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Summary

The significant increase in foodborne outbreaks
caused by contaminated fresh produce, such as
alfalfa sprouts, lettuce, melons, tomatoes and
spinach, during the last 30 years stimulated investi-
gation of the mechanisms of persistence of human
pathogens on plants. Emerging evidence suggests
that Salmonella enterica and Escherichia coli, which
cause the vast majority of fresh produce outbreaks,
are able to adhere to and to form biofilms on plants
leading to persistence and resistance to disinfection
treatments, which subsequently can cause human
infections and major outbreaks. In this review, we
present the current knowledge about host, bacterial
and environmental factors that affect the attachment
to plant tissue and the process of biofilm formation by
S. enterica and E. coli, and discuss how biofilm for-
mation assists in persistence of pathogens on the
plants. Mechanisms used by S. enterica and E. coli to
adhere and persist on abiotic surfaces and mamma-
lian cells are partially similar and also used by plant
pathogens and symbionts. For example, amyloid curli
fimbriae, part of the extracellular matrix of biofilms,
frequently contribute to adherence and are upregu-
lated upon adherence and colonization of plant
material. Also the major exopolysaccharide of the

biofilm matrix, cellulose, is an adherence factor not
only of S. enterica and E. coli, but also of plant
symbionts and pathogens. Plants, on the other hand,
respond to colonization by enteric pathogens with a
variety of defence mechanisms, some of which can
effectively inhibit biofilm formation. Consequently,
plant compounds might be investigated for promising
novel antibiofilm strategies.

Introduction

The number of outbreaks of foodborne illness arising from
the consumption of fresh and fresh-cut produce increased
dramatically two decades ago and has, since then, con-
tinued to be high in both, absolute numbers of outbreaks
and relative numbers compared with other foodborne out-
breaks with an identified source (Anonymous, 2008;
Olaimat and Holley, 2012; CDC, 2014). Microorganisms
that have been frequently associated with illness related
to consumption of fresh produce include bacteria as
diverse as Salmonella enterica serovars, Escherichia coli
pathovars, Listeria monocytogenes, Bacillus cereus,
Vibrio cholerae, Shigella spp., Campylobacter spp.,
Yersinia enterocolitica, Aeromonas hydrophila and
Clostridium spp.; viruses such as norovirus and hepatitis
A; and protozoa such as Cyclospora cayetanensis and
Cryptosporidium parvum. Specific types of fresh foods
that have been identified as common sources in produce-
associated outbreaks include sprouts, green leaves like
lettuce and spinach, and fruits and vegetables like melons
and tomatoes (Doyle and Erickson, 2008; Yaron, 2014).
Salmonella enterica and E. coli are the two major species
that cause large outbreaks of foodborne illness associ-
ated with fresh produce. Salmonella enterica is more fre-
quent in outbreaks caused by fruits, seeds and sprouts,
while E. coli O157:H7 is more frequent in leafy greens
(Brandl, 2006).

Since fruits, vegetables and leafy greens are typically
consumed without thermal treatment, outbreaks originat-
ing from such food sources usually affect a large number
of individuals. An example is the recent E. coli O104:H4
outbreak in North Germany in 2011. A newly emerged
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E. coli O104:H4 strain caused the highest frequency of
haemolytic uremic syndrome and death ever recorded in
a single E. coli outbreak. Seeds of fenugreek imported
from Egypt were likely the source of the outbreak
(Mariani-Kurkdjian and Bingen, 2012).

Another problem associated with enteric pathogens
linked to fresh produce is relating to the fact that washing
of produce with chlorine or other antimicrobial solutions
fails to significantly reduce the attached pathogens
(Beuchat, 1997; Gandhi et al., 2001; Kondo et al., 2006).
Most of the available literature regarding the use of chemi-
cals for washing has concluded that each treatment
reduces the pathogens associated with the produce by no
more than 3 logs, and usually less than 1 log (Beuchat
et al., 2004; Gonzalez et al., 2004; Allende et al., 2007;
Shirron et al., 2009). Moreover, recent evidence has
shown that enteric pathogens are less susceptible to
common sanitizing agents like chlorine than the indig-
enous microorganisms, suggesting that after sanitizing,
remaining pathogens can survive and regrow on the wet
products with less competition (Shirron et al., 2009).

Plants were commonly considered not to support the
persistence and colonization of enteric pathogens. Until
recently, the conventional view was that bacterial enteric
pathogens such as E. coli O157:H7 and S. enterica
survive poorly in the harsh environment encountered on
plant surfaces. The raise in produce-borne outbreaks
during the last decades has evoked intensive surveys of
fresh produce products. These studies indicate that con-
tamination of fresh produce with foodborne pathogens
might occur more frequently than previously thought. For
example, surveillance studies to determine the incidence
of S. enterica serovars on farm and retail products have
shown that the prevalence of S. enterica ranges from 0%
to as high as 35.7% of the sampled foods (Doyle and
Erickson, 2008). However, it seems that routine testing of
fresh produce using standard recovery methods may fail
in recognition of contaminations, because in cases of low
abundance of the pathogens, such methods may not be
sensitive enough to detect the presence of the pathogens,
resulting in underestimation of the contamination fre-
quency (Kisluk et al., 2012). Furthermore, it was reported
that pathogens form aggregates or biofilms (Brandl and
Mandrell, 2002), or alternatively can evolve into a viable
but non-cultivable (VBNC) state on plants (Dinu and
Bach, 2011). The limited ability to enumerate aggregated
bacteria or to detect low levels of the pathogens, and the
possibility of induction of VBNC cells in plants are a
source of concern, since the infective dose in several
large outbreaks was considered to be as low as a few
cells (Lehmacher et al., 1995; Collignon and Korsten,
2010; Kisluk et al., 2012).

Recent analyses of outbreaks associated with identified
contaminated sources showed that contamination of at

least 20% of the products occurred on the farm, while the
rest of the outbreaks was associated with improper han-
dling of produce after leaving the farm (Yaron, 2014).
Contamination of fresh produce is aided as enteric patho-
gens are able to survive on the produce in the field or
post-harvest for long periods of time although their overall
populations most often decline after inoculation (Brandl
and Mandrell, 2002; Brandl, 2006; Kisluk and Yaron,
2012). For example, S. Typhimurium inoculated on
parsley or basil survived for at least 100 days on the
leaves (Kisluk and Yaron, 2012; Kisluk et al., 2013),
E. coli O157:H7 survived on parsley 177 days (Islam
et al., 2004) and E. coli O104:H4 survived even better
than E. coli O157:H7 on spinach, basil and lettuce
(Markland et al., 2012). In all of these examples, the bac-
teria survived without causing disease symptoms in
planta. Although these microorganisms are considered to
be adapted to colonize warm- and cold-blooded animals,
enteric bacteria are usually exposed to a new host via
contaminated foods or water, and excreted back to the
environment through the animal feces. As these patho-
gens persist for a certain time in the environment, plants
may serve as potential vehicles for their transfer from the
environment to a new host (Ochman and Groisman,
1995). Consequently, enteric bacteria not only survive, but
also replicate on the plants until the plant is consumed by
a new potential host. Thus, it is reasonable to propose
intimate interactions between the bacteria and the plant
(Shirron and Yaron, 2011), interactions that recently have
begun to be scrutinized (Hernandez-Reyes and Schikora,
2013).

One of the most fascinating strategies to gain fitness
against the challenging conditions on or in the plant is the
formation of biofilms. Microbial biofilms can be formed on
leaves, on root surfaces and also within intercellular
spaces of plant tissues. As a benefit, biofilm formation
protects attached bacteria from desiccation, UV radiation
and other environmental stresses, as well as from the
plant immune response and from antimicrobial com-
pounds produced by the plant or by indigenous microor-
ganisms. The ability to form biofilms also provides
enhanced protection against chemicals used for disinfec-
tion during processing of the food (Scher et al., 2005;
Lapidot et al., 2006). This review will present the factors
affecting the attachment to and the process of biofilm
formation on plant tissue by foodborne pathogens, and
will discuss the topic of how biofilm formation assists in
persistence of pathogens on the plants. Although a variety
of pathogens have been implicated in outbreaks arising
from produce, this review will focus primarily on
S. enterica and E. coli because of the high frequency of
outbreaks associated with these pathogens and the rela-
tive depth to which these foodborne pathogens have been
studied in relation to biofilm formation on plants.
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The plant environment and bacterial
survival strategies

In order to understand the fate of enteric pathogens on
plants, it is important to be familiar with the conditions the
bacteria face in the plant environment. Depending on the
route of transmission (water, manure, improper handling
and other measures), bacteria may be located in the
rhizosphere or the phyllosphere. The root zone in the soil
is relatively rich in nutrients, thus supporting the persis-
tence of 106 to 109 bacteria per gram of roots (Hallmann
et al., 2001). The rhizosphere contains root exudates
including compounds released as a consequence of root
cell metabolism or after lysis of plant cells. A major com-
pound of root secretions is mucilage composed of
hydrated polysaccharides, organic acids, vitamins and
amino acids which are excellent substrates for microbial
growth. Mucilage binds water and thus helps to form a
well-hydrated environment for the roots and rhizosphere
microorganisms. Some bacteria that colonize the root
surface are able to infect the vascular parenchyma fol-
lowed by invasion into the xylem vessels and transfer to
the upper parts of the plants (Kutter et al., 2006; Klerks
et al., 2007).

Unlike the rhizosphere, nutrients are scarce on the
foliage surface. The few plant-derived nutrients on leaves
probably originate from mesophyll and epidermal cell
exudates leaking onto the surface as well as from
wounds and broken trichomes. The distribution of these
nutrients is highly heterogeneous. Moreover, the
phyllosphere is subjected to large and rapid fluctuations
in temperature, solar radiation and water availability, and
therefore typically supports fewer than 103 to 107 bacteria
per gram leaf (Hallmann et al., 2001). These environ-
mental conditions differ significantly from the compara-
tively weak and buffered fluctuations of abiotic conditions
prevailing in the rhizosphere or the rich and relatively
stable environment in the intestine of animals. Foliar bac-
teria may follow two major strategies for their growth and
survival on the plant surface: A tolerance strategy that
requires the ability to resist exposure to environmental
stresses on leaf surfaces or an avoidance strategy by
which the bacteria seek sites that are protected from
those stresses (Beattie and Lindow, 1999). Based on
these strategies, a general model of leaf colonization
was developed. According to this model, the bacteria that
arrive on the leaf surface are randomly distributed. Some
bacteria enter into the leaf via openings such as stomata,
and those that stay on the surface modify their local
environment. The bacteria adhere to the surface, start to
multiple and form aggregates or microcolonies, which
may be further developed into biofilms. Some bacteria
continue to invade into internal spaces, in which they
modify the habitat.

Knowledge about the behaviour of human enteric
pathogens on plants has just begun to accumulate. It is
however emerging that those ‘non-professional’ plant-
interacting organisms use similar mechanisms with plants
as described above (Brandl, 2006). Using a similar strat-
egy for survival, the main difference between plant and
human enteric pathogens is that no significant multiplica-
tion on leaves surfaces of mature plants is observed for
enteric pathogens, though growth was observed under
specific conditions such as on cut products (Pan and
Schaffner, 2010) or during germination of sprouts (Gandhi
et al., 2001). In addition, in most cases, enteric pathogens
survive on or in the leaf without significant changes of the
habitat, and thus, without visible symptoms. These bac-
teria rarely modify the plant structure, but tend to aggre-
gate or to form biofilms as will be discussed in next
sections.

Bacterial biofilms

Biofilms are complex communities of microorganisms in
which cells are attached to a surface and to each other,
and are embedded in a self-produced matrix of extra-
cellular polymeric substances (EPS) (Costerton et al.,
1999). The major component of biofilms is actually water
(up to 97%) and bacterial cells make up to 35% of the dry
weight. Apart of live and dead bacteria, a variety of
secreted compounds such as polysaccharides, proteins,
lipopolysaccharides (LPS), DNA and lipids contribute to
the dry weight of the biofilm in addition to minerals and
other components from lysed or dead cells or from the
environment (like host components) that jointly form the
biofilm matrix (Costerton et al., 1999).

Development of bacterial biofilms on surfaces typically
involves several stages, which are likely to occur also on
the surface of plants. The initial stages of biofilm formation
depend on bacterial motility which enables the free-
swimming bacteria to reach a suitable surface (Blair et al.,
2008). Consequently, the flagella act as motility orga-
nelles that assist in arrival to favourable habitats and can
be adhesion factors that promote attachment to the
surface. Stringent regulation of flagella rotation and func-
tionality is subsequently required for optimal biofilm for-
mation. For example, in Bacillus subtilis, disengaging the
flagellum from the rotor facilitated the transition to the
biofilm state (Blair et al., 2008). Next, the bacteria adhere
to the surface, irreversibly attach to it, form microcolonies
and secrete EPS that are required for the interactions of
the cells with the surface, with other cells and with alter-
native matrix components to develop the complex archi-
tecture of the biofilm. Proteins in the biofilm matrix carry
out primarily both structural and physiological functions.
Exopolysaccharides confer mechanical stability and have
a role in water retention and nutrient availability. In late
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stages of biofilm development, the microcolonies develop
into mature biofilms with complex three-dimensional
structures. Bacteria may actively or passively detach
from the biofilm, and dispersed individual cells or clumps
may spread into a new environment. Environmental
signals, quorum sensing and cyclic dimeric guanosine
monophosphate (di-GMP) secondary messenger signal-
ling are major components to regulate the different stages
of the biofilm developmental process (Blair et al., 2008;
Ahmad et al., 2013). Consequently, mature biofilms are
dynamic heterogenic environments.

Cells in the biofilm are more resistant to chemicals,
stress conditions and components of the host immune
system (Costerton et al., 1999), and thus it was sug-
gested that the formation of biofilms by bacterial cells on
plant surfaces is a survival strategy to withstand the harsh
conditions in this environment. Several mechanisms con-
tribute to the enhanced resistance of biofilm-associated
cells, which also depend on the property of the antimicro-
bial compound and the genetic potential of the bacterial
strain (reviewed in del Pozo and Patel, 2007). For
example, EPS can provide a physical barrier against the
diffusion of antimicrobial agents and compounds of the
defence response and offers protection against environ-
mental stress factors such as UV radiation, osmotic
stresses and desiccation.

Like other species, the ecological success of enteric
pathogens such as S. enterica and E. coli in a variety of
hosts, including plants, and in different niches in the
environment is in part due to their ability to grow in
biofilm (Costerton et al., 1995; Davey and O’Toole, 2000).
These species form biofilms on abiotic surfaces such
as stainless steel and glass (Joseph et al., 2001; Zogaj
et al., 2001; Kim and Wei, 2007; Schlisselberg and
Yaron, 2013), on surfaces in the host such as the epithe-
lial cell layer and gallstones (Prouty and Gunn, 2003;
Esteves et al., 2005), and on plant surfaces (Mahon et al.,
1997; Campbell et al., 2001; Franz et al., 2007). Addi-
tional biofilms are pellicles at the air–liquid interface
(Anriany et al., 2001; Scher et al., 2005; 2007), biofilms
colonizing cancer tissue, food stuff, equipment in the food
industry and biofilms occurring under many more circum-
stances (Thomas and McMeekin, 1981; Craven and
Williams, 1998; Prouty et al., 2002; Winfield and
Groisman, 2003; Chia et al., 2009; Vestby et al., 2009;
Crull et al., 2011).

Reversible and irreversible attachment of native
bacteria and enteric pathogens to plant tissue

As mentioned above, attachment is an initial step crucial
for biofilm formation on the plant surface. Analysis of
attachment of plant pathogens and symbionts such as
Rhizobium and Agrobacterium to the root or leaf surfaces

showed a biphasic process that occurs after bacterial
contact with plant surfaces. In the first few seconds, the
initial adhesion is characterized by a weak, reversible and
unspecific binding that usually depends on hydrophobic
and electrostatic interactions. In the second phase of
binding, a strong irreversible attachment might occur
(Dunne, 2002). This form of attachment has also been
called ‘firm’ attachment, since removal of the attached
bacteria cannot be readily achieved. In many symbionts,
the second attachment step involves bacterial cellulose
fibres (Laus et al., 2005).

Studies of the attachment of human enteric pathogens
indicate that they can rapidly adhere to a variety of plant
tissues (leaves, fruits, roots) of growing or harvested
plants using a similar scheme of attachment. Attachment
is irreversible, since bacteria are not removed by washing.
Table 1 lists studies on the attachment of E. coli and
S. enterica serovars to different plants types and plant
tissues. Adhesion studies conducted for more than 4 h
were excluded, because after a long time, attached bac-
teria may die, or, alternatively, particularly in sprouts or cut
plant tissues, can grow, so it is impossible to discriminate
attachment, from other processes such as survival and
growth. Exemplified in Table 1, ubiquitously a firm attach-
ment was obtained within few seconds to less than few
hours as depending on the detection time. More than
qualitative comparisons are however not applicable due
to major differences in the experimental set-up, including
preparation of the inoculum, concentration of the bacteria
in the binding assay, type of liquid (water, saline, buffer,
etc.), temperature of the assay, methods used to recover
the attached bacteria and different reports of result output
parameters.

Besides the bacterial inoculum and exposure time,
both host plants and bacterial properties influence the
efficacy by which the enteric pathogens attach to plants.
Attachment to basil, lettuce or spinach leaves differed
among S. enterica serovars, as S. Senftenberg and
S. Typhimurium showed higher attachment compared
with S. Agona or S. Arizonae. Interestingly, the
S. Senftenberg strain with highest adhesion capability to
basil was a clinical isolate from a basil-derived outbreak in
the UK in 2007 (Berger et al., 2009). Microscopic obser-
vations of three Salmonella serovars attached to tomato
fruits show that although all investigated serovars were
attached to tomatoes with similar efficiencies, serovars
Senftenberg and Typhimurium adhered to the fruits in an
aggregative pattern, while serovars Thompson adhered in
a diffuse pattern (Shaw et al., 2011). Enteric pathogens
such as E. coli, Salmonella and Listeria adhered more
effectively to the peach fruit than plum surfaces attributed
to the increased surface area of the peach fruits due to the
presence of trichomes (Collignon and Korsten, 2010).
Also, in line with epidemiological data, the affinity of
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Salmonella serovars to lettuce was significantly twofold to
threefold higher than to cabbage (Patel and Sharma,
2010). Lettuce is very often associated with foodborne
outbreaks, whereas outbreaks associated with cabbage
are rare.

Environmental factors affect the attachment as well. The
adhesion of pathogens in wash water to fresh cucumber
surfaces depends on temperature, and is less extensive at
lower temperatures. The effect of dewaxing of fruits on
adhesion depends on the bacteria. While adhesion of
Listeria to dewaxed fruits was higher than to waxed fruits,
the opposite was reported for S. Typhimurium and Staphy-
lococcus aureus (Reina et al., 2002).

Factors that play a role in attachment of S. enterica
and E. coli to plants

Properties of plant surfaces

Most aerial plant surfaces are covered in cuticle, a hydro-
phobic material composed primarily of fatty acids, waxes
and polysaccharides. The cuticle favours attachment of
hydrophobic molecules. However, breaks in the cuticle
may expose hydrophilic structures (Patel and Sharma,
2010). In this case and on the root surface, the bacteria
are exposed to the plant cells, which are generally
covered with glycoproteins and polysaccharides such as
cellulose and pectins. Many of these molecules are
hydrophilic and in some cases have negative charge
(Torres et al., 2005). Plant surface charge correlates
with the strength of attachment (Ukuku and Fett, 2002;
2006), but the exact receptors or binding sites, if existent,
have not been identified. Investigation of attachment of
S. Typhimurium to sliced potatoes indicated that the bac-
teria attach to cell wall junctions. In particular, the bacteria
appeared to attach to the pectin layer at the junctions,
indicating that pectin may be the bacterial attachment site
(Saggers et al., 2008). In contrary, Tan and colleagues
have shown that Salmonella attached in lower numbers to
plant cell wall components when pectin was part of the
composite, supporting that pectin is unfavourable for the
bacterial attachment compared with cellulose (Neff et al.,
1987; Tan et al., 2013).

Topography and architecture of the surface of the plant
are also important factors in microbial adhesion. Rough-
ness is important not only for adherence but also for
survival on the plant tissue, as demonstrated for E. coli
O157:H7 adhesion on leaves of different spinach cultivars
(Macarisin et al., 2013). The surface roughness of the
plant organs such as leaves depends on the nature of the
plant and on the age of the leaves. Indeed, the affinity of
Salmonella to artificially contaminated old lettuce leaves
was higher compared with young leaves. Moreover,
higher numbers of S. Typhimurium were localized close to
the petiole, and the bacteria displayed higher affinity

towards the abaxial side compared with the adaxial side
of the leaves (Kroupitski et al., 2011). Fissures in the
cantaloupe netting provided attachment sites for cells of
Salmonella which aid bacterial survival when in contact
with aqueous sanitizers (Annous et al., 2004; 2005).

The plant microflora is not homogenously distributed on
the leaf surface, rather bacterial cells have been shown to
attach and colonize at specific sites in and on leaf sur-
faces, including the base of trichomes, at stomata, epi-
dermal cell wall junctions, as well as in grooves along
veins and depressions or beneath in the cuticle (Beattie
and Lindow, 1999). These habitats apparently constitute
stress-protected, rich-in-water and rich-in-nutrients sites.
Plant appendages such as secretory cavities or ducts
may release plant metabolites. Glandular trichomes are
epidermal protuberances which serve as sites of secre-
tion and accumulation of different compounds such as Ca,
Na, Mn and Pb ions, defensive proteins and secondary
metabolites such as essential oils, monoterpenoids and
phenylpropanoids. Larger numbers of bacteria can also
be found on the lower than upper leaf surface, possibly
due to lower radiation exposure, or because of higher
density of stomata or trichomes and a thinner cuticular
layer (Karamanoli et al., 2012). Consequently, bacteria
attached on the lower leaf surface find better conditions
for survival and growth, which increase the probability of
their survival compared with bacteria attached to other
parts of the leaf.

Evidence indicates that human enteric pathogens dem-
onstrate similar behaviour on leaves, with a few differ-
ences. Salmonella enterica serovar Thompson was
shown to attach around stomata of spinach leaves and in
cell margins, similar to where native bacteria are detected
(Warner et al., 2008). Use of confocal microscopy to visu-
alize cells of E. coli attached at stomata and trichomes of
cut lettuce plants concluded that attachment sites for
E. coli are similar to those reported for plant pathogens
(Seo and Frank, 1999). The stomata provide protective
niches for the bacteria, and also can serve as a source of
nutrients. Golberg and colleagues confirmed that Salmo-
nella cells prefer this niche by showing that the bacteria
are mostly located near and within the stomata of lettuce
leaves. However, the ability of Salmonella to colonize the
surface around the stomata was observed only with
certain serovars on specific plants (Golberg et al., 2011).
On the other hand, while E. coli better attached to cut
surfaces of lettuce, Pseudomonas fluorescens preferen-
tially attached to the intact areas, and S. Typhimurium
attached to both, cut and intact surfaces in a similar
manner (Takeuchi et al., 2000). Whether the ability of
enteric pathogens to localize to similar adhesion sites on
the leaves like plant pathogens or the natural microflora
contributes to long-term survival in the plant environment
is an issue that should be addressed.
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Enteric bacteria penetrating into the soil through water,
fertilizers or directly exposed to the roots during hydro-
ponic growth, are able to attach to the rhizosphere of the
plant host. Following attachment, these bacteria can
invade or move to the upper parts of the plant (Lapidot
and Yaron, 2009). In the case of attachment to the root
surface, in contrast to leaves and fruits, more significant
differences were observed between the location of the
natural microflora and enteric pathogens. The natural
plant microflora and plant pathogens tend to attach to the
epidermis and to the root hairs formed by trichomes. Plant
pathogens bind rapidly and particularly well to cut ends of
roots and wound sites and bind poorly to the root tips
(Matthysse and Kijne, 1998). In contrast, E. coli strains
prefer to attach to the root tips of alfalfa sprouts, but attach
to the roots very slowly. Further, not all investigated E. coli
strains are able to bind to the root hairs (Jeter and
Matthysse, 2005).

Bacterial properties

It is mostly believed that attachment of Salmonella and
E. coli is an active process, but not all observations
support this assumption. Only viable Salmonella cells
were able to attach to vegetable tissues such as slices of
potatoes (Saggers et al., 2008). On the other hand,
similar levels of attachment to lettuce were observed with
live E. coli O157:H7, killed E. coli O157:H7 and fluores-
cent polystyrene microspheres (Solomon and Matthews,
2006). The difference was attributed to the method used
for bacterial inactivation. Escherichia coli cells were inac-
tivated with glutaraldehyde, which is known to alter the
adhesive properties of the bacterial envelope, while Sal-
monella cells were inactivated by different methods
including formalin, ethanol, kanamycin and thermal treat-
ment (Saggers et al., 2008).

A number of authors investigated the role of cell
surface charge, presence of divalent cations, hydropho-
bicity and capsule production in passive or active attach-
ment of E. coli to lettuce tissue (Hassan and Frank,
2003; 2004; Boyer et al., 2007). Collectively, these
studies have shown very little correlation between the
presence of cell surface appendages, charge or hydro-
phobicity and the ability of the bacteria to attach to
lettuce tissue. Subsequently, treatment with the hydro-
phobic surfactant Span85 detached only 80% of
attached E. coli O157:H7 from intact lettuce leaves, and
this surfactant was ineffective in detaching the pathogen
from cut edges, indicating that the nature of surface is
heterogeneous (Hassan and Frank, 2003). Alternatively,
for Salmonella, a linear correlation was reported
between bacterial cell surface hydrophobicity and the
strength of attachment to melon fruits (Ukuku and Fett,
2002; 2006).

On the molecular level, studies investigating the role of
specific bacterial factors in adhesion to plants have shown
contradictory results, and until now, very few genetic
elements have been definitively identified as essential for
attachment or survival of human pathogens on leaves,
roots, fruits or sprouts. The specific bacterial factors that
contribute to attachment to plant tissue were identified by
different experimental approaches like differential expres-
sion analysis upon contact with plants or plants extracts
and assessment of the ability of mutants and overexpre-
ssion strains to attach to plant tissues. Table 2 presents
major genes frequently identified and investigated. Inter-
estingly, many genes that have a role in adhesion to
plants tissues have also been identified as attachment or
virulence factors of E. coli and S. Typhimurium when
infecting animals. This phenomenon occurs despite of the
fact that many studies not only focused on genes with
known function in the host, but also screened for func-
tional genes using whole genome transcription analysis or
transposons libraries.

Strains of E. coli and S. enterica produce a diversity of
pili and fimbriae and non-fimbrial adhesins that function as
‘professional’ adhesion systems as well as surface struc-
tures such as type III secretion systems (T3SSs) and
flagella with alternative major functions (Hernandez-Reyes
and Schikora, 2013; Yaron, 2014). Pili and fimbriae are
hair-like appendages on the surface of the bacterial cells
that often contain adhesins on their tips with affinity to
different carbohydrates. Examples are the type 1, P, S and
F1C fimbriae in E. coli. The adhesins interact with
mammals’ components, either non-specifically via hydro-
phobic or electrostatic interactions, or by binding to specific
host cell receptor moieties, and are responsible to the
tropism in adhesion to a specific host or tissue (Wagner
and Hensel, 2011). Several adhesins and fimbriae of E. coli
and Salmonella like amyloid curli fimbriae have widely
been investigated in relation to adhesion to plants
(Table 2). The studies demonstrated that curli usually have
a role in attachment of E. coli and Salmonella to sprouts
and leaves, but the effect of their inactivation is low. For
example, deletion of csg genes resulted in no more than
1-log reduction in binding (Table 2). Furthermore, these
results point out the complexity of adhesion and show that
very little is known about the role of these adhesins in
adherence of human pathogens to plant tissue. For
example, mutations in the csgA gene had a very low effect
on the ability of E. coli O157:H7 to bind to sprouts, but
increased the binding of the same strain to Caco-2 human
cells. On the other hand, insertion of csgA into the E. coli
K-12 laboratory strain enabled the bacteria to bind to
sprouts, indicating that E. coli O157:H7 possesses several
redundant protein adhesins and that overexpression of
each adhesin alone is sufficient to promote binding to
alfalfa sprouts (Torres et al., 2005).
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Taking adhesins of plant-associated bacteria into con-
sideration indicates that additional factors that have
hardly been investigated may have a role in attachment
of enteric pathogens to plants. The type 1 fimbriae are
widespread among members of the Enterobacteriaceae
and are specified by their binding to mannosides in
glycoproteins on the surface of mammalian cells. Type 1
fimbriae were also suggested to mediate adhesion of
nitrogen fixating Klebsiella as well as Klebsiella
pneumoniae to specific sites on the root hairs of bluegrass
(Haahtela et al., 1985). Moreover, E. coli type V-secreted
adhesins, such as the antigen 43, bind to integrins in the
animal tissue via conserved RGD motifs (Henderson and
Owen, 1999). Interestingly, plant pathogens also secrete
RGD-containing proteins which might bind to specific
receptor proteins of plants, but their involvement in adhe-
sion has not been examined (Senchou et al., 2004).

Contradictory results have been obtained concerning
the role of flagella in adherence of Salmonella and E. coli
to plants. Deletion of the flagella subunit encoding gene
fliC of E. coli O157:H7 or S. Senftenberg rendered the
bacteria significantly less adherent to baby spinach and
lettuce leaves (Xicohtencatl-Cortes et al., 2009), and leaf
epidermis of basil (Berger et al., 2009), respectively, but
deletion of the same gene in S. Typhimurium did not affect
leaf attachment (Berger et al., 2009). It was suggested
that this contradiction relates to the fact that the alterna-
tive flagellar subunit protein FliB is functional in this
serovar, when FliC is not expressed. However, flagella
were also not involved in attachment of S. Typhimurium to
tomato fruits, even when both genes, fliB and fliC, were
deleted (Shaw et al., 2011). In a further study, two genes
of unknown function essential for swarming were found to
be important factors for infection of alfalfa sprouts (Barak
et al., 2009).

The role of biofilm formation in survival on the plant will
be further discussed, but several genes products involved
in production of biofilm components like bcs and rpoS
have also a significant role in the initial attachment of
E. coli and Salmonella. As can be seen in Table 2, the
genes that have the most significant effect on the levels
of attachment are genes involved in production of
extracellular carbohydrates on the bacterial surface such
as pgaC [synthesis of poly-β-1,6-N-acetylglucosamine
(PGA)], wcaD (synthesis of colanic acid) in E. coli
O157:H7 and ycfR (putative membrane protein involved
in biofilm formation) in Salmonella. Mutants deficient in
cellulose production reduced the ability of E. coli O157:H7
to attach to alfalfa sprouts (Matthysse et al., 2008), or the
ability of S. Typhimurium to attach to tomato fruits (Shaw
et al., 2011), but the influence of these mutations on the
ability of the mutants to attach to other plants was much
less noteworthy, with up to 1-log reduction. On the other
hand, a plasmid carrying the cellulose gene allowed

E. coli K-12 to bind to sprouts (Matthysse et al., 2008).
Interestingly, the impact of each of these polysaccharides
in attachment to mammalian cells and sprouts was differ-
ent (Matthysse et al., 2008).

Collectively, these studies demonstrate that enteric
pathogens specifically attach rapidly and irreversibly to
produce surfaces. Attachment depends on plant and bac-
terial factors as well as on environmental conditions, but
no single factor was found to be essential for attachment,
possibly because bacteria use several parallel mecha-
nisms to ensure tight attachment to different plants or to
different plant cells under a wide variety of conditions.
Moreover, despite the high numbers of publications in this
topic, the exact contribution of each identified factor is not
clear yet, probably due to redundancy in adhesion factors,
diversity of adhesion factors in each pathogen and plant
receptors, as well as the differences in cell surface
composition.

Biofilm of S. enterica and E. coli and its regulation

After or in parallel to attachment, the bacteria start to
produce the biofilm matrix. The extracellular matrix pro-
duced by many Enterobacteriaceae is composed of
proteinaceous components and exopolysaccharides. A
major protein component is curli (amyloid fimbriae also
known as thin aggregative fibres), which are encoded by
at least seven genes organized in the csgBAC and
csgDEFG operons (also termed agf genes). The csgBA
genes encode the curli structural genes (Hammar et al.,
1996), and the csgDEFG operon encodes, besides the
major transcriptional regulator, CsgD, required for curli
expression and biofilm formation, three accessory pro-
teins required for the assembly of curli on the cell surface
(Hammar et al., 1996; Loferer et al., 1997; Robinson
et al., 2006). In Salmonella, the secreted large surface
protein BapA (biofilm-associated protein) is also a major
component of the biofilm matrix (Barnhart and Chapman,
2006; Latasa et al., 2006). Like fimbriae, this protein
mediates the interactions between different cells leading
to aggregation (Latasa et al., 2006).

A major exopolysaccharide in S. enterica and E. coli
biofilms is cellulose (Zogaj et al., 2001), while some E. coli
and S. enterica serovars also secrete capsular
polysaccharides or other exopolysaccharides like colanic
acid (Gibson et al., 2006). Many E. coli strains also have
the potential to secrete PGA (Itoh et al., 2008). Cellulose
consists of linear chains of glucose monomers con-
nected by β-1,4-glycosidic bonds, which assemble into
macromolecular fibrillar structures. These crystalline
fibres are water insoluble and have a rigid structure (Ross
et al., 1991). The two operons, bcsABZC and bcsEFG,
encode the structural genes required for cellulose
biosynthesis (Nobles et al., 2001; Zogaj et al., 2001;
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Solano et al., 2002), whereby BcsA and BcsB form the
cellulose synthase complex (Romling, 2002; Omadjela
et al., 2013).

Escherichia coli and Salmonella strains produce more
than 80 distinct capsules which can also be a consti-
tuent of the biofilm matrix, and are classified into
several groups. Group 4 capsules comprise of
O-polysaccharides, structurally similar to the O-
polysaccharides of the LPS, termed the O-antigen cap-
sules. In E. coli, they are polymerized by the Wxy
polymerase, and transferred across the membrane by the
Wzx complex (Whitfield and Roberts, 1999). In Salmo-
nella, two yih operons were found to be important for
capsule assembly and translocation (Gibson et al., 2006).

A regulatory scheme for the main biofilm components is
illustrated in Fig. 1. For clarity, only major regulators and
regulators that have been investigated in relation to asso-
ciation of the bacteria with plants are shown. As outlined
above, the extracellular matrix components, cellulose,
curli fimbriae and in S. enterica BapA are positively regu-
lated by CsgD, the major hub of biofilm formation
(Romling et al., 2000; Uhlich et al., 2001; Latasa et al.,

2006; Simm et al., 2014). Synthesis of the Salmonella
O-antigen capsule coregulates with the cellulose synthe-
sis. CsgD also regulates the yih genes in coordination
with cellulose and curli (Gibson et al., 2006). Regulation
of CsgD and subsequently the expression of the matrix
components is highly responsive to many environmental
signals such as growth phase, nutrients, oxygen tension,
ethanol, temperature, osmolarity and a number of regula-
tory proteins (Gerstel and Romling, 2003). For most
strains of Salmonella and also a fraction of E. coli strains,
csgD expression is optimal at temperatures below 30°C in
media with low salt (Romling et al., 1998; Bokranz et al.,
2005). Maximal expression is observed during stationary
phase upon limitation of nutrients such as nitrogen, phos-
phate and iron (Gerstel and Romling, 2003), which,
directly and indirectly, requires the stationary-phase
sigma factor RpoS (Arnqvist et al., 1994). The response
regulator OmpR, a component of the two-component
regulatory system OmpR/EnvZ that responds to changes
in osmolarity (Pratt et al., 1996), is absolutely required for
CsgD expression. Oxygen tension also plays a major
determinative role in CsgD expression (Romling et al.,

BcsAB

Cellulose

CsgBAC

Colanic acid

BapA

BapAPGA

PgaABCD

FliC
Flagella

FlhD4C2RpoS
σs

ArcB/A
CRP

CsgD AdrA*

YhjH

MlrA

YdaM

CpxR NhaR OmpR

Curli

WcaADIJWzc
complex

Ugd

O-An�gen
capsule

YihQ
YihO RprA

CsrA

CsrB CsrC

ArcZ

Hfq

SirA
UvrY

FliB

STM1987*

STM4551*

SdsR

RcsCDB

YmgAB

Fig. 1. Regulation of components of the biofilm matrix in Salmonella typhimurium and Escherichia coli.
Proteins and sRNAs controlling the synthesis of biofilm components are shown. Straight arrows: direct activation. Straight lines with blunt
ends: direct inhibition. Dotted lines: indirect effects. Proteins are in boxes (green, E. coli only; grey, S. Typhimurium only; violet, in both
species), and regulatory sRNAs are in circle. Cyclic di-GMP binding proteins are marked with an asterisk. Additional regulatory elements were
not included for clarity. The figure is mainly based on data from the following references: (Gibson et al., 2006; Mika and Hengge, 2013; Anwar
et al., 2014).
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1998; Gerstel and Romling, 2001). Investigating 51
S. Typhimurium strains from different origins indeed dem-
onstrated that most strains form optimal biofilm at acidic
pH (∼ 5.5), 0.5% NaCl and 25°C (Lianou and
Koutsoumanis, 2012). In the same line, the genes
involved in curli and cellulose production were highly
induced in a panel of S. enterica strains at 25°C and low
nutrient availability (Castelijn et al., 2012), and also
colanic acid is generally not produced at temperatures
above 30°C (Whitfield and Roberts, 1999). PGA is syn-
thesized at 37°C, but it is also implicated in attachment to
surfaces during growth at lower temperatures (Wang
et al., 2004).

Regulation of cellulose biosynthesis by CsgD is indi-
rect. Once CsgD is expressed in the stationary phase of
growth, it activates the transcription of adrA encoding a
diguanylate cyclase that subsequently leads to cellulose
biosynthesis through the production of the allosteric
activator cyclic di-GMP (Romling et al., 1998; 2000).
However, cellulose biosynthesis can be uncoupled from
CsgD expression, as alternative diguanylate cyclases
encoded by the S. enterica chromosome like STM4551
and STM1987 can activate cellulose biosynthesis under
alternative growth conditions (Anwar et al., 2014; Simm
et al., 2014). Cyclic di-GMP has emerged as a major
regulatory secondary messenger signalling system acti-
vating csgD expression in S. enterica and E. coli
(Römling et al., 2013), and is usually with oppositely
regulated with the flagella synthesis and function (Mika
and Hengge, 2013). Regulation of csgD expression by
cyclic di-GMP is complex and involves at least four
di-guanylate cyclases and four phosphodiesterases in
S. Typhimurium.

Hfq, a RNA chaperone, is another central positive
regulator of biofilm formation in S. Typhimurium and
E. coli (Holmqvist et al., 2010; Monteiro et al., 2012). In
S. Typhimurium, Hfq together with its associated small
RNAs ArcZ and SdsR positively control the expression of
CsgD. ArcZ also regulates the transition between sessility
and motility, and the timing of type 1 fimbriae versus curli
fimbriae surface attachment at ambient temperatures
(Monteiro et al., 2012).

Recently, it has been shown that hyper-expression of
the T3SS-1 of Salmonella facilitates a cell aggregation
phenotype that results in biofilm formation (Jennings
et al., 2012). A similar observation was also described in
the plant pathogen Erwinia chrysanthemi (Yap et al.,
2005). This biofilm is not dependent on cellulose, curli or
flagella production, and its extracellular matrix contains
different virulence proteins secreted by the T3SS-1
system like SipA and SopB (Jennings et al., 2012). Other
types of biofilms of S. Typhimurium are mainly dependent
on type 1 fimbriae (Monteiro et al., 2012) and flagella
(Crawford et al., 2010).

Biofilm formation by S. enterica and E. coli on
produce surfaces and its role in survival on plants

The formation of biofilms by plant epiphytic or pathogenic
bacteria has long been known (Danhorn and Fuqua,
2007); however, the discovery that human enteric
pathogens are able to establish biofilms on plant sur-
faces was unexpected. Escherichia coli, Salmonella,
Campylobacter, Listeria and Shigella have been found to
form distinct biofilms on surfaces of produce such as
tomatoes, melons and parsley (Agle, 2003; Annous et al.,
2005; Iturriaga et al., 2007). Consequently, the number of
studies on the formation of biofilms by foodborne patho-
gens on produce surfaces has expanded in the last
decade only. A correlation between the ability to form
biofilms and the attachment to fresh produce and/or sur-
vival was shown as strains with pronounced biofilm for-
mation in vitro also attached to plants in significantly
higher numbers, or survived better after disinfection
(Lapidot et al., 2006; Patel and Sharma, 2010). This cor-
relation extended to strains isolated from produce-related
outbreaks. Isolates of Salmonella collected during tomato
outbreaks produced biofilms and better adhered and
attached to tomato leaflets compared with non-biofilm-
producing strains (Cevallos-Cevallos et al., 2012). The
E. coli O104:H4 strain that caused the devastating fenu-
greek seed outbreak in 2011 possesses a unique compo-
sition of multiple virulence factors, as well as the ability to
produce rapidly a more stable and thicker biofilm com-
pared with E. coli O157:H7. The ability of this strain to
form a biofilm is probably aided by the production of
high levels of exopolysaccharides and fimbriae due to
overexpression of pgaA and aggR genes products,
involved in the production of PGA, and regulation of type
1 aggregative adherence fimbriae respectively (Al Safadi
et al., 2012). Also, E. coli strains isolated from plants
formed significantly more biofilms and produced more
cellulose and curli compared with E. coli strains isolated
from human and other animals (Meric et al., 2013). Simi-
larly, Salmonella isolates from produce commodities
formed significantly thicker biofilms and persisted on
spinach plants at higher numbers than poultry Salmonella
isolates. Increasing persistence of the isolates was attrib-
uted to curli expression in several isolates. However,
S. Tennessee formed a greater biofilm, but produced less
curli, suggesting that other extracellular appendages con-
tribute to attachment and biofilm formation (Patel et al.,
2013). In contrast to the observations indicating that the
ability to produce a biofilm improves the survival of the
pathogens on the plant, recent evidence has shown that
during adaptation of S. Typhimurium in green tomato
fruits, the bacteria lose the ability to produce biofilms
(Salazar et al., 2013). In line with this finding, a survey
of the Salmonella strains recovered from produce-
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associated outbreaks revealed that many of them do not
synthesize cellulose and/or curli (Zaragoza et al., 2012).
Similarly, the majority of E. coli O157:H7 strains isolated
from various outbreaks do not express curli and show
only weak or non-biofilm formation in vivo (Liu et al.,
2014). The reasons for these opposing observations are
not clear.

Bacteria embedded within biofilms on plant tissue are
more difficult to remove and more resistant to inactivation
than their planktonic counterparts (Chmielewski and
Frank, 2003). Biofilm-associated cells as well as capsule
producing cells are also significantly more tolerant to des-
iccation, as deletion of CsgD, the major biofilm activator in
Salmonella, resulted in increased susceptibility to desic-
cation stress (Gibson et al., 2006). Generally, in recent
years, the role of biofilm-related genes in survival on
sprouts, leaves or fruits of different plants was investi-
gated (Table 3). The most investigated genes demon-
strated various effects under different experimental
conditions. For example, deletion of the cellulose
synthase gene bcsA in Salmonella serovars resulted in a
significant reduction in survival on alfalfa sprouts (Barak
et al., 2007), but caused no effect on tomatoes (Noel
et al., 2010). The genes with the most significant effect in
survival on both alfalfa sprouts and tomatoes were the yih
genes, involved in the synthesis of O-antigen capsule in
Salmonella (Table 3).

Presumably, these and other mechanisms aid long-
term survival of biofilm-associated cells on the plant
surface not only in the field but also during harvest,
transport, sanitation and storage. On parsley plants,
for instance, resistance to disinfection treatments
(i.e. chlorination) was improved in biofilm producing
S. Typhimurium compared with non-producing mutants,
when washing was conducted a week after inoculation,
but no differences were observed when the treatment was
carried out a few hours after inoculation (Lapidot et al.,
2006).

Regulation of biofilm formation on plants

As discussed above, several environmental conditions
were shown to have an impact on biofilm production. For
example, biofilm formation of Salmonella has been
reported to be maximal under reduced nutrient availability,
aerobic conditions, low osmolarity and mid temperatures
(25–28°C) (Gerstel and Romling, 2003). All these condi-
tions exist on a plant surface rather than in the gut envi-
ronment. Indeed, several studies reported about induction
of biofilm-associated genes in the plant environment.
Assessment of the transcriptional profile in E. coli
O157:H7 attached to intact lettuce leaves showed that
10% of the genes have at least a twofold expression
change between day 0 and day 1 and/or day 3 (Fink et al.,

2012). Among them, csgA and csgB showed 34.6-fold
and 13.9-fold induction, respectively, and rpoS 2.1-fold
induction. Other genes probably involve in biofilm regula-
tion, such as ybiM and yceP, also show a very strong
induction (Fink et al., 2012). In line with these findings,
E. coli attached to the lettuce rhizosphere upregulates the
csg genes (Hou et al., 2012), and S. Weltevreden
upregulated csg and TTSS-2 genes during alfalfa sprout
colonization as compared with M9 minimal medium
(Brankatschk et al., 2013). Screening for Salmonella
genes differentially regulated in tomatoes relative to
growth in Luria–Bertani soft agar identified several genes,
including genes associated with attachment, stress
response, biofilm formation and capsule formation (Noel
et al., 2010). Furthermore, deletion of SirA, involved in
regulation of type 1 fimbriae and biofilm formation
(Teplitski et al., 2006), and MotA, involved in motility, mod-
estly affected fitness, while YihT, involved in synthesis of
the capsule, affected the fitness in green, but not ripe
tomatoes. In these studies, known Salmonella genes
associated with regulation of motility and virulence in
animals, such as hilA, flhDC and fliF, did not contribute to
the fitness of the bacteria (Noel et al., 2010; Marvasi
et al., 2013).

Incorporation of pathogens in multi-species biofilms

Bacterial cells introduced to the leaf surface, if not pro-
ducing their own aggregates or biofilms, have a better
chance of surviving when they are deposited on or in
aggregates of existing bacteria (Monier and Lindow,
2005). Salmonella enterica serovar Thompson and the
plant pathogen Pantoea agglomerans, for instance, were
shown to form co-aggregates on cilantro leaves (Brandl
and Mandrell, 2002), and the epiphytes Wausteria
paucula supported the survival of E. coli O157:H7 on
lettuce leaves (Cooley et al., 2006). Also, the fungal plant
pathogens Cladosporium cladosporioides and Penicillium
expansum promoted the colonization of Salmonella in
cantaloupe (Richards and Beuchat, 2005). A recent study
has shown that E. coli O157:H7 strains promote biofilm
formation of some strong biofilm-producing species iso-
lated from fresh produce processing facilities, such as
Burkholderia caryophylli and Ralstonia insidiosa. Like-
wise, the population of E. coli increases by 1 log in the
dual-species biofilms (Liu et al., 2014). These studies
demonstrate
that indigenous microorganisms may aid attachment and
long-term survival of foodborne pathogens on the plant
surface and during washing with antimicrobials. However,
it is not clear whether this positive effect results from
embedding of foodborne pathogens in the already exist-
ing biofilms or from other interactions like lesion and
release of nutrients.
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The plant response and its effect on
bacterial biofilms

Discussion of plant-associated biofilms is not completed
without referring to the plant defence response. Plants
apply a range of mechanisms for protection against micro-
organisms. The plant protection includes local or systemic
production of defence enzymes and antimicrobial mol-
ecules. Some mechanisms, like the production of essen-
tial oils with a broad-range antimicrobial activity, are
constitutively active, while others, like secretion of reac-
tive oxygen species (ROS), are induced after exposure to
pathogens. Evidence indicates that plants apply similar
mechanisms of defence in response to internalization of
human enteric pathogens as against plant pathogens.
Microorganisms encounter surface receptors on host
cells, termed pattern recognition receptors (PRRs), that
recognize conserved pathogen-associated molecular pat-
terns (PAMPs) and trigger downstream defence signalling
pathways. PAMPs include conserved microbial surface
molecules such as flagellin, LPS and glycoproteins
(Nurnberger et al., 2004). Recognition of PAMPs by PRRs
initiates PAMP-triggered immunity (PTI), which usually
prevents microbial growth and halts infection before the
microorganism gains a hold in the plant (Chisholm et al.,
2006). Many surface components of E. coli and Salmo-
nella such as LPS, flagella, peptidoglycans, curli and pili
are homologous to PAMPs of plant pathogens. Deletion of
these PAMPs from E. coli or Salmonella usually resulted
in better colonization of the interior of the plants than the
wild-type strains (Iniguez et al., 2005; Seo and Matthews,
2012). Some of these molecules are also components of
the biofilm matrix. Curli can serve as a PAMP (Seo and
Matthews, 2012), and the S. Typhimurium LPS being a
strong PAMP in tobacco plants (Shirron and Yaron, 2011).
The flagellin subunit FliC, but not FliB, is recognized by
Nicotiana benthamiana and tomato plants as a PAMP and
activates their PTI (Meng et al., 2013). These observa-
tions indicate that components of the bacteria and the
biofilm matrix may induce the plant response. On the
other hand, biofilm production may mask the underlying
bacterial surface, providing further protection. Indeed, an
E. coli O157:H7 mutant that produces a great amount of
exopolysaccharides and a thick capsule exhibits a better
survival pattern on Arabidopsis compared with the wild-
type strain (Meng et al., 2013).

The response of the plant cells results in production of
ROS, nitric oxide, different ions as well as molecular
signals like jasmonate, salicylic acid and ethylene (Jones
and Dangl, 2006). Some of these compounds were found
to have a role not only against persistence of enteric
pathogens in plants but also against biofilm formation.
Ethylene and salicylic acid decreased endophytic coloni-
zation of Salmonella in alfalfa (Iniguez et al., 2005). Inter-

estingly, an inverse correlation was observed between in
vitro biofilm formation by uropathogenic E. coli and the
salicylate concentration (Vila and Soto, 2012). Moreover,
the synthesis of fimbriae such as P fimbriae and type 1
fimbriae was reduced following growth in the presence of
salicylate (Kunin et al., 1994). In the case of type 1
fimbriae, salicylate decreased the expression of fimA
coding for its major structural subunit (Vila and Soto,
2012). Similarly, jasmonic acid reduced the synthesis of
the O-antigen capsule by Salmonella in tomatoes. In
mammals, the yih operon of Salmonella is induced by bile
and enhances biofilm formation on gallbladder by trigger-
ing the O-antigen capsule production. In tomatoes, on the
other hand, jasmonic acid and its precursors, produced
during the plant response, strongly reduce the expression
of YihT, and thus inhibit biofilm formation (Marvasi et al.,
2013).

Other microorganisms in the plant environment can
also affect, directly or indirectly, through induction of the
plant defence response, the biofilm formation by human
enteric pathogens. The soil bacterium B. subtilis colonizes
roots of different plants and is currently used as a biocon-
trol agent against plant pathogens. During colonization of
the roots, it produces surfactin, an antimicrobial
lipopeptide that not only inhibits the growth of common
plant pathogens, but also induces the plant defence
response (reviewed in Vlamakis et al., 2013). Interest-
ingly, surfactin molecules also delay adhesion of Salmo-
nella and Listeria strains to solid surfaces (Nitschke et al.,
2009), and inhibit biofilm formation by Salmonella (Mireles
et al., 2001). However, their influence on colonization of
enteric pathogens on plants has not been investigated
yet.

In addition to the plant immune response triggered
upon exposure to microorganisms, many plants produce
antimicrobial compounds constitutively. Interestingly,
some of these compounds do not only inhibit bacterial
growth, but also inhibit biofilm formation or even efficiently
kill the pathogens specifically in biofilms. For example, 3%
of 498 investigated plant extracts inhibited biofilm forma-
tion of E. coli O157:H7. The most active extract, Carex
dimorpholepis, inhibits curli formation and decreases
swimming and swarming motility, probably by repression
of quorum sensing genes (Lee et al., 2013). In another
study, Carex plant extracts inhibited E. coli O157:H7 and
Pseudomonas aeruginosa biofilm formation without
affecting planktonic cells growth. One of the active
antibiofilm compounds in these extracts was ε-viniferin
(Cho et al., 2013). Plant sterols such as the β-sitosterol
glucoside from citrus are potent inhibitors of E. coli
O157:H7 biofilm formation and motility, without affecting
the cell viability. This inhibition probably occurs through
repression of rssAB and hns, regulatory elements of the
flagellar operon (Vikram et al., 2013). Essential oils from

Biofilms of human pathogens on plants 509

© 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial
Biotechnology, 7, 496–516



cassia (Cinnamomum aromaticum) and Peru balsam
(Myroxylon balsamum) kill plant and human pathogens
within biofilms in similar efficacy as the planktonic cells,
and the oil of red thyme (Thymus vulgaris) is even more
effective against biofilms cells than planktonic bacteria
(Kavanaugh and Ribbeck, 2012). Helichrysum italicum
produces several metabolites such as acylated
styrylpyrones derivatives with anti-biofilm properties
against P. aeruginosa (D’Abrosca et al., 2013).

In conclusion, regulation of biofilm formation on the
plant is a complex process affected by many factors.
There are several levels of interactions of the plant
response with bacteria and their biofilms. Current study
indicates a role of biofilm formation in triggering or
evading the plant response, while molecules produced
by the plant either constituently or in response to the
bacteria may trigger or inhibit the process of biofilm
formation.

Conclusion

Most likely, plants do not provide optimal conditions for
growth of human enteric pathogens, but the pathogens
use different mechanisms to tightly attach to favourable

sites on the plant organs and to fit the harsh conditions in
order to survive in the plants long enough and in sufficient
numbers for successful infection of new mammalian hosts
with the consequence of a significant number of out-
breaks. The studies detailed in this review indicate that
production of biofilms is a common strategy employed by
pathogenic Salmonella and E. coli strains to survive in
different niches of the plant. Following a tight adhesion on
favourable sites, the process of biofilm formation on the
plant is affected by many environmental factors, as well
as properties of the plant and characters of the patho-
genic strain or the ingenious plant microflora. The synthe-
sis of the biofilm matrix components such as cellulose and
curli occurs under environmental conditions similar to the
ones existing on the plants and may be further induced or
inhibited by compounds produced by the plants or neigh-
bouring microorganisms (Fig. 2). Although intensive
research activity is ongoing, our current understanding of
the factors that affect biofilm formation and its role in
survival of foodborne pathogens on the plants is rudimen-
tary. The different strains, serovars and pathovars and a
wide variety of host plants in combination with diverse
experimental methods of inoculation and plant growth,
limit the ability to compare the results of different studies

Fig. 2. Illustration of biofilm formation by Salmonella cells on a leaf.
Upon attachment of Salmonella cells to the leaf, the bacteria are exposed to environmental conditions (temperature below 30°C, atmospheric
oxygen, etc.) that trigger expression of regulatory sRNAs and proteins such as RpoS, CsgD and SirA. Expression of these proteins and
sRNAs is enhanced by stress signals existing on the leaf surface such as low availability of nutrients, and activity of antimicrobial compounds
produced by the plant or indigenous microorganisms. The induced regulatory proteins activate the genes involved in production of components
of the biofilm matrix such as cellulose, curli, BapA and capsules (CP), leading to the development of biofilms on the leaf surface. While the
biofilm structure stabilizes the colonization on the plant and provides protection from different stresses, its components also contribute to the
induction of the local and systemic plant defence response. As part of the plant response, triggered by both, single bacteria and biofilms, the
plant produces and secretes different signal and antimicrobial compounds such as ROS compounds, salicylic acid, jasmonic acid and sterols.
Some of these compounds kill free and biofilm associated bacteria and/or inhibit the process of biofilm formation.
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and to unambiguously conclude the dominant factors for
adhesion and biofilm formation.

Recent evidence has shown that several plant hosts
and environmental plant-associated bacteria such as
B. subtilis are able to synthesize and secrete compounds
that not only target planktonic cells, but also inhibit attach-
ment and biofilm formation or even specifically kill bacteria
in biofilms. Future studies on plant-related compounds or
plant symbionts that affect bacterial biofilm formation are
required and might discover novel substances involved
in biofilm formation. Subsequently, understanding of the
mode of action of such compounds will aid in develop-
ment of novel strategies to decrease the fitness of human
enteric pathogens on fresh produce and prevent out-
breaks, and also in inhibition of biofilm formation not
only on such foodstuff, but also on many other types
of solid surfaces of medical, industrial and agricultural
importance.
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