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Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells
and Natural Killer (NK) cells are common immune cell sources administered to treat cancer
patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of
hematological malignancies, responses are much more deficient in solid tumors.
Moreover, NK cells have not shown remarkable results up to date. In general, immune
cells present high plasticity to change their activity and phenotype depending on the
stimuli they receive from molecules secreted in the tumor microenvironment (TME).
Consequently, immune cells will also secrete molecules that will shape the activities of
other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities
as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell
phagocytosis by macrophages, which is required to remove dying tumor cells after the
attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or
radiotherapy treatments can induce senescence in tumor cells modifying their secretome
to a known as “senescence-associated secretory phenotype” (SASP) that will also impact
the immune response. Whereas the SASP initially attracts immune cells to eliminate
senescent tumor cells, at high numbers of senescent cells, the SASP becomes
detrimental, impacting negatively in the immune response. Last, CAR-T cells are an
attractive option to overcome these events. Here, we review how molecules secreted in
the TME by either tumor cells or even by immune cells impact the anti-tumor activity of
surrounding immune cells.
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INTRODUCTION

Today, it is widely recognized that chronic inflammation is a driver of cancer (1), being estimated
that 15-20% of cancers are inflammation-related (2). This association has been observed in different
contexts, such as persistent Helicobacter pylori infection or autoimmune diseases like inflammatory
bowel disease that increase the risk of developing gastric cancer (3) or colorectal cancer (4),
respectively. Numerous studies have found associations of inflammatory markers with a higher risk
of developing cancer. For instance, 15% of patients with cardiovascular disease, after a median
follow-up of 8.3 years, developed different types of cancer whose incidence was associated with high
C-reactive protein (CRP) levels (5). In addition, IL6 levels are also associated with an increased risk
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of developing different types of cancer (6). Moreover, IL1b
inhibition reduced CRP and IL6 levels and the incidence of
developing lung cancer in patients with atherosclerosis who had
a myocardial infarction (7).

Both immune and tumor cells promote this pro-
inflammatory microenvironment. Expressly, tumor cells release
a secretome that displays an altered composition compared to
the normal tissue from which they are derived (8). This
secretome contains cytokines, chemokines, hormones,
metabolites, and growth factors involved in cell-cell
communication, angiogenesis, hypoxia, metastasis, extracellular
matrix remodeling, and drug resistance (8, 9), where tumor cells
employ it as a mechanism of immune evasion (10–12). On the
other side, the different subsets of immune cells will also release
immunosuppressive and inflammatory factors that will shape the
tumor microenvironment (TME), promoting or inhibiting
cancer progression (13).

The anti-tumor activity of immune cells infiltrating tumors
led to the development of adoptive cellular immunotherapy
administering natural killer (NK) cells, T cells, or genetically
modified chimeric antigen receptor (CAR)-T cells in cancer
patients (14–17). Clinical results administering different
immune cells have been reviewed by others (Table 1).
However, despite promising results in these studies for some
malignancies (26), immune cells do not persist long for other
malignancies, and patients end up relapsing (27). Once immune
cells achieve the tumor, they will have to face tumor cells and
their secretome that may polarize their anti-tumor activity to a
pro-tumoral one, increasing angiogenesis and enhancing tumor
growth (28). Moreover, after chemotherapy treatment, tumor
cells can reach a senescent state, known as therapy-induced
senescence (TIS), that shapes the tumor secretome to a variety
of pro-inflammatory and angiogenic proteins known as
“senescence-associated secretory phenotype” (SASP). The SASP
may enhance the immune response at initial stages and
contribute to a favorable environment for tumor growth at late
stages (29). For example, senescent fibroblasts, much more than
pre-senescent fibroblasts, secrete VEGF that causes premalignant
and malignant epithelial cells to form tumors, suggesting that
although cellular senescence suppresses tumorigenesis early in
life, it may also promote cancer (30).

Here, we review how the tumor secretome can shape the
immune response achieving a state when immune cells no longer
recognize tumor cells and instead, they secrete proteins that
breed the TME. We will specifically focus on the impact on T
cells, CAR-T cells, and NK cells, which are currently used in
adoptive cellular immunotherapy (14–17, 31), and macrophages
Frontiers in Immunology | www.frontiersin.org 2
due to their relevant role in removing dying/senescent tumor
cells after cancer treatment (32). The impact of these molecules is
summarized in Table 2. Moreover, we will review the effect of the
tumor secretome in the immune response when tumor cells
become senescent due to chemotherapy treatments.
IMPACT OF TUMOR SECRETOME
IN THE ANTI-TUMOR ACTIVITY OF
IMMUNE CELLS

T Cells
Tumor cells with stromal cells, endothelial cells, fibroblasts, and
immune cells create a suitable TME that favors tumor
progression (79–81). The ability of T cells to infiltrate this
TME has led to the development of adoptive cellular
immunotherapy to treat cancer patients with tumor-infiltrating
lymphocytes (TILs) or CAR-T cells (14, 15, 31). Interestingly, the
TME can shape the anti-tumor activity of T cells depending on a
variety of secreted molecules. We detail here the impact of some
of these released factors.

TGF-b, a highly recognized immunosuppressive cytokine
secreted by tumor cells (33), suppresses IFN-g production by
Th1 and effector CD8 T cells, inducing the differentiation of CD4
T cells to both regulatory (T-reg) cells and Th17 cells. T-reg cells
that also release TFG-b and IL10 will further suppress the
activation of CD8 T cells, promoting tumor cell growth (34,
35). IL10 production by tumor cells down-regulates HLA-I and
HLA-II on tumor cells and HLA-II on antigen-presenting cells
(APCs), inhibiting antigen presentation becoming an escape
mechanism from immune surveillance (42, 82–84). On the
other side, cancer models have shown that IL10 also induces
intratumoral antigen presentation with infiltration and
activation of tumor-specific cytotoxic CD8 T cells expressing
IFNg and granzymes (43) (Figure 1).

A wide field of research in cancer immunotherapy consists of
inhibiting immune-checkpoint receptors on immune cells and
their ligands in tumor cells. The interaction of these receptors/
ligands modulates the activity of immune cells to limit the
development of auto-immunity and create immunotolerant T
cells. Therefore, the inhibition of these interactions with
monoclonal antibodies increases their anti-tumor activity. The
most common immune checkpoints include cytotoxic T
lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1),
T cell immunoglobulin and mucin-3 (TIM-3), B and T
lymphocyte attenuator (BTLA), lymphocyte activation gene 3
(LAG3), adenosine 2A receptor (A2AR) and T cell
immunoglobulin and ITIM domain (TIGIT) (85–91). Secreted
molecules by tumor cells impact the expression of immune-
checkpoint receptors on immune cells. For instance, release of
soluble HLA-G by tumor cells up-regulates CTLA-4, PD-1, TIM-
3, and CD95 on CD8 T cells impacting their anti-tumor activity
(44). On the other hand, cytokines released by activated immune
cells can up-regulate ligands of immune-checkpoints in tumor
cells. Thus, IFNg release by activated T cells induces PD-L1 up-
regulation in tumor cells (45) (Figure 2).
TABLE 1 | Reviews indicating clinical results with different types of immune cells
administered in immunotherapy studies in cancer patients.

Types of immune cell administered Reference

NK cells (18, 19)
CAR-T cells (20–22)
TILs: (23–25)
NK, natural killer; CAR, chimeric antigen receptor; TILs, tumor infiltrating lymphocytes.
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HLA-II over-expression by tumor cells (92) and fibrinogen-like
1 (FGL1), a protein secreted by liver cells and tumor cells (46), are
ligands of LAG-3, and their secretion impact the expression of
LAG-3 in T cells, promoting an immunosuppressive function.
TIM-3 is expressed on Th1 cells, and its interaction with its
ligand Galectin-9 (Gal-9) on tumor cells inhibits Th1 cell
responses (47) (Figure 2). Both overexpression of Gal-9 on
Frontiers in Immunology | www.frontiersin.org 3
gastric cancer cells and expression of TIM-3 on immune cells
correlates negatively with poor outcomes in cancer patients (93)
and lead to an increase in granulocytic myeloid-derived suppressor
cells that inhibit immune responses impacting tumor growth (94).

TIGIT ligands include CD155 (PVR), and the Nectin family
(95, 96) (Figure 2), which are over-expressed in many human
malignancies (97). Specifically, soluble PVR is a valuable
TABLE 2 | Impact of secreted factors in the tumor microenvironment (TME) over the different immune cell populations and description of receptors acting as eat me or
don’t eat me signals for phagocytic activity of macrophages.

Factor Type of cell Effect Reference

TGFb CD8 Suppresses IFN-g production (33)
Th1 Suppresses IFN-g production and induces differentiation to T-reg and Th17 cells. (34, 35)
PB-NK Converts cytotoxic CD56dim and CD56bright PB-NK cells into dNK-like cells. (36, 37)

Added to IL15 and IL18 the effects are enhanced. (38)
PB-NK Down-regulates NKP30, NKG2D and DAP10 and, consequently, NKG2D. (39, 40)
PB-NK At low doses up-regulates CXCR4 and CXCR3. At high doses, down-regulates NKp30, limiting NK killer activity. (41)
PB-NK In combination with hypoxia and 5-aza-2′-deoxycytidine polarizes PB-NK cells to dNK-like cells. (37)

IL10 APCs Down-regulates HLA-II on APCs inhibiting antigen presentation. (42)
CD8 Induces intratumoral antigen presentation with infiltration and activation of CD8 T cells expressing IFNg and granzymes. (43)

HLA-G CD8 Up-regulates CTLA-4, PD-1, TIM-3, and CD95. (44)
IFNg Tumor cells PD-L1 up-regulation. (45)
FGL1 CD8 LAG-3 up-regulation with T cell inhibition. (46)
Gal-9 Th1 Loss of IFNg producing cells and suppression of Th1 autoimmunity. (47)
Nectin-3 T cells and

monocytes
Promote lymphocyte transmigration through interaction with Nectin-2 on endothelial cells. (48)

Nectin-2 T cell T cell homing migration to the spleen through TIGIT interaction. (49)
PB-NK Binds to TIGIT inhibiting NK cell cytotoxicity. (50)

PVR PB-NK Binds to TIGIT inhibiting NK cell cytotoxicity. (50)
PGE2 CD8 Suppression of activity. (51)

CD4 Suppression of Th1 activity and promotion of Th2, Th17 and T-reg. (51)
PB-NK In thyroid cancer and melanoma inhibits NKG2D, NKp44, NKp30, and TRAIL suppressing NK cell cytotoxicity. (10, 52)
PB-NK In melanoma down-regulates NKp44 and NKp30 leading to NK cell inhibition. (53)
Macrophages Reduction of CCL5 production. (54)

IDO CART-19 Inhibition of CART cell activity. (55)
Lactic acid CD8 Suppresses nutrient uptake leading to impaired activation. (56)

NK Suppresses nutrient uptake leading to impaired activation. (56)
Glycodelin-A CD56 bright PB-

NK
Polarizes CD56bright into dNK-like cells. (57)

HLA-G PB-NK Induction of senescence with SASP secretion promoting vascular remodeling and angiogenesis. (58)
Hypoxia T cells Favors a glycolytic metabolism and increased lactate production, dampening T effector functions. (59)

PB-NK Avoids the ability to upregulate NKp46, NKp30, NKp44, and NKG2D in response to activating cytokines. (60)
PB-NK Degrades NK cell granzyme B by autophagy. (61)
PB-NK Reduced ability to release IFNg, TNFa, GM-CSF, CCL3, and CCL5, and preservation of immature CD56bright NK cells

expressing CCR7 and CXCR4, resembling dNK-like cells.
(62)

Macrophages Activates granulin expression in macrophages through VEGF, conferring increased angiogenic potential. (63)
Macrophages In pancreatic cancer promotes release of exosomes containing miR-301a-3p that induce M2 polarization. (64)
Macrophages Induces CXCL12 and CXCR4 expression, which modulate the migration of monocyte-derived macrophages, and TAMs. (65)

IL6 Macrophage Induces M2 polarization in colorectal cancer models. (66)
OSM Macrophage M2 polarization via mTOR signaling complex 2-Akt1. (67)
CCL2 Macrophage Recruitment of M1 to polarize them to metastasis-associated macrophages. (68)
IL34 Macrophage Increase recruitment of M2 macrophages in osteosarcoma. (69)
VEGF-A Macrophage With IL10 and IL4 secreted by tumor cells and macrophages, respectively, induced M2 polarization. (70)
Versican Macrophage Activates macrophages to release TNFa enhancing growth of tumor cells. (71)
MIF Macrophage Recruitment of macrophages through TGFb secretion by Kupffer cells that creates a fibrotic microenvironment. (72)
ST2 Macrophage M1 macrophage polarization in models of lung cancer. (73)
miR-21 Macrophage Polarization of monocytes to M2 macrophages, secretion of IL6, IL8, CCL2, and CCL5. (74)
CD47 Macrophage In tumor cells is a don’t eat me signal for macrophages. (75)
PD-1 Macrophage Don’t eat signal in macrophages. (76)
b2M subunit
(HLA-I)

Macrophage In tumor cells is a don’t eat me signal for macrophages through interaction with LILRB1. (77)

CD24 Macrophage In tumor cells is a don’t eat me signal for macrophages. (78)
August 2021 | Volume 12 | Art
PB-NK, peripheral blood NK cells; dNK, decidual NK cells; T-reg, regulatory T cell; APCs, antigen presenting cells; IFN-g, interferon-g; TGFb, transforming growth factorb; FGL1, fibrinogen-
like 1; GAL-9, galectin-9; IL, interleukin; HLA, human leukocyte antigen; miR, microRNA; OSM, oncostatin-M; VEGF, vascular endothelial growth factor; MIF, macrophages migration
inhibitory factor; ST2, suppression of tumorigenicity 2.
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biomarker for cancerdevelopment,wherehigher solublePVR levels
are detected in lung, gastrointestinal, breast, and gynecologic
cancers compared to healthy donors, being even higher at
advanced stages of the disease (98). Of interest, Nectins promote
the transendothelial migration of cells and associate with poor
prognosis and advanced disease stages in different types of cancer
(99). Soluble Nectin-4 released by cancer cells interacts with
integrin-b4 on endothelial cells, promoting angiogenesis (100). Of
interest, Nectins also mediate transendothelial migration of
immune cells (48). For instance, Nectin-2 promotes endothelial
cell migration, endothelial tube formation, and T cell homing
migration to the spleen, promoting an angiogenic function (49);
Nectin-3 expressed by T cells and monocytes binds to endothelial
cells through Nectin-2 promoting the transmigration of immune
cells (48). This angiogenic function of soluble Nectins released by
Frontiers in Immunology | www.frontiersin.org 4
tumor cells suggests an essential role of the tumor secretome
polarizing the cytotoxic activity of T cells to an angiogenic one.

Prostaglandin 2 (PGE2) is a crucialmediator of immunopathology
in chronic infections and cancer. PGE2 secreted by tumor cells
suppresses the effector functions of CD8 T cells and Th1 cells,
promotes Th2, Th17, and T-reg cell response, and inhibits the
attraction of immune cells (51). Moreover, PGE2 reduces CCL5
production by macrophages (54), which is required for IL2, IFN-g
production, and T cell proliferation (101). Recent studies revealed that
COX2/mPGES1/PGE2 pathway in tumor cells up-regulates PD-L1 in
tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs), which is followed by T cell
elimination (102).

In addition, the tumor secretome impacts the metabolic
activity of T cells through the competitive removal of essential
FIGURE 1 | Impact of tumor secretome in T cell activity. TGF-b secreted by tumor cells suppresses IFN-g production by Th1 and effector CD8 T cells, inducing the
differentiation of CD4 T cells to regulatory (T-reg) cells and Th17 cells. T-reg cells also release TFG-b and IL10 that will suppress the activation of CD8 T cells. IL10
secreted by tumor cells down-regulates HLA-II on dendritic cells, inhibiting antigen presentation. Prostaglandin 2 (PGE2) secreted by tumor cells suppresses the
functions of CD8 T cells and Th1 cells, and promotes Th2, Th17, and T-reg cell response. PGE2 reduces CCL5 production by macrophages, which is required for T
cell proliferation. Secretion of Indoleamine 2,3 dioxygenase (IDO) by tumor cells produces metabolites that inhibit T cell activity. Lactic acid produced by tumor cells
suppresses nutrient uptake by CD8 T cells.
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nutrients for T lymphocytes. In this sense, secretion of
“Indoleamine 2,3 dioxygenase” (IDO), which catalyzes
tryptophan degradation, produces metabolites that inhibit T cell
activity. In a murine lymphoma model with CAR-T cells targeting
CD19, over-expression of IDO depleted the anti-tumor activity of
CAR-T cells and inhibited the cytokine-dependent expansion of
CAR-T cells, cytokine secretion, and increased their apoptosis (55)
(Figure 1). Production of lactic acid by tumor cells also inhibits the
activity of CD8 T cells and NK cells. In detail, most tumors rely on
glycolytic metabolism to sustain rapid cell growth through the
enzyme lactate dehydrogenase-A that produces lactic acid. CD8 T
cells and NK cells undergo a similar metabolic switch activating a
glycolyticmetabolismwhen they evolve fromanaive to an activated
state. However, highly glycolytic tumor cells are superior
Frontiers in Immunology | www.frontiersin.org 5
competitors for glucose and amino acids than CD8 T cells and
NK cells. In addition, lactic acid production further suppresses
nutrient uptake by CD8 T cells and NK cells, dampening their
metabolic programs, leading to impaired activation of CD8 T cells
and NK cells with the subsequent overcoming of immune
surveillance by tumor cells (56).

CAR-T Cells, a Strategy to Inhibit the
Immunosuppressive TME and the Impact
of Tumor Secretome
Adoptive cellular immunotherapy administering CAR-T cells
has achieved outstanding and permanent responses in pediatric-
B cell hematological malignancies with persistence of CAR-T
cells over the years (26). However, in other hematological
FIGURE 2 | Impact of some secreted molecules in the TME on the expression of immunocheckpoints in T cells. The most common immune checkpoints on T cells
include programmed death 1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin and mucin-3 (TIM-3), T cell immunoglobulin and ITIM domain
(TIGIT) and lymphocyte activation gene 3 (LAG3), which interact with their ligands on tumor cells. IFNg release by activated T cells induces PD-L1 up-regulation in
tumor cells. TIM-3 interaction on Th1 cells with Galectin-9 (Gal-9) on tumor cells inhibits Th1 cell responses. Soluble HLA-G released by tumor cells up-regulates
PD-1, CTLA-4, and TIM-3, on T cells. CD155 (PVR), and the Nectin family are ligands of TIGIT. Soluble PVR is released by tumor cells. Soluble Nectins released by
cancer cells mediate transendothelial migration of immune cells promoting angiogenesis. HLA-II over-expression by tumor cells and fibrinogen-like 1 (FGL1) secreted
by tumor cells impact the expression of LAG-3 in T cells.
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malignancies (15, 27) and solid tumors, results have been more
inferior due to a short persistence of CAR-T cells and the barriers
that CAR-T cells have to face in the TME, such as the impact of
the tumor secretome. Fourth-generation CAR-T cells, termed
armored or TRUCK CARs, are equipped with different features
that can remodel the TME to enhance the activity of CAR-T cells.

Thus, a variety of armored CAR-T cells that secrete different
cytokines have been developed. For instance, CART-19 cells that
secrete IL12 show increased cytotoxicity and resistance to T-reg cell-
mediated inhibition, better engraftment, and enhanced anti-tumor
activity in models of B-cell malignancies (103) and ovarian cancer
(104). Of note, severe adverse events were observed in a clinical trial
with TILs secreting IL12 (105). Therefore, decreasing the amount of
cytokinesreleasedbyCARTcells, in thiscase, IL12,couldbemodulated
via different gene-expression cassettes, such as promoters in the CAR
with inducible nuclear factor of activated T cells (NFAT) binding
motifs (106). IL15 enhances the differentiation, homeostasis, and
survival of T cells and NK cells. CART-19 cells secreting IL15
demonstrated increased expansion and efficacy, with decreased
apoptosis and PD-1 expression, in models of Burkitt lymphoma
(107). CAR-T cells secreting IL18 have caused increased M1-
polarization in macrophages of the TME, depletion of M2-
macrophages and T-reg cells (108), and recruitment of endogenous
T cells (109). Nevertheless, as IL18 is pro-inflammatory, it has
pathogenic roles in autoimmune diseases (110) and might also
promote tumor progression, angiogenesis, immune escape, and
metastasis (111). CAR-T cells secreting IL7 and CCL19 have also
improved cell infiltration of dendritic cells (DCs) and survival ofCAR-
T cells (112). In addition, inhibition of TGFb is achieved by co-
expression in the CAR of a dominant-negative receptor for TGFb that
blocks TGFb signaling, increasing proliferation and persistence of
CAR-T cells in models of prostate cancer (113).

ArmoredCAR-T cells also avoid the negative impact of immune
checkpoints. Thus, in lymphoma, the TME is marked by
exacerbated lymphoid stroