancestor with the vCPO (vanadium-dependent
chloroperoxidase) genes of fungi, after which they evolved

Saccharina japonica

Ectocarpus siliculosus

Nannochloropsis gaditana

Nannochloropsis oceanica

Phaeodactylum tricornutum

Thalassiosira pseudonana

Aureococcus anophagefferens

Phytophthora infestans

Pythium ultimum

Albugo laibachii

Saprolegnia parasitica

Bigelowiella natans

Emiliania huxleyi

Guillardia theta

Chondrus crispus

Pyropia yezoensis

Porphyridium purpureum

Cyanidioschyzon merolae

Galdieria sulphuraria

Chlamydomonas reinhardtii

Volvox carteri

Coccomyxa subellipsoidea

Arabidopsis thaliana

Physcomitrella patens

Cyanophora paradoxa

S.japonica

E.siliculosus
C23

C30

C75

C249

C252

C348

C274

C305

C424

C298

C277

C147

C417

C566

C514

C1358

C1409

C2413

Sj Es Other 23 taxa

Log2(gene number)

0 >=102 4 6 8

Log2(gene number)

0 >=5

100

100

100

100

100

100100

100
100

100

100

88

100

100
100

98

100

100
100

100

100

95

–Log10(P-value)

K-means clustering of genefamilies Sj&Es Sj Es

CL0128

CL0033

CL0220
CL0236
CL0022

CL0184

CL0110

CL0113

CL0004

CL0183

CL0123

CL0058

CL0163

CL0059

CL0028

CL0029
CL0209

CL0012

CL0062
CL0088

CL0497

CL0167

CL0072
CL0125
CL0306

CL0015

CL0126

CL0049

CL0361

CL0016

Polymorphic outer membrane protein
Peptidase S8 and S53

Dynein heavy chain

Glutathione S-transferase
LRR-GTPaseof the ROCO family

Dynamin-related protein
Mono/diacylglycerolacyltransferase

Cupin-like protein
Cellulose synthase

Mannuronan C-5-epimerase
Imm upregulated 3

C2H2 zinc finger protein

Cytochrome P450
Acetyltransferase

Endo-1,3-beta-glucanase

Ig-like protein, group 2

Vanadium-dependent iodoperoxidase

Alpha-(1,6)-fucosyltransferase

C23
C30
C75

C249
C252
C348
C274
C305
C424
C298
C277
C147
C417
C566
C514

C1358
C2413
C1409

Glycosyl hydrolase family

BTB/POZ domain

Alpha/beta hydrolase

Cupin domain

DMT domain

Calcineurin phosphoesterase

PAS fold domain

Tudor domain

PDDEXK domain

Glycosyl hydrolase family

Bet v I family

Transcription initiation factor

Amino acid permease
Alkaline phosphatase

Zinc beta ribbon domain

Ubiquitin family
Peptidase family CA

Protein kinase domain

Major facilitator superfamily

Peptidase family MA

HeH domain

Glycosyl transferase family A
Glutathione S-transferase C-term

Concanavalin A-like lectin

Leucine-rich repeat

EF-hand domain

Glycosyl transferase family B

von Willebrand factor type A

C2H2-type zinc finger
Helix-turn-helix domain

–+ + + ––

0 >=82 4 6
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independently in red and brown algae (Fig. 3b; Supplementary
Table 3), which is consistent with a previous study that found that
vIPOs and vBPOs were paralogues resulting from an ancestral
gene duplication24. Recently, two bacterial vIPO genes were
found in the flavobacterium Zobellia galactanivorans, a marine
bacterium associated with macroalgae25. A phylogenetic analysis
showed that these two bacterial vIPO genes evolved
independently from eukaryotic algal vHPO (Fig. 3b). A pairwise
similarity comparison of vHPOs revealed at least five blocks of
conserved gene clusters that are expected to have derived from
recent tandem duplication events (Fig. 3b,c; Supplementary
Fig. 10). The transcriptional regulation of vHPO has been

