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Abstract

Background: Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations
induced by smoking in lung that develop into cancer and impact survival have remained obscure.

Methodology/Principal Findings: We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh
frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with
biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing
procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were
confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression
signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle
formation (e.g., NEK2, TTK, PRC1). Expression of these genes strongly differentiated both smokers from non-smokers in lung
tumors and early stage tumor tissue from non-tumor tissue (p,0.001 and fold-change .1.5, for each comparison),
consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted
many years after smoking cessation. NEK2 (p,0.001) and TTK (p = 0.002) expression in the noninvolved lung tissue was also
associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers.

Conclusions/Significance: Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows
that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These
genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.
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Introduction

Lung cancer is the leading cause of cancer death worldwide.

Cigarette smoking is responsible for about 90% of lung cancers

and decreases survival,[1] and yet the precise molecular

alterations induced by smoking in lung that develop into cancer

and impact survival have remained obscure. Using Affymetrix

HG-U133A microarrays on 135 fresh frozen adenocarcinoma

and paired non-tumor tissue samples from current, former and

never smokers from the Environment And Genetics in Lung

cancer Etiology (EAGLE) study (http://dceg.cancer.gov/eagle),

we sought to identify the genes that are altered by smoking in

lung, and those, within the smoking signature, that have a role in

lung carcinogenesis and outcome from lung cancer. We chose

adenocarcinoma, the predominant histological subtype of lung

cancer, because it occurs in subjects with no history of smoking

as well as in smokers, providing a range of exposures ideal for

the study of smoking-induced carcinogenesis. Specifically, in early

stage adenocarcinoma tissue we compared gene expression from

current (C) and never (N) smokers and identified the major genes

using stringent criteria for gene selection (p,0.001 and fold

change .1.5), the Benjamini-Hochberg procedure[2] to calculate
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the False Discovery Rate (FDR), and Gene Ontology (GO)[3] to

classify the gene functional categories. We then verified whether

the comparison between former (F) and never (N) smokers

identified similar genes. We performed Gene Set Enrichment

Analysis (GSEA)[4] to identify common gene patterns where the

single-gene analysis revealed only few overlapping genes. We

further explored whether the genes that differentiated lung

tumors of smokers from never smokers (C/N and F/N) also

differentiated early stage tumor tissue (T) from paired non-tumor

(NT) tissue to confirm the role of these genes in smoking-related

lung carcinogenesis. We finally explored the impact of the

smoking signature on survival from lung cancer in smokers. We

validated C/N genes by Real Time-PCR in 68 samples used for

the present microarray analysis, and confirmed them in 40

independent samples from EAGLE and a Mayo Clinic study of

lung cancer.

Materials and Methods

Study population and sample collection
This study included 105 subjects from EAGLE, a large

population-based study of lung cancer conducted in the Lombardy

region of Italy. EAGLE lung cancer cases were enrolled from the

following 13 hospitals: A.O. Ospedale Niguarda Ca’ Granda,

Milano; A.O. Spedali Civili, Brescia; Istituto Clinico Humanitas,

Rozzano (MI); Ospedale di Circolo e Fondazione Macchi, Varese;

Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli

and Regina Elena, Milano; Istituto Scientifico Universitario

Ospedale San Raffaele, Milano; A.O. Ospedale Luigi Sacco,

Milano; A.O. San Paolo, Milano; A.O. Ospedale San Carlo

Borromeo, Milano; IRCCS Policlinico San Matteo, Pavia; A.O.

San Gerardo, Monza; A.O. Ospedale Fatebenefratelli, Milano;

Ospedale San Giuseppe, Milano. The healthy controls in EAGLE

were randomly selected from the same residential area of the lung

cancer cases. After description of the EAGLE study by the study

personnel, and discussion with potential participants, written

informed consent was obtained under a protocol approved by the

Institutional Review Board of each participating hospital and by

the National Cancer Institute (Bethesda, MD). Subjects in this

gene expression study, 44–79 years old, had histologically

confirmed primary adenocarcinoma of the lung, stages I–IV,

and provided detailed smoking and medical history information.

Overall, 180 adenocarcinoma and non-tumor tissue samples

were selected for the analyses, including duplicate or triplicate

samples from 14 subjects for quality control. Samples had been

snap-frozen in liquid nitrogen within 20 minutes of surgical

resection. A single pathologist confirmed the hospital-based

diagnosis of adenocarcinoma, estimated the presence of malignant

cells in each sample based on H&E-stained fresh frozen sections,

and classified the samples as Tumor (T) and Non-Tumor (NT).

From the original 180 samples, 148 provided sufficient quantity of

high-quality RNA for microarray analyses; 13 additional samples

were excluded because of technical problems. Normalization was

conducted on the remaining 135 microarrays; corresponding CEL

files and information conform to the MIAME guidelines are

publicly available on the GEO database (accession num-

ber = GSE10072). After normalization, 13 samples were excluded

because of low percentage of tumor cells in the tumor tissues. This

report is based on 122 samples, of which 15 duplicates/triplicates

were averaged, resulting in 107 final expression values from 58

tumor and 49 non-tumor tissues from 20 never smokers, 26 former

smokers, and 28 current smokers. Quality assurance and

distribution of cell types across smoking groups are described in

Appendix S1A, S1B, and S1C.

Statistical analysis
All statistical analyses were accomplished using R program

language. Gene expression data were processed and normalized

using Bioconductor Affy package, based on the Robust Multichip

Average (RMA) method[5] for single-channel Affymetrix chips.

All 22,283 probe sets based on RMA summary measure were used

in class comparison analyses.

Average linkage hierarchical clustering of samples was based on

one minus Pearson correlation as the dissimilarity metric.

An ANOVA analysis adjusting for sex was used to test whether

genes were differentially expressed between smoking groups (C/N
and F/N), between tumor tissue and non-tumor tissue (T/NT), or

by pack years of cigarette smoking. Further analyses adjusted by

tumor grade or excluding 6 subjects with emphysema or chronic

bronchitis or 3 subjects who received chemotherapy prior to the

study were conducted, with essentially unaltered results. For

analyses including paired tissues (T/NT tissue samples from the

same subjects), a linear mixed effects model was used to account

for intra-person correlation.

To limit false positive findings, genes were considered

statistically significant if their p-values were less than the stringent

threshold of 0.001. Under the null hypothesis of no difference in

expression profiles, and considering the analysis of 22,283 probes,

we expect that by chance the average number of false positive

findings will be #23. We used the Benjamini-Hochberg[2]

procedure to calculate the False Discovery Rate (FDR). We

further restricted significant genes to those which showed at least

1.5 fold ratio of geometric means of expression between two

groups. Gene selection based on p,0.001 (two-sided) and fold-

change .1.5 are referred to as ‘‘stringent criteria’’.

The Cox Proportional Hazards model[6] was used to estimate

the effect of gene expression changes in C/N on survival from

lung cancer in smokers. Of the 74 subjects included in this study

(all stages), 34 (22 smokers) were alive, and 40 (32 smokers) were

deceased as of May 2007. Among the deceased subjects, 36 died of

lung cancer. The remaining 4 (2 smokers) died of other cancers

and were censored at time of death in the analysis. The time from

lung cancer to death or date of last follow-up was between 28 days

and 5.0 years for the deceased subjects, and 3.7 and 5.7 years for

the subjects alive in May 2007. The relative risk of gene expression

was defined as the hazard ratio associated with one standard

deviation change of the expression. Analyses were adjusted for

stage, sex, and smoking. Age was similarly distributed across the

groups and was not adjusted for in the analysis.

Analysis of total plasma cotinine concentration by gas
chromatography/mass spectrometry

We verified the self-reported current smoking status by measuring

plasma cotinine levels. The total cotinine (free plus cotinine N-

glucuronide) concentration in plasma was quantified by GC/MS

analysis using a method similar to that used for urinary cotinine,[7]

with the addition of a solid phase extraction step carried out on an

MCX column (Waters Corporation, Milford, MA).

One individual who reported to have quit smoking 2.6 years

before the study had high cotinine levels (135 ng/ml) and was re-

classified as a current smoker.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA)[4] was used to compare

expression in groups of genes (gene-sets), between different tissues or

between different comparison groups within the same tissue. GSEA

analysis reveals a pattern of common gene-sets even when single-gene

analysis reveals very few overlapping genes between groups. We
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modified the standard GSEA method by substituting an ANOVA test

for the standard two-sample t-test to adjust for sex. Furthermore, we

changed the permutation test for calculating the p-values by

permuting residuals and using as weights the observed ANOVA

coefficients divided by the standard error values. Up- and down-

regulated genes were included in different gene-sets for the analyses.

Molecular function classification of smoking-altered
genes

Gene Ontology was used to assign the genes to functional

categories.[3] GoMiner[8] was utilized to rank-order the GO

categories for the genes identified in the smoking comparisons.

Quantitative PCR validation and confirmation in
independent samples

We used quantitative real-time PCR (QRTPCR) to confirm the

differential expression of 19 C/N selected genes (20 probes),

including 14 genes from T and 5 from NT analyses. Primer and

probe sets for the selected genes as well as control probes for

GUSB and S18 (ABI) were run on 7500 Taqman under the

manufacturer’s standard protocol. Ct values were normalized

based on GUSB expression.

Validation assays were performed in 68 samples used in the

original microarray analyses, including 43 T (27 C and 16 N
smokers), and 25 NT (18 C and 7 N smokers).

Confirmation assays were performed in 40 independent samples,

including 19 T (12 C and 7 N smokers) and 21 NT samples (12 C
and 9 N smokers). These samples were collected in EAGLE (10 T
samples from 7 C and 3 N smokers, and 12 NT samples from 7 C
and 5 N smokers-these samples were not used for the microarray

analyses), and from the Mayo Clinic, Rochester, MN (9 T and 9 NT
paired samples from 5 C and 4 N smokers).

Results

The molecular signature of cigarette smoking in lung
adenocarcinoma

To investigate the molecular changes associated with smoking in

the tumor tissue, we compared gene expression changes between

current and never (C/N) smokers (Table 1). To avoid potential

alteration of gene expression due to advanced tumor status, we

limited smoking comparisons in tumor tissue to the early stages

(stages I and II). Unless specified differently, ‘‘T’’ samples represent

early stage adenocarcinomas. Results from the advanced tumor

stage tissues are reported for completeness in Appendix S2C.

Using stringent selection criteria (fold-change .1.5 and p-

value,0.001), we identified 64 up- and 98 down-regulated probe-

sets, representing 54 up- and 81 down-regulated genes (Appendix

S2A, S2B). Most of the significantly up-regulated genes were

involved in cell cycle/mitosis/cell division (e.g., TTK, CENPF,

NEK2), while many of those down-regulated were involved in cell

adhesion/cell cycle arrest (e.g., ADRB2, APLP2, MACF1),

consistent with a role of these genes in neoplasia development.

The GoMiner results (Appendix S2D) confirmed that the mitosis

genes (12 altered genes among the 127 mitotic genes on the HG-

U133A chip, p,0.001), and more generally those involved in cell

cycle were the most commonly altered in the tumor tissue (Table 2).

Lung cancer gene expression is similar in current and
former smokers

To verify whether the C/N smoking signature in the tumor was

present also in former smokers, we compared the C/N and F/N
signatures in T and found 26 probes (22 down- and 4 up-

regulated, representing 21 genes) that differentiated both C/N
and F/N using stringent selection criteria (Appendix S2E). Some

of these genes, e.g., STOM, SSX2IP, TRPC6, APLP2 (2 probes),

and DHRS7, exhibited a persistent alteration even in subjects

(n = 6) who quit smoking more than 20 years before the study. The

GSEA analysis showed that among the 64 up- and 98 down-

regulated probes found in the C/N comparison in T, 58 and 90

probes, representing 50 up- and 73 down-regulated genes, were

also up- and down-regulated, respectively in the F/N smoking

comparison (p,0.001, Fig. 1, and Appendix S2F, S2G). All cell

cycle genes that differentiated C/N were also altered in F/N,

although less prominently (Table 2), indicating that alterations of

these genes persist following smoking cessation. Importantly, the

mitosis/cell cycle genes identified in C/N and F/N also

differentiated the early stage tumor from the non-tumor tissue

samples (T/NT, paired analysis) (Table 2), while pack years of

cigarette smoking, a composite index of intensity and duration that

does not consider the time when smoking occurred, were not

associated with gene expression in either T or NT.

Smoking signature in the noninvolved lung tissue
The C/N comparison in NT revealed 28 up- and 75 down-

regulated probes, representing 25 up- and 73 down-regulated

Table 1. Number of probes and genes differentiating current from never smokers (C/N) and former from never smokers (F/N) in all
tumor samples, early stage tumor samples (T), and all non-tumor (NT) tissue samples.

Criteria for
significance All stages Tumor Stages I and II Tumor (‘‘T’’) Non-Tumor (‘‘NT’’)

Comparison
between smokers

24 Current vs.
16 Never

18 Former vs.
16 Never

20 Current vs.
10 Never

13 Former vs.
10 Never

16 Current vs.
15 Never

18 Former vs.
15 Never

FDRa 8.5% 17.0% 9.5% 27.8% 7.8% 78.3%

Direction Down Up Down Up Down Up Down Up Down Up Down Up

p-value,0.001 Probes 142 119 25 105 126 106 31 40 211 71 7 2

Genes 119 104 22 97 104 89 25 35 191 64 7 2

p-value,0.001+
Fold change.1.5

Probes 61 63 17 3 98 64 26 4 75 28 1 0

Genes 48 56 15 3 81 54 21 4 73 25 1 0

aFDR = False Discovery Rate [2]
doi:10.1371/journal.pone.0001651.t001
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genes with the stringent selection criteria (Table 1, and Appendix

S3A, S3B). As expected, the CYP1B1 gene, known to be induced

by smoking[9,10] was strongly up-regulated. The GoMiner results

showed that the most smoking-altered genes were involved in

cellular defense response (5 of 90 cellular defense genes on the

chip, p,0.001), and more generally in immune response

(Appendix S3C).

MACF1, UBE21, and CBX7 (p,0.001), and C16orf30

(p = 0.001) were shared between T and NT C/N comparisons.

C16orf30 and UBE21, both on chromosome 16p13.3, are located

within 246kb, but they do not appear to share specific

transcriptional regulation mechanisms (Appendix S4A). The

GSEA analysis revealed some similarities between T and NT in

the overall pattern of smoking-induced alteration (p = 0.08 and

0.04, for up- and down-regulated genes, respectively, Appendix

S4B, S4C, and S4D). Notably, NEK2 and TTK were among

those similarly altered in both T and NT in the GSEA analysis. In

contrast, the F/N comparison in NT showed no statistically

significant genes (Table 1), and was not further explored.

Smoking-associated gene expression signature and
survival from lung cancer

We studied the overall gene expression signature of smoking in

T and NT (98+64 C/N in T, 75+28 C/N in NT, minus 3

overlapping probes between T and NT, for a total of 262 probe-

sets representing 230 genes) in relation to survival from

adenocarcinoma in smokers (n = 54, Appendix S5A). Since only

262 probe-sets were included in this analysis, we used a less

stringent criterion of p,0.01 for gene selection (Table 3). Altered

expression in NT of genes involved in the mitotic spindle

formation, e.g., NEK2 (p,0.001) and TTK (p = 0.001) were

associated with a 3-fold increased mortality risk (Table 3, analysis

adjusted for stage, sex, and smoking).

Validation and confirmation of gene expression smoking
signature

We selected 19 genes (20 probes) for validation by QRTPCR,

including 14 genes for T and 5 for NT tissue, based on fold change

(.2) and cancer relevance.

Table 2. Cell cycle genes differentiating current from never smokers (C/N) in the early stage tumor (T) tissue samples, and
corresponding values in the former/never smoker (F/N) and in the smokers’ paired tumor/non-tumor tissue (T/NT) comparisons.

Probe ID Gene Chromosomal Current/Never{ N = 30 Former/Never N = 23 Tumor/Non-Tumor N = 36

Symbol Location Fold-change p-value Fold-change p-value Fold-change p-value

204641_at NEK2* 1q32.2–q41 3.45 0.0001 2.84 0.0036 3.14 ,0.0001

204822_at TTK* 6q13–q21 3.27 ,0.0001 2.08 0.0123 2.22 ,0.0001

218009_s_at PRC1* 15q26.1 2.99 0.0007 2.61 0.0109 2.60 ,0.0001

207828_s_at CENPF* 1q32–q41 2.88 ,0.0001 2.28 0.0034 2.77 ,0.0001

202095_s_at BIRC5* 17q25 2.72 0.0002 2.10 0.0145 2.55 ,0.0001

203362_s_at MAD2L1 4q27 2.67 0.0003 1.93 0.0309 2.74 ,0.0001

219918_s_at ASPM 1q31 2.59 0.0008 2.12 0.0218 2.87 ,0.0001

210559_s_at CDC2 10q21.1 2.54 0.0009 2.02 0.0298 2.37 ,0.0001

201897_s_at CKS1B 1q21.2 2.36 0.0002 1.89 0.0152 2.47 ,0.0001

204170_s_at CKS2 9q22 2.36 0.0006 2.02 0.0148 1.69 0.0015

222077_s_at RACGAP1* 12q13.12 2.35 0.0003 1.91 0.0178 2.13 ,0.0001

203214_x_at CDC2 10q21.1 2.29 0.0006 1.98 0.0150 2.12 ,0.0001

219306_at KIF15* 3p21.31 2.22 0.0002 2.00 0.0047 1.90 0?0001

209642_at BUB1* 2q14 2.17 0.0009 1.68 0.0507 2.02 0.0001

210052_s_at TPX2* 20q11.2 2.06 0.0006 1.87 0.0100 2.07 ,0.0001

203418_at CCNA2 4q25–q31 1.99 ,0.0001 1.85 0.0012 1.82 ,0.0001

212020_s_at MKI67 10q25-qter 1.95 ,0.0001 1.71 0.0016 1.41 0.0006

201088_at KPNA2 17q23.1–q23.3 1.82 ,0.0001 1.53 0.0079 2.34 ,0.0001

211519_s_at KIF2C* 1p34.1 1.78 0.0004 1.67 0.0062 1.51 0.0002

218252_at CKAP2 13q14 1.75 0.0008 1.52 0.0292 1.47 0.0001

204887_s_at PLK4 4q27–q28 1.74 0.0001 1.55 0.0066 1.48 ,0.0001

211080_s_at NEK2* 1q32.2–q41 1.57 0.0001 1.50 0.0019 1.36 0.0002

214894_x_at MACF1 1p32–p31 0.65 0.0003 0.64 0.0016 0.52 ,0.0001

208634_s_at MACF1 1p32–p31 0.60 0.0001 0.58 0.0004 0.42 ,.0.0001

202284_s_at CDKN1A 6p21.2 0.54 0.0003 0.70 0.0668 0.65 0.0082

208893_s_at DUSP6 12q22–q23 0.34 0.0003 0.32 0.0012 0.84 0.3102

{Probe selection restricted to estimates with p,0.001 and fold-change .1.5 or ,0.6667, and within the most inclusive category of genes with p#0.001 in the GoMiner
analysis (GO ID 7049, Appendix S2D).

*Genes involved in the mitotic spindle formation. The double line separates up-regulated and down-regulated probes.
doi:10.1371/journal.pone.0001651.t002
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Validation was based on 68 samples, including 43 T and 25

NT, also used for the microarray analysis. All 19 genes were up-

regulated in the C/N comparison in these samples (Table 4).

Confirmation was based on 40 independent samples (19 T and

21 NT) from EAGLE (samples not used for microarray analysis)

and the Mayo Clinic, Rochester, MN. All the 14 genes in T and 4

of 5 genes in NT were up-regulated by smoking also in the

independent samples (Table 4).

Discussion

In a population-based study with fresh frozen tissue samples of

adenocarcinoma and noninvolved lung tissue (mostly paired

samples), we identified a smoking signature that persists years

after smoking cessation and is related to lung cancer development

and survival.

Aneuploidy and chromosome instability are two of the most

common abnormalities in cancer cells that arise through unequal

segregation of chromosomes between daughter cells during

mitosis. Thus, mitotic alterations are highly relevant for carcino-

genesis. We found that smoking induces deregulation of this very

mitotic process proceeding from lung tissue changes through

cancer development to cancer death or survival. In fact, the

smoking signature we identified comprises genes that regulate the

mitotic spindle formation. These genes, such as NEK2[11,12] and

CENPF[11] (both on 1q32-q41), TPX2[13,14] and STK6 (or

AURKA)[15] (related to the Aurora-A activation pathway

important in tumor progression[16]), TTK (linked to cell mitosis

through EGFR,[17] a critical drug target for lung adenocarcino-

ma[18]), and BIRC5 (Survivin),[19] have all been found over-

expressed in smoking-related tumors. While previous studies have

proposed these genes as targets for therapeutic interven-

tions,[16,18–21] our work suggests that they may be targets for

chemoprevention in smokers as well. In fact, they were strongly

induced by smoking in the early stage tumor tissue and some, e.g.,

NEK2 and TTK, were also associated with increased mortality

Figure 1. Comparison of gene expression differentiating current from never smokers (C/N) and gene expression differentiating
former from never smokers (F/N) in early stage tumor tissue (T) using Gene Set Enrichment Analysis (GSEA). Left: Running Enrichment
Score (y axis) is calculated by walking down the entire list of probes from Affymetrix HG-U133A chip (numbered from 1 to 22,283 in the x axis)
ordered by the ANOVA coefficients divided by the standard error values from the Former/Never (F/N) smoking comparison. This running-sum statistic
increases when a given probe is in the Current/Never (C/N) Gene Set of interest and decreases when the probe is not in the C/N Gene Set, with the
magnitude of increment depending on the strength of the correlation between the probe and the F/N comparison. The Enrichment Score (ES) is the
maximum deviation of the Running Enrichment Score from zero encountered in the random walk and reflects the degree to which the Gene Set is
overrepresented at the extremes (top or bottom) of the entire ranked probe list. We report results for two different C/N Gene Sets: on the top, the 64
up-regulated probes, with ES = 0.87 and, on the bottom, the 98 down-regulated probes, with ES = 20.90. A leading edge subset of the Gene Set is
defined as those probes in the Gene Set that appear in the probes ranked list at, or before, the point where the running sum reaches its maximum
deviation from zero. The leading edge for the Gene Set of the C/N up-regulated probes contains 58 probes over 64 and the leading edge for the Gene
Set of down-regulated probes contains 90 over 98 probes. This confirms that among the 64 up-regulated probes from the C/N comparison, 58 are
also found in the F/N comparison; and among the 98 down-regulated probes from the C/N comparison, 90 are also found in the F/N comparison.
Right: distributions of ES values created using a permutation procedure for (top) the Gene Set of up-regulated probes in C/N and (bottom) the Gene
Set of down-regulated probes in C/N. These distributions are used to calculate the statistical significance (nominal p-value) of the observed ES values
(p-value,0.002 in both cases).
doi:10.1371/journal.pone.0001651.g001
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risk. The latter finding was most evident in non-tumor tissue, likely

reflecting the widely recognized field-cancerization effect by

smoking,[22] while in the tumor tissue, smoking-related genes’

effects on survival may be masked by extensive molecular

alterations occurring during tumorigenesis.

In the non-tumor tissue, current smoking strongly altered

immune response genes, consistent with the defense mechanisms

of the lung tissue against the acute toxic effects of smoking. Among

the gene most strongly down-regulated in NT was CX3CR1,

located on chromosome 3p21.3, an area known to be often deleted

in lung cancer,[23] particularly in smokers.[24]

Current knowledge of gene expression altered by cigarette

smoking is based on bronchoscopy-obtained airway epithelial cells

or macrophages[9,25–27] or peripheral leukocytes[10] from

healthy smokers rather than directly on lung tissue. The few

studies with lung tissue samples are very small[28] or used RNA

amplification[29] or RNA pooling[30] methods. Our results are

consistent with some previous findings, such as smoking-related

alteration of CYP1B1[9,10] or of the mitotic pathway in cancer

survival.[29] However, earlier studies were often limited by the

small sample size, or lacked information on potential confounders,

or availability of paired tumor and non-tumor lung tissue samples

for the distinction of gene changes involved in lung carcinogenesis

from those representing a transient smoking effect. We overcame

these pitfalls with a relatively large sample size of fresh tumor and

non-tumor lung tissues, detailed covariate information (e.g., sex,

age, stage, previous lung diseases or chemotherapy), biochemical

validation of the smoking status, and confirmation of the main

findings in independent tissue samples.

In conclusion, our study provides clues on how cigarette

smoking affects lung cancer development and survival. Functional

assays to confirm these findings are warranted. If confirmed, these

genes could become important targets for chemoprevention and

treatment for lung cancer in smokers.

Supporting Information

Appendix S1 Quality Assurance. 1A Description of analysis of

sample quality assurance 1B Samples’ description 1C Surfactant

genes in Tumor (T) and Non-Tumor (NT) lung tissues by smoking

Found at: doi:10.1371/journal.pone.0001651.s001 (0.07 MB

DOC)

Appendix S2 Current/Never (C/N) and Former/Never (F/N)

smoking comparisons in early stage Tumor (T) tissue. 2A Current/

Never (C/N) comparison, early stage Tumor (T) tissues: up-

regulated probes. 2B Current/Never (C/N) comparison, early

stage Tumor (T) tissues: down-regulated probes. 2C Current/

Never (C/N) comparison, late stage Tumor tissues: up+down-

regulated probes. 2D Gene Ontology (GO) functional categories

for the Current/Never (C/N) smoker comparison. 2E Current/

Never (C/N) and Former/Never (F/N) comparisons: overlapping

probe list. 2F Gene list from GSEA comparison of up-regulated

C/N genes and F/N genes in early stage Tumor (T) tissues. 2G

Gene list from GSEA comparison of down-regulated C/N genes

and F/N genes in early stage Tumor (T) tissues.

Found at: doi:10.1371/journal.pone.0001651.s002 (0.62 MB

DOC)

Appendix S3 Current/Never (C/N) smoking comparisons in

Non-Tumor (NT) lung tissue. 3A Current/Never (C/N) compar-

ison in Non-Tumor (NT) lung tissues: up-regulated probes. 3B

Current/Never (C/N) comparison in Non-Tumor (NT) lung

tissues: down-regulated probes . 3C Gene Ontology (GO)

functional categories for the Current/Never (C/N) comparison

(up and down-regulated genes) in Non-Tumor (NT) lung tissues.

Found at: doi:10.1371/journal.pone.0001651.s003 (0.21 MB

DOC)

Appendix S4 Comparison between Tumor (T) and Non-Tumor

(NT) lung tissue for the genes whose expression significantly

Table 3. Mortality risk in smokers for gene expression differentiating current from never smokers (C/N) in lung tumor and non-
tumor tissue samples (p,0.01)

Probe ID Gene Symbol p-value RRa 95% CIb Lowest 95% CIb Highest Tissue typec

Increased risk

204641_at NEK2 0.0008 2.6 1.5 4.7 NT

204822_at TTK 0.0011 2.9 1.5 5.5 NT

201292_at TOP2A 0.0041 3.1 1.4 6.7 NT

219306_at KIF15 0.0048 2.8 1.4 5.9 NT

218542_at C10orf3 0.0068 2.7 1.3 5.4 NT

209642_at BUB1 0.0084 2.8 1.3 5.9 NT

201637_s_at FXR1 0.0007 2.8 1.5 5.0 T

213189_at DKFZp667G2110 0.0088 2.0 1.2 3.4 T

Decreased risk

202068_s_at LDLR 0.0068 0.5 0.3 0.8 NT

214894_x_at MACF1 0.0091 0.4 0.2 0.8 NT

218804_at TMEM16A 0.0095 0.4 0.2 0.8 NT

201651_s_at PACSIN2 0.0046 0.4 0.2 0.8 T

aRelative Risk of death. Analysis based on 54 current and former smokers using 262 probes from the Current/Never smoking comparisons (98 down- and 64 up-
regulated probes from T and 75 down- and 28 up-regulated probes from NT, minus 3 overlapping probes in T and NT); models adjusted for tumor stage, sex, and
smoking status

b95% Confidence Interval
cT = Lung adenocarcinoma samples of any stage (N = 42); NT = Non-Tumor tissue samples (N = 34)
doi:10.1371/journal.pone.0001651.t003
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differentiates Current from Never smokers (C/N) in early stage lung

Tumor (T). 4A C16orf30 and UBE21 transcription sites. 4B

Comparison of C/N results in early stage Tumor (T) tissues vs. C/

N results in Non-Tumor (NT) lung tissues by GSEA analysis. 4C

Gene list from GSEA comparison of up-regulated C/N genes

between early stage Tumor (T) tissues and Non-Tumor (NT) tissues.

4D Gene list from GSEA comparison of down-regulated C/N genes

between early stage Tumor (T) tissues and Non-Tumor (NT) tissues.

Found at: doi:10.1371/journal.pone.0001651.s004 (0.51 MB

DOC)

Appendix S5 Mortality risk in smokers associated with the

expression of genes differentiating Current from Never smokers

(C/N) in Tumor and Non-Tumor tissue samples. 5A Current/

Never (C/N) genes and related mortality risk in Tumor and Non-

Tumor lung tissues (all stages) from Current and Former smokers.

Found at: doi:10.1371/journal.pone.0001651.s005 (0.55 MB

DOC)
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