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Abstract

Understanding the genetic structure of human populations has important implications for the design and interpretation
of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population
structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown
an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale popu-
lation structure. To this end, we used an information theory framework and extensive coalescent simulations to rigor-
ously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure.
We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to
empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and
African American individuals. As predicted, rare variants are more informative than common polymorphisms in reveal-
ing a distinct cluster of European–American individuals, and subsequent analyses demonstrate that these individuals are
likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation,
which will be an important factor to account for in rare variant association studies.
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Introduction
The genetic structure of human population remains a subject
of intense interest as its study provides insight into the his-
torical events that have caused departures from random
mating (Novembre and Ramachandran 2011). More practi-
cally, population structure has important implications for un-
derstanding global variation in disease prevalence and can
confound disease association studies (Yu et al. 2005; Price
et al. 2006), even at intracontinental scales (Mathieson and
McVean 2012; O’Connor et al. 2013). Although broad-scale
patterns of population structure among continental groups
are well understood (Rosenberg et al. 2002; International
HapMap Consortium et al. 2007), delimiting recently
emerged and fine-scale population structure has received
comparatively less attention (Yu et al. 2002; Campbell et al.
2005; Novembre et al. 2008; Biswas et al. 2009).

Large-scale resequencing studies have found that humans
harbor a vast excess of rare variation, primarily due to recent
dramatic increases in population size (Keinan and Clark 2012;
Nelson et al. 2012; Tennessen et al. 2012; Fu et al. 2013). As
rare variants are more geographically restricted compared to
common variants (Gravel et al. 2011; Tennessen et al. 2012),
they may provide a powerful resource to delineate fine-scale
patterns of population structure (Baye et al. 2011; 1000
Genomes Project Consortium 2012). Indeed, it has long
been known that rare variants may be of particular use in
studies of population structure (Slatkin 1985). More recently,
an analysis of approximately 200 genes sequenced in over
14,000 individuals (Nelson et al. 2012) found a substantial
reduction in allele sharing for rare versus common variants
among European populations. Similarly, the 1000 Genomes
Project found that almost all common variants were shared
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among multiple populations and rare variants (<0.5%) were
predominantly population specific (~53%; 1000 Genomes
Project Consortium 2012).

Despite the considerable progress made in leveraging rare
variation to infer patterns of population structure, many pop-
ulation genetics questions remain about the relative informa-
tion content of rare and common variation. Here, we use an
information theoretical framework (Rosenberg et al. 2003) to
systematically quantify the ability of rare and common vari-
ation to reveal signatures of fine-scale population structure.
We also empirically assess patterns of population structure
present in rare and common variation by analyzing 6,515
exomes sequenced to high-coverage (mean depth 4100�)
in European–Americans (EA; N = 4,298) and African–
Americans (AA; N = 2,217) (Fu et al. 2013). Our theoretical
and empirical analyses demonstrate that rare variation con-
tains considerable information about fine-scale population
structure, and will be a powerful tool to understand recent
population demographic history(Baye et al. 2011; Gravel et al.
2011; De la Cruz and Raska 2014; Genome of the Netherlands
Consortium 2014; Mathieson and McVean 2014).

Results and Discussion

Quantifying the Information Content of Rare and
Common Variants

To quantify the differences in signatures of population struc-
ture contained in rare and common variants, we used an
information theory framework (Rosenberg et al. 2003) to
contrast how informative variants of different frequencies
are in capturing signals of population structure. We explicitly
tested the hypothesis that rare variation is more informative
about recent demographic changes through simulations
(fig. 1a). We simulated two populations of 1,000 individuals
each, varying the time of population splitting (Ts), and tested
the ability of equal numbers (N = 1,000) of common or rare
variants to accurately predict ancestry using the program
FRAPPE (see Materials and Methods). We focused on a rela-
tively small number of variants so that subtle differences in
informativeness could be detected, which may otherwise be
masked. There is a clear difference in the ability of rare and
common variants to identify ancestry (fig. 1b), with rare var-
iation being much more accurate in cases of recent popula-
tion splitting. In contrast, common variants require
significantly older split times for the same level of accuracy.
For example, when the time for population expansion was set
to 5,000 years ago (5 kya), the accuracy of rare variants rose
from random expectations (i.e., 50% from a random assign-
ment of individuals to one of two clusters) at a split time of
5 kya to approximately 90% by 8 kya, whereas with common
variation it took longer than 20 kya to arrive at the same level
of accuracy.

Moreover, the relative information content of rare and
common variants is also significantly different (see fig. 1c
and d; supplementary figs. S1 and S2, Supplementary
Material online). Information gain (IG) is a measure of the
increase in information of assignment to a population from
an individual single nucleotide variant (SNV) (Rosenberg et al.

2003). IG is larger for common variants when split times are
much older than the time of expansion (Te). In our simula-
tions, we observe that for some of the parameters, Te = 0 or
5 kya, there is a small window of time right before the expan-
sion where the IG for rare SNVs is equal to or higher than
common SNVs. As the time between Ts and Te increases,
there is an approximately linear increase in IG for common
variants as the two populations have significant time to dif-
ferentiate from drift, whereas the rare variant IG plateaus, as
by definition they are only informative for a small number of
individuals. In other words, they approach the definition-
induced maximum of 0.5% in one population and 0% in
the other.

Signatures of Fine-Scale Population Structure in a
Large Exome Data set

To extend these theoretical insights, we next analyzed the
exome data described in Fu et al. (2013). Specifically, 6,515
individuals were sequenced for 15,336 genes covering approx-
imately 22.4 MB (megabasepair) of sequence. Of the 1.2 mil-
lion SNVs discovered, 31,760 (2.6%) were common with a
minor allele frequency (MAF) of 410% and 1,098,181
(90.7%) were rare with a MAF <0.5% in the combined
sample. The average number of common and rare alleles
per individual was 17,599 and 1,237 in AAs and 16,514 and
451 in EAs, respectively.

We first performed a principal components analysis (PCA)
to identify qualitative differences in empirical patterns of pop-
ulation structure between common and rare variants.
For common variants, individuals are dispersed along PC1
according to their level of African/European ancestry and
PC2 results in the separation of EA individuals (fig. 2a) that
is consistent with a North/South cline (supplementary fig. S3,
Supplementary Material online). In the PCA of rare variants
(fig. 2b), PC1 again reflects the level of admixture in AAs
(common VS rare PC1 r2 = 0.918; supplementary fig. S4,
Supplementary Material online). PC2 between common
and rare variants is more modestly correlated (r2 = 0.661; sup-
plementary fig. S5, Supplementary Material online), and two
distinct clusters emerge that are not as apparent with
common variants (consisting of 191 and 32 EA individuals,
respectively). These visual clusters can largely be recapitulated
using an unsupervised clustering algorithm (see Materials and
Methods). Note the larger cluster of 191 individuals is identi-
fiable in a biplot of PC1 versus PC4 with common variants
when the analysis is restricted to EA samples only (supple-
mentary fig. S6, Supplementary Material online). Thus, al-
though detectable by common variation, the signature of
fine-scale population structure is much more pronounced
with rare variation. We will denote the large outlier cluster
of individuals as Cluster 1 and the smaller cluster as Cluster 2;
the remaining EA individuals are referred to as Cluster 3 (see
also supplementary figs. S7 and S8, Supplementary Material
online). We performed a number of quality control analyses
and found no evidence that Clusters 1 and 2 were due to
technical artifacts (see Supplementary material,
Supplementary Material online).
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We genotyped 26 of the 191 Cluster 1 individuals with an
Illumina 1 M chip and intersected it with single nucleotide
polymorphism (SNP) genotypes from the Human Genome
Diversity Panel (HGDP) data (Li et al. 2008). To gain insight
into the possible geographic origins of Cluster 1 individuals,
we performed a Procrustes analysis (Wang et al. 2010) to
project the values of the first two PCs of HGDP European
individuals onto a map (fig. 3a; see supplementary text S1,
Supplementary Material online), and used this projection to
predict a potential geographic source of Cluster 1 individuals.
This analysis suggests that the ancestry of Cluster 1 individuals
can be traced to the South Eastern corner of Europe near the
Mediterranean Sea (fig. 3a) and outside what would be ex-
pected for the European populations sampled in HGDP. We
next intersected our SNP genotype data with that from

Behar et al. (2010), which contains a more comprehensive
sampling of populations around the European and Middle
Eastern Mediterranean areas, Northern Africa, and Jewish pop-
ulations. The Jewish populations were sampled from across the
globe and showed local admixture, but a core Middle Eastern
component of ancestry (Behar et al. 2010). The final data set
consisted of 1,337 individuals (excluding HGDP individuals
from the Americas and Oceania) and approximately 228 K
SNPs after filtering (see Materials and Methods).

We performed three additional analyses on this combined
data set to infer the ancestry of Cluster 1 individuals. First,
PCA reveals a close association with Europeans (fig. 3b), but
also a colocalization with some Jewish populations, particu-
larly individuals of Ashkenazi ancestry (fig. 3b inset; supple-
mentary fig. S9, Supplementary Material online). Second, we

(a) (b)

(c) (d)

Fig. 1. Relative informativeness of rare and common variants. (a) Summary of the demographic model used. NA, NB, and NF denote the ancestral
population size, the bottleneck population size, and the final population size, respectively. Ts and Te indicate the time to population splitting and
bottleneck. Population expansion begins immediately when the bottleneck ends. (b) Ancestry proportions estimated by FRAPPE as a function of the
time to population splitting. (c) The expected IG for common (blue) and rare (red) variants as a function of the time to population splitting. Black lines
denote the ratio of rare to common IG. (d) Inset of panel C for the time to population splitting in the range of 0–20 kya.
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performed an admixture analysis using the program FRAPPE
(Tang et al. 2005). Using eight clusters (i.e., K = 8), similar to
Behar et al. (2010) and Bray et al. (2010), we found that
Cluster 1 individuals have very similar admixture proportions
to the Jewish populations and are subtly distinct from
Europeans (fig. 4a; supplementary fig. S10, Supplementary
Material online) (Atzmon et al. 2010). Finally, we constructed
a neighbor-joining tree from Nei’s genetic distance (Nei 1972)
(fig. 4b). Cluster 1 individuals cluster most tightly with the
Ashkenazi Jewish sample, then with the Sephardic Jewish
sample. From these results, we conclude that Cluster 1 indi-
viduals have Ashkenazi Jewish ancestry. We note that, there is

also a subset of AA individuals that are outliers in the same
direction on PC2 as Cluster 1 individuals. Although additional
data are necessary to fully interpret this observation, it is
plausible that these individuals also have Ashkenazi ancestry.

Finally, we integrated insights from the theoretical frame-
work described above and empirical observations from the
ESP to understand the informativeness of rare and common
variants. To this end, it is important to consider the cumula-
tive information in addition to the IG of a single variant. For
example, although a single common variant has a greater
expected IG compared with a single rare variant, there are
considerably more rare variants in humans. To more

(a) (b)

Fig. 3. PCA and Procrustes analysis of the combined SNP data. (a) Procrustes projection (blue) using the longitude/latitude values (black) and the PCA
values from the HGDP European samples (Ady, Adygei, Russia Caucasus; Fre, French, France; Nor, North Italian, Italy; Orc, Orcadian, Orkney Islands; Rus,
Russian, Russia; Sar, Sardinian, Italy; and Tus, Tuscan, Italy). The predicted position of the Cluster 1 samples is shown in red. (b) Global PCA of the 1,337
individuals from 83 populations (including Cluster 1 representatives) labeled by major geographical or ethnic group. The inset highlights the position of
Cluster 1 in red.
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quantitatively assess the cumulative information content of
common and rare variants, we calculated the sum of the
expected information gained (i.e., E[IG]*NSNVs). Note we are
assuming IG is independent for each variant; this will over-
estimate the cumulative IG, but the bias will be larger for
common variants as they will on average have greater corre-
lation. In a comparison between AA individuals and Cluster 3,
the ratio of rare to common cumulative IG is 0.241 implying a
greater information content for common variants, even with
13.14 times more rare than common variants. In contrast, the
cumulative information content ratio between Clusters 1 and
3 is 2.28 with 7.37 more rare than common variants. This
difference is primarily driven by the values of E(IG) for
the two comparisons (Cluster 3 vs. AA: rare = 5.04� 10�4,
common = 0.027, rare/common = 0.018; Clusters 1 and 3:
rare = 1.44� 10�4, common = 4.66� 10�4, rare/common =
0.31; for similar values of alternative pairings see supplemen-
tary table S1, Supplementary Material online). Comparing
these ratios to those obtained from simulations (fig. 1b) sug-
gests that the separation of Clusters 1 and 3 likely took place
just before recent population expansions (~5–10 kya)
(Nelson et al. 2012; Tennessen et al. 2012; Fu et al. 2013),
whereas Cluster 3 and AA took place earlier (~50–100 kya),
consistent with previous estimates of split times between

European and African populations (Cavalli-Sforza et al.
1994; Keinan and Clark 2012).

In summary, we have shown that rare variation is poised to
provide new insights into recent patterns of human popula-
tion structure. Although the information content of a single
rare variant in detecting population structure is often smaller
than a single common variant, their sheer abundance in con-
temporary human populations (Nelson et al. 2012; Tennessen
et al. 2012; Fu et al. 2013) make the cumulative information
contained a powerful tool for testing hypotheses about fine-
scale population structure. In contrast to a previous study, we
found less homogeneity in PCA of rare variants potentially
due to the greater genetic diversity in our study with split
times that predate population expansions and a larger sample
size (De la Cruz and Raska 2014). We considered a limited
number of demographic models, and it is plausible that rare
variants may be even more powerful to detect recently
emerged population structure in different demographic sce-
narios, which warrants further study.

More pragmatically, our results have important implica-
tions for rare variant association studies. Specifically, it is well-
known that unrecognized population structure can cause
spurious associations in disease mapping studies. As rare var-
iants are potentially more sensitive to fine-scale patterns of
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population structure, common variants may not be able to
fully correct for this potential confounding variable
(Mathieson and McVean 2012; O’Connor et al. 2013).
Finally, our results suggest that the ESP Exome Variant
Server (EVS; http://evs.gs.washington.edu/EVS/, last accessed
December 1, 2014) will be a valuable resource for screening or
prioritization of causal Mendelian or de novo variants
(O’Roak et al. 2011) for individuals of Ashkenazi ancestry.

Materials and Methods

Coalescent Simulations

To evaluate the relative power of common and rare variants
(defined as 410% and <0.5%, respectively), we performed
coalescent simulations with the program msms (Ewing
and Hermisson 2010) (see supplementary table S2,
Supplementary Material online). msms also has a forward
simulation component when modeling selection, which we
have not included in our simulations. We simulated two pop-
ulations with 1,000 individuals in each population that split at
time Ts = 1, 2, 3, . . . , 20 kya. For each Ts, we considered three
different times to the start of expansion (Te): 0 (no growth), 5,
and 10 kya where they had a bottleneck of 0.1*Ne and expo-
nentially expanded to 2,000,000 individuals (see fig. 1a). These
parameters were chosen to be similar to observed estimations
across human populations. They are not meant to be repre-
sentative of a specific group.

For common and rare variants, we randomly selected 1,000
SNVs and used FRAPPE (Tang et al. 2005) to calculate ances-
try predictions. We used a greedy algorithm to assign clusters
to the populations, by matching a cluster to a population
which has the largest average ancestry proportion predicted
for each of the individuals. Thus, the worst possible prediction
would have every individual about equally assigned for the
two clusters and the assignment of cluster will go by chance
to the population with an average slightly higher than an even
split, that is, just over 50%. We then report the average accu-
racy out of 50 replicates for each set of parameter values.

Information Theory

We used the framework developed by Rosenberg et al. (2003)
to calculate the information content of SNVs. The general
equation for IG or “informativeness of assignment” is:

InðQ; JÞ ¼
XN

j¼1

�pj ln pj þ
XK

i¼1

qipij ln pij

 !

where, j is an index of alleles (N = 2), i is an index of the
populations with K = 2 total, qi is the proportion of the
sample which is in population i, and pj is the average allele
frequency for the jth allele across all populations and is
calculated as:

pj ¼
XK

i¼1

qipij

where pij is the allele frequency of variant j in population i. In
simulations of unequal sample sizes, we did not observe

differences in informativeness pattern compared with
when equal sample sizes were used (data not shown).
The use of In also assumes discrete population assignments.
Thus, it assumes an absence of admixture and therefore
is only a measure of how accurately we can delineate
between population labels, not coefficients of admixture
from a program like FRAPPE (Rosenberg et al. 2003; Tang
et al. 2005).

Building upon this framework, we calculated the expected
IG of a variant with a particular MAF through the following
equation:

EðIn j C;MÞ ¼
X
m2M

Xc

l¼0

rlm �
XN

j¼1

�pijlm ln pijlm þ
XK

i¼1

qipijlm ln pijlm

 !

where C is the minor allele count (e.g., 2 for doubletons, 3 for
tripletons), M is the set of alleles with a particular number of
missing individuals, thus giving a subtly different allele fre-
quency (pijlm), and rlm is empirically estimated from the
sample with the constraint

P
m2M

PC
l¼0 rlm ¼ 1 and repre-

sents the proportion of C with m missing and which has a
specific allele distribution between the populations (e.g., for
C = 2, K = 2, and N = 2; l = 0 is two allele copies in population
i = 2, l = 1 is one in each population, l = 2 is two in population
i = 1). Complexity obviously increases with more populations
and higher allele frequencies (i.e., as C increases), but we only
consider N = 2. This equation provides the expected IG for a
specific count of the site frequency spectrum. In other words,
it gives the IG of the average doubleton, tripleton, or so on. In
a similar manner, we can calculate the average IG for a span of
allele frequencies by taking the weighted average across a
range of minor allele counts. Thus, the expected IG values
we report are integrated empirically across the observed site
frequency spectrum.

We used the theory presented above and performed a
series of simulations with msms using the demographic
model described in figure 4a (msms command line argument
is described in supplementary table S2, Supplementary
Material online). Here, we used a sample size of 500 diploid
individuals per population. We considered values of Ts = 0,
1, . . . 20, 30, . . . 100 kya and time of population expansion,
Te = 0, 5, 10 kya. We repeated the analysis with and without
a bottleneck starting at time Te. In this case, we used all SNVs
produced, not limiting them to a specific number for either
common or rare.

Genetic Data

We analyzed 6,515 high-coverage exomes (sequenced to a
mean depth 4100�) generated as part of the NHLBI
Exome Sequencing Project. For a detailed description of the
data and filtering process please see the supplementary ma-
terial, Supplementary Material online, for Fu et al. (2013). We
performed SNP genotyping using an Illumina 1 M chip on 26
individuals identified as Cluster 1 (see fig. 2b) according to the
manufacturer’s protocol. These individuals were selected ran-
domly from the set of Cluster 1 individuals who had sufficient
amounts of DNA available. We also obtained SNP genotype
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data from the HGDP (Li et al. 2008), which includes 852
unrelated (Biswas et al. 2009) individuals after excluding
Native American and Oceanian populations. In addition,
SNP data were included from 459 individuals from Behar
et al. (2010), which increased the number of samples from
European, Jewish (Ashkenazi, Azerbaijan, Bene Israel, Cochin,
Ethiopian, Georgian, Iranian, Iraq, Moroccan, Sephardic,
Uzbekistan, and Yemeni Jewish populations), Middle East,
South East Asian, and North and Sub Saharan African popu-
lations. In combining the SNP genotype data from Cluster 1,
HGDP, and Behar et al., we used the following filters:
MAF4 5%, linkage disequilibrium (LD) pruning r24 0.5
using PLINK (—indep-pairwise 50 5 0.5; Purcell et al. 2007),
and removing sites with greater than 1% missing data. Here,
we used a threshold of MAF4 5% in order to maintain a high
level of variation. PLINK’s LD pruning method removes SNPs
with a window approach where, with our parameters, all
pairwise SNPs are compared in a 50 SNP window and one
of the SNPs is removed if they are found to have an r2 greater
than 0.5, finally the window is shifted 5 SNPs and the process
is repeated (http://pngu.mgh.harvard.edu/~purcell/plink/
summary.shtml#prune, last accessed December 1, 2014).
The filtered SNP genotype data set consisted of 1,337 individ-
uals from 82 populations with 228,126 markers.

Population Structure Analysis

We performed PCA on the exome data separately for
common (MAF4 10%) and rare variants (MAF< 0.5%).
Both data sets were filtered for LD similar to the genotype
data, that is, LD r24 0.5 and PCA was performed using the
program EIGENSTRAT (Price et al. 2006). Clusters were iden-
tified by eye and can be primarily derived using a DBSCAN
cluster algorithm (Ester et al. 1996) implemented in R
(fpc package) with a few outliers that do not affect the results.
We performed four analyses on the combined SNP data set
consisting of the 26 Cluster 1, HGDP, and Behar et al. (2010)
individuals: PCA, Procrustes analysis (Wang et al. 2010),
FRAPPE (Tang et al. 2005), and a neighbor-joining tree of
the populations. The Procrustes analysis was performed as
described in Wang et al. (2010), and we projected HGDP
European individuals (see supplementary material,
Supplementary Material online) from PCA space onto longi-
tude/latitude coordinates of the populations obtained
from the HGDP project. For the FRAPPE analyses, we ran
ten replicates with K = 8, to be comparable to other studies
of the HGDP and Behar et al. data sets that used K = 7 and 8
(Behar et al. 2010; Bray et al. 2010). Using a likelihood step
difference threshold of 0.001, we selected the replicate with
the highest log likelihood. To perform the neighbor-joining
tree, we calculated the population allele frequencies of each
SNP and used the programs SEQBOOT, GENDIST,
NEIGHBOR, and CONSENSE from the package PHYLIP
(Felsenstein 1993). We obtained the unrooted consensus
tree from 500 bootstraps of Nei’s genetic distance (Nei
1972) and visualized the tree using MEGA5 (Tamura et al.
2011).

Supplementary Material
Supplementary material, text S1, table S1 and S2, and figures
S1–S10 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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