shown to be efficient for switching to the specialized iodine
metabolism related to antioxidative capacities26. The expression
of 59 vHPO genes was determined in S. japonica gametophytes,
juvenile sporophytes and in different tissues of adult sporophytes,
including the holdfast, stipe, basal blades, middle blades and
distal blades (Supplementary Table 4). Notably, the vHPO genes
identified in S. japonica showed diverse expression patterns in
different tissues and during different developmental stages. In
particular, vHPO gene expression was observed to be significantly
upregulated in the gametophytes, which is the stage that is most
vulnerable to external stress in the entire life circle of S. japonica.
Among the sporophyte samples, the greatest number (54) and the
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amount of vHPOs were expressed in the juvenile sporophytes,
followed by the distal blades (53). These results agree well with
the largest quantity of iodine elements being found in the juvenile
sporophytes and distal blades in L. digitata23 and S. japonica
(Supplementary Fig. 11). During the cultivation of kelps, the
juvenile sporophytes and distal blades are more sensitive to
environmental stresses and are more readily infected by
pathogens27. Notably, the expression of vIPOs is more specific
than the expression of vBPOs, with only 66.7% of the tested
vIPOs being expressed in all samples, compared with 82.3%
of vBPOs. One possible explanation for this pattern is that
recently tandem duplicated vIPO genes showing high sequence
identities and distinct expression patterns in gametophyte and
sporophyte, exhibit functional diversification in S. japonica
(Fig. 3d).

Carbohydrate pathways in S. japonica. Compared with land
plants and green or red algae, brown algae exhibit unique modes
of carbon storage and cell wall metabolism9,15,28,29. Cellulose and
trehalose are common in both algae and land plants. However, a
striking difference in brown algae is that they utilize mannitol and
laminarian for carbon storage and possess alginates and sulfated
fucans as cell wall polysaccharides. By reconstructing the
carbohydrate metabolism pathways in S. japonica and 14 other
algal genomes, we found that S. japonica harbours the same
carbohydrate pathways as E. siliculosus and is distinct from
Aureococcus and Nannochloropsis in the alginate pathway and
from diatoms in the mannitol and alginate pathways. The starch
and sucrose pathways are absent in all four of the stramenopiles
species (Fig. 4a; Supplementary Fig. 12).

Notably, in S. japonica, gene expansion and duplication events
were observed at particular reaction nodes of the alginate and
sulfated fucan pathways. Alginate is the major matrix component
of brown algal cell walls, providing an increased rigidity to the
stipe and holdfasts as well as flexibility to the blades3. The
different matrix and physicochemical properties of alginate
depend on the final step of epimerization, which is a reaction
catalysed by MC5Es27. S. japonica was found to exhibit 105
MC5E genes, whereas only 28 were identified in E. siliculosus. In
addition, 43 of the MC5E genes present in S. japonica shared high
sequence identities (485%) and were clustered on seven scaffolds
(Fig. 4b), indicating recent tandem duplication events. The
expansion of MC5Es in S. japonica may account for the species’
extraordinarily high alginate content (up to 45% of the dry
weight)28 and high bending flexibility.

A phylogenetic analysis showed that the MC5E genes of brown
algae were similar to the MC5E genes in bacteria (Fig. 4b),
indicating that these genes may have undergone a non-canonical
evolutionary history and then expanded into several subfamilies
through multiple duplication events. A prior study in
E. siliculosus hypothesized that this evolutionary history involved
HGT in (Supplementary Fig. 13)27. A similar phenomenon was
observed for another alginate-specific enzyme, GDP-mannose
dehydrogenase. One GDP-mannose dehydrogenase gene was
found to be conserved in all Chromalveolata species, whereas the
other three clustered in a distinct clade that comprises only
bacterial species and E. siliculosus, indicating that these three
enzymes were acquired via ancient HGT from bacteria before the
last common ancestor of brown algae (Fig. 4c; Supplementary
Table 5). In addition, the mannitol synthesis pathway, which is
catalysed by mannitol-1P dehydrogenase and mannitol-1-
phosphatase, is not universally present in all stramenopiles.
Both of these genes are absent from diatoms and oomycetes but
were surprisingly found in the Haptophyceae alga Emiliania.
Phylogenetic analyses suggest that the mannitol pathway may

have been acquired by the common ancestor of brown algae and
Haptophyceae (Supplementary Fig. 14). No Actinobacteria
species harbours all of the brown algal MC5E, mannitol-1P
dehydrogenase and mannitol-1-phosphatase homologues,
indicating that the abundant, complex polysaccharide pathways
observed in brown algae were likely acquired through multiple
independent HGT or other non-canonical events (Fig. 4b).

Population genomics. To better understand the genetic diversity
of the Saccharina population, we resequenced the entire genomes
of seven cultivated individuals from China and nine wild indi-
viduals collected from Japan, Russia and Germany (Fig. 5a). We
first compared the number of mitochondrial differences in these
17 Saccharina individuals and found that the cultivated popula-
tions exhibited relatively low levels of genetic diversity compared
with the wild populations. By contrast, S. latissima (C14) and a
wild isolate (‘E’; as shown in Fig. 5b) possessed a much higher
genetic diversity than the other 15 Saccharina individuals,
showing 1,162 and 1,214 polymorphic loci in their mitochondrial
genomes, respectively. S. latissima is a close relative of S. japonica,
and the former is considered a native European species (Fig. 5b).
However, its close relative S. sp. E is also present along Russia’s
Far Eastern coast. After aligning the reads to the reference Ja
genome, we identified an average of 0.94 M single-nucleotide
variations (SNVs) and 96-K-small InDels in the cultivars and an
average of 2.27 M SNVs and 274-K-small InDels in the wild
populations. In addition, considering the large genetic distance
among S. latissima and S. sp. E and the reference Ja, we first built
draft genome assemblies for S. latissima and S. sp. E and then
employed NUMMER25 to align the assembled contigs and to call
the SNVs. Phylogenetic analyses based on genome-wide SNVs
further confirmed that the diversity between any pair of the
collected wild individuals was greater than the diversity among all
of the cultivars and that these cultivated individuals shared the
same ancestor with the wild individual (C6; Fig. 5b), indicating a
restricted germplasm base and a very low genetic diversity within
the principal Saccharina cultivars. A log likelihood STRUCTURE
analysis15 revealed that some crossbreeds (C17, C11 and C2) were
likely derived from the hybridization of S. japonica and
S. longissima (C5). The number of groups identified within the
wild Saccharina individuals increased with an increasing number
of K, with up to four groups at K¼ 5, which was consistent with
the phylogenetic analysis (Fig. 5b,c).

To detect the genome-wide signatures of artificial selection in
cultivated Saccharina, we used a sliding window strategy to
estimate the theta-pi and theta-w values from both the cultivated
and wild populations and to perform Tajima’s D test (Fig. 5d;
Supplementary Data 4–7). The regions showing Tajima’s D values
that were lower or higher than 5% of all of the bins were
considered to be candidate regions. We identified 122 regions
exhibiting strong signals of a selective sweep in the cultivars,
which encompassed 828 genes. A gene ontology-enrichment
analysis revealed that the majority of the genes affected by
artificial selection were related to carbohydrate transporters,
enzyme inhibitors and responses to external stimuli (Fig. 5e).
Average yield is one of the most important economic and
selective criteria used in S. japonica cultivation and seedling
selection. The efficiency and regulation mechanisms of carbon
fixation and carbohydrate metabolism are important for algal
growth and body size. Six genes with known functions exhibiting
strong selective signals were significantly over-represented in the
cultivated samples. For example, fructose-1,6-bisphosphate
aldolase, which catalyses the reversible aldol cleavage of
fructose-1,6-bisphosphate into DHAP and glyceraldehyde-3-
phosphate, functions in glycolysis or gluconeogenesis and in the
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Calvin cycle30. Traditionally, FbA was assumed to only exist in
the genomes of bacteria and fungi, but it has now been found in
some species of Chromista and Chromalveolata, including the
brown algae E. siliculosus and S. japonica, giving rise to the
possibility that these genes were independently obtained from
fungi through ancient HGT events.

A population-level analysis further revealed selection in the
wild samples. A total of 566 genes embedded in selected regions
presented significantly elevated Tajima’s D values. Compared
with the cultivars, three transmembrane receptor kinase genes in

the wild samples showed strong selective signals that may be
related to environmental adaptation and morphological changes.
Wild brown algae exhibit a particularly high flexible morphology,
and the physical properties of the marine environment are partly
responsible for the algal shape. Compared with cultivated kelps
on artificial floating rafts with suitable and consistent environ-
ments (for example, sufficient water depth), wild kelps show
greater morphological plasticity in response to harsh intertidal
environments31. In land plants, several types of transmembrane
receptor kinases transmit information regarding mechanical
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forces from the cell wall to cytoplasmic effectors and are
responsible for the development and morphogenesis32,33.

Discussion
Brown algae are valuable economic and ecological resources and
are an important evolutionary lineage because of the development
of specialized tissues and organs outside of plants and metazoans,
which makes their genomes exciting resources for comparative
investigations in this field. The S. japonica genome is the
first sequenced reference genome from kelps and the second
genome from brown algae. When compared with filamentous
E. siliculosus, S. japonica shows several unique characteristics,
such as more complex differentiation, large blades, a higher
polysaccharide content and striking iodine concentrating abilities.
In this study, some of the mechanisms underlying these
characteristics were identified using comparative genomics.
S. japonica can grow up to dozens of metres with large blades,
and its cell wall polysaccharide content is much higher than
Ectocarpus. We speculated that the expansion of the cellulose
synthase, mannuronan C-5-epimerase and alpha-(1,6)-fucosyl-
transferase gene families may be responsible for the formation of
the extensible cell walls of S. japonica that support its large blade

structure34. Laminarin is not only the major storage
polysaccharide in S. japonica, but it also play important roles in
the defence system, in which it can be hydrolysed into
oligosaccharides by endo-1,3-beta-glucanase. In addition,
laminarin and its derived oligosaccharides can even activate the
defence response and protect against pathogens in terrestrial
plants16. Iodide was found to be concentrated by vHPO and was
shown to bind to the cell wall polysaccharide components5,26,
providing extracellular antioxidants on the blade surfaces of S.
japonica. The expansion of the endo-1,3-beta-glucanase and
vHPO gene families in S. japonica may provide it with more
complex defence systems than Ectocarpus. Moreover, tissue
differentiation was more complex in S. japonica than in
Ectocarpus with respect to such events as the emergence of the
holdfast, stipe and blades. In addition to several other expanded
gene families, including Cupin-like protein35, C2H2 zinc-finger
protein36 and LRR-GTPase of the ROCO family37 (Fig. 2d),
which have been shown to have key roles in development in both
animals and green plant lineages, the newly identified
development related imm upregulated 3 gene family may
represent a new developmental mechanism in brown algae.
Combining all of the above evidence further indicates that brown
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Figure 5 | The population genomics of cultivated and wild S. japonica populations. (a) The geographic locations of the cultivated and wild S. japonica

samples used in this study. (b) The neighbour-joining tree of the genetic distances calculated using the genome-wide SNVs among 17 S. japonica

individuals. The mitochondrial diversity covering SNVs is indicated with vertical lines in the seven cultivated and nine wild samples relative to the S. japonica

JA reference sequence. (c) The population structure of 17 S. japonica individuals determined using the STRUCTURE program. Each individual is represented

by a vertical bar, and each colour represents one population. (d) The distribution of the Tajima’s D values in both the wild and cultivated populations. The

data points to the left and right of the vertical dashed lines (x¼ � 1.742 and x¼ 2.220), which correspond to the 5% left and right tails of the empirical

Tajima’s D value distribution, respectively, are denoted as CN (cultivated negative) and CP (cultivated positive), respectively. The data points below and

above the lower and upper horizontal dashed lines (y¼ �0.255 and y¼ 1.055), which correspond to the 5% lower and upper tails of the empirical Tajima’s

D value distribution, respectively, are denoted as WN (wild negative) and WP (wild positive), respectively. (e) The gene ontology-enrichment analysis of

the genes in the selected CN, CP, WN and WP regions.
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algae evolved developmental complexity independently from
higher plants and animals.

This work also presents the first comprehensive resequencing
data for wild and cultivated Saccharina individuals, providing the
basic materials for population genetic studies. The Saccharina
cultivars that are currently farmed in China were mainly bred
from the descendants of wild S. japonica that were introduced
from northern Japan. According to our results, only limited
crossbreeds were derived from the hybridization of S. japonica
and L. longissima. Therefore, the restricted germplasm base and
continuous selfing of these kelps have resulted in very low genetic
diversity within Saccharina cultivars. The obtained genomic
information on wild Saccharina species can not only be used to
increase the genetic diversity through hybridization, but it can
also provide a large source of candidate genes for further
functional studies aimed at improving quality and yield. There are
other important issues that remain for the further exploitation of
these kelps, such as the many biological features that are unique
to Saccharina, that need to be studied in detail at the molecular
level. In addition, the identification of SNVs in representative
wild and cultivated individuals will provide opportunities for
marker-assisted breeding.

Methods
Genome sequencing and assembly. DNA libraries harbouring 180-bp, 300-bp,
500-bp, 800-bp, 3-kb and 5-kb inserts were subsequently constructed for
S. japonica Ja and DNA libraries with 300-bp inserts were constructed for the other
16 Saccharina individuals. These DNA libraries were paired-end sequenced on an
Illumina HiSeq 2000 sequencer. Two-large-insert 454 libraries (8 and 16 kb) were
also constructed for S. japonica Ja and were sequenced using 454 pyrosequencing.
For PacBio library construction, genomic DNA was sheared to 8 kb using an
ultrasonicator and was converted into the proprietary SMRTbell library format
using an RS DNA Template Preparation Kit. SMRTbell templates were subjected to
standard SMRT sequencing on the PacBio RS system according to the manu-
facturer’s protocol.

We used the paired-end reads from the short-insert-size libraries (180, 300, 500
and 800 bp) to assemble the genome into contigs using SOAPdenovo2 (ref. 38)
with the multi-kmer option (-K 63 -m 81). We then aligned all of the available
sequence data to these contigs and used the mate-pair information on the order of
the estimated insert size (180 bp to 16 kb) to generate scaffolds using both
SOAPdenovo and SSPACE32. First, the gaps that resulted from the scaffolding were
closed using GapCloser. Then, the PacBio long reads were mapped to the scaffold
sequences using BLASR. PBJelly2 (ref. 39) was used to fill the gaps by generating
consensus sequences of gap-spanning reads.

To remove potential bacterial contamination, the assembled contigs were first
subjected to BLASTX searches against the NCBI non-redundant protein database.
The contigs with the best-hit matches to bacteria were referred to as candidate
bacterial contigs, and the contigs with the best-hit matches to E. siliculosus were
referred to as authentic Saccharina contigs. For each contig, the GC content and
the open reading frame (ORF) density (the total length of ORFs in the contig
divided by the contig length) were calculated. The candidate bacterial contigs
showing an ORF density of Z60% or a biased GC content (460 or o40%) were
filtered. The assembly statistics are shown in Supplementary Table 2. This whole
genome shotgun project can be accessed at http://124.16.129.28:8080/saccharina/.

Transcriptome sequencing and analysis. RNA sequencing libraries were pre-
pared with RNA samples from female gametophytes and sporophytes using the
Illumina TruSeq RNA Sample prep Kit (Illumina). These RNA libraries were
paired-end sequenced on an Illumina HiSeq 2000 sequencer. RNA sequencing
reads were mapped against the S. japonica genome using TOPHAT v1.3.2 (ref. 40)
with annotated exons to perform transcript-guided mapping. The GFOLD v1.0.5
(ref. 41) was employed to quantify gene expression levels with reads within or
spanning exons. SOAPdenovo-Trans v 1.03 (ref. 42) was used to de novo assemble
the RNA sequencing reads using default parameters. The de novo assembled
transcripts were BLATed against the assembled genome to independently access
genome completeness. The inGAP package43,44 was used to visualize and manually
check read mapping of target regions.

Detection and classification of repetitive elements. RepeatModeler (http://
www.repeatmasker.org/RepeatModeler.html) and RepARK45 were employed to
detect transposable elements (TEs) in the S. japonica genome using default
parameters. RepeatModeler is a de novo repeat family identification and modelling
package containing two de novo repeat-finding programs (RECON46 and
RepeatScout47). RepARK (Repetitive motif detection by Assembly of Repetitive

K-mers) is a wrapper script for constructing a repeat library from sequencing reads
using Jellyfish and Velvet. After the raw repeat library was constructed with these
two programs, CAP3 was run on the raw data using the parameters ‘-o 20, -i 30 -p
80 -s 400 -j 31’ to assemble the TE fragments into full-length TEs and to remove
redundancy, which was removed from the raw repeat library by cd-hit-est with the
parameter ‘-c 0.8’. However, this newly built library still included plentiful short
sequences (r150 bp) produced by RepARK, which may have been meaningless
fragments that would have significantly lengthened the CPU running time of
RepeatMasker (http://www.repeatmasker.org). To address this problem, we only
retained the sequences that were longer than 800 bp that were produced by
RepARK in the new library and used the RepeatModeler-detected short repeats
(r800 bp) as substitute sequences. After applying RepeatMasker to mask the
S. japonica genome with this new repeat library, we further simplified the library by
removing the sequences with fewer than 50 hits in the S. japonica genome. The
RepeatClassifier module in the RepeatModeler package was used to classify the
identified repetitive elements based on Repbase.

Insertion age of TEs in S. japonica. We first built a consensus sequence for each
abundant TE using a combination of RepeatModeler and CAP3 (ref. 48). In total,
four full-length RTE elements (RTE-1, RTE-2, RTE-3 and RTEX-1), six LTR
elements (Gypsy-1, Gypsy-2, Copia-1, Copia-2, Copia-3 and ERV1), two Jockey
elements (Jockey-1 and Jockey-2), one L1-1 and one CRE-1 element were
reconstructed. For each TE, we aligned the matched hits identified by
RepeatMasker to the consensus sequence and calculated the proportion of pairwise
differences between these hits (p). The average number of substitutions per site for
each fragmented repeat was estimated using the one-parameter Jukes–Cantor
model (� 3/4ln(1� 4/3p)).

Gene prediction and annotation. Homologue-based, ab initio and transcriptome-
based approaches were integrated to predict protein-coding genes in the S. japonica
genome. For the ab initio gene predictions, Augustus (version 2.5.5)49,
GeneMarkES (version 3.0.1)50 and FGenesh51 were used to predict the protein-
coding genes. The protein sequences of Arabidopsis thaliana, Ectocarpus siliculosus,
Chlamydomonas reinhardtii and Phaeodactylum tricornutum were downloaded
from Phytozome and used to align to the S. japonica genome with Exonerate v.
2.2.0 (ref. 52) using a Protein2Genome model to predict gene structures. The RNA
sequencing data were mapped to the genome using Tophat40, and Cufflinks53 was
employed to assemble transcripts to the gene models. The gene evidence predicted
from the above three strategies was combined with EVidenceModeler54 into a non-
redundant consensus of gene structures. We masked all of the TEs from the
genome before gene prediction and filtered out all of the short-coding ORFs
(o150 bp) supported by only ab initio methods.

The functional annotation of protein-coding genes was achieved using BLASTp
(E-value 1E� 04) against the NCBI non-redundant protein sequence database. The
annotation information on the best BLAST hit derived from the database was
transferred to the gene set. Motifs and protein domains were determined with
InterProScan v5 (ref. 55) searches against the InterPro databases, including Pfam,
PRINTS, PROSITE, PANTHER and SMART. The Gene Ontology IDs for each
gene were obtained from the corresponding InterPro entries. All of the genes were
mapped to KEGG proteins to determine the metabolic pathways.

Identification of S. japonica gene families and phylogenetic analysis. We
identified gene families in S. japonica by performing an all-against-all BLASTp
search against the protein sequences of 25 algae and plants with available
whole-genome information. Among these algae, 13 belonged to Chromalveolata
(S. japonica, E. siliculosus, Nannochloropsis gaditana, Nannochloropsis oceanica,
Aureococcus anophagefferens, Phaeodactylum tricornutum, Thalassiosira pseudo-
nana, Albugo laibachii, Phytophthora infestans, Pythium ultimum, Saprolegnia
parasitica, Emiliania huxleyi and Guillardia theta CCMP2712); 1 was Rhizaria
(Bigelowiella natans); 1 was Glaucophyta (Cyanophora paradoxa); 5 were
Rhodophyta (Chondrus crispus, Cyanidioschyzon merolae, Galdieria sulphuraria,
Porphyridium purpureum and Pyropia yezoensis); 3 were Chlorophyta (Chlamy-
domonas reinhardtii, Coccomyxa subellipsoidea and Volvox carteri); and 2 were
plants (Arabidopsis thaliana and Physcomitrella patens).

The global protein identities of each BLAST match were calculated using
InParanoid56 to filter out matches exhibiting poor similarities (o20%) or poor
gene coverage (o50%). Gene families were identified by MCL57 with the ‘inflation’
option as 1.2. Gene numbers were counted for each family and for each species,
and were compared by using the K-means algorithm in R. To obtain a robust
species tree, redundant sequences (90% identity or more) from the same organism
were removed using CD-HIT58, then, homologue clusters were predicted by
comparing each pair of the 25 algal and plant genomes and further summarized by
InParanoid and QuickParanoid. Subsequently, the clusters containing single-copy
genes from each organism and clusters with species-specific duplications were
selected for further consideration. For each cluster, multiple alignments were then
performed using MUSCLE v3.8.31 (ref. 59) with the default parameters and were
further trimmed using trimAl v1.4 (ref. 60) with the options ‘-gt 0.1 -resoverlap
0.75 -seqoverlap 80’. RAxML61 was employed to reconstruct a maximum-
likelihood phylogenetic tree for each cluster with an evolutionary model specified
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as ‘PROTCATJTT’ and to perform a bootstrap significance test with 100 replicates.
TreSpEx62 was then applied to the tree of each cluster to evaluate taxa with long
branches and to the trees of the 41 clusters with both long branch score
heterogeneity and upper quartiles smaller than 30. The according clusters were
selected for concatenation of their sequences within the same species into
super genes.

A Dollo analysis was conducted on the homologue clusters of the 25 algal and
plant proteomes using the Dollop tool in the PHYLIP package63 and custom Java
scripts (available on request). To examine the evolutionary relationships between
the duplicated homologues in the S. japonica genome before or after its divergence
from E. siliculosus, synonymous (Ks) and non-synonymous (Ka) substitution rates
were calculated using KaKs_Calculator64. A gene function-enrichment analysis for
the clustered genes was performed using Fisher’s exact test to compare all of the
genes in the S. japonica genome.

The vHPO and polysaccharide biosynthesis gene family analysis. Searches for
vHPOs in the S. japonica genome were conducted with BLASTp (E-valueo1e� 10)
using 8 vBPOs and 3 vIPOs present in L. digitata and E. siliculosus as reference
sequences. All of the hits were determined by NCBI BLASTp using the default
parameters. The phylogenetic tree was constructed by the neighbour-joining
algorithm of the MEGA 5.0 program65, and a total of 1,000 bootstrap replicates
were performed (Supplementary Table 3). Expression of vBPO and vIPO genes was
investigated by real-time PCR in gametophytes, juvenile sporophytes and different
tissues of adult sporophytes including holdfast, stipe, basal blades, middle blades
and distal blades (Supplementary Table 4). The lowest expression of vBPO17 in the
basal blade was set to 1. Average-linkage hierarchical clustering and heatmaps were
generated in R Bioconductor using the heat map.2 function (omitting row and
column dendrograms) in the gplots package of the R program (http://cran.r-
project.org/web/packages/gplots/index.html). The analogous set of genes involved
in the polysaccharide biosynthesis metabolism pathways for mannitol, trehalose,
cellulose, laminarin, alginate, sulfate fucan and sucrose in the 14 algal genomes
were identified and annotated based on KEGG and previous functional
classifications9,29,66,67 (Supplementary Figs 12 and 15). To identify the CAZymes
from S. japonica and distinguish the differences in cell wall polysaccharides from
other algae, we performed CAZymes screening in S. japonica and the other 13 algal
genomes (Supplementary Tables 6–8). All of the putative proteins were searched
against entries in the CAZy database using the dbCAN Web server68, in which
HMMer69 was used to query against a collection of custom-made hidden Markov
model profiles that were constructed for each CAZy family.

Identification of SNPs and InDels from resequenced Saccharina genomes. The
paired-end reads from the 14 resequenced samples (C2, C3, C5, C6, C8, C11, C12,
C13, C15, C17, B, F, G and W) were aligned to the draft assembly using BWA
v.0.7.5. We employed the default parameters to align the reads, with the exception
of the ‘-q 15’ parameter, which was used to trim the low-quality regions at the
30 ends of the reads before mapping. Bcftools in the SAMtools50,70 package was
employed to call all of the raw variant locations using the parameters ‘bcftools view
–vcg’. The locations of raw variants in C8, C11, C13, C15 and C17 were filtered
using the parameters ‘vcfutils.pl varFilter -d 10 -D 100 -Q 20’, whereas the
remaining nine samples were filtered using the parameters ‘vcfutils.pl varFilter -d 3
-D 40 -Q 20’. Once a list of putative variant locations had been constructed, we
used the mpileup command in SAMtools to call the genotypes for each sequenced
individual.

The paired-end reads from the two distantly related species, E and C14 were de
novo assembled separately using SOAPdenovo38. The assembled contigs were
scaffolded using the paired-end reads. GAPcloser was employed to close the gaps in
the scaffolds. NUCmer was used to align the assembled sequences to the S. japonica
Ja assembly. After filtering the multiple mapped regions, NUCmer was employed
to call single-nucleotide variants and short InDels.

Phylogenetics and population structure of Saccharina. Homozygous single-
nucleotide polymorphism (SNPs) were used to calculate the genetic distances
between different S. japonica accessions. The neighbour-joining method in MEGA5
was applied to construct a phylogenetic tree based on the p-distance method with
1,000 bootstrap replicates.

We used STRUCTURE software (version 2.3.2) to investigate population
structure across different values of K, representing the number of putative ancestral
clusters of allelic similarity. We employed an admixture model with correlated
allele frequencies to assign individuals to the K clusters. A 10,000 step burn-in
period for Monte Carlo Chain searches, followed by 20,000 replicate runs, was
applied at each K from 2 to 6.
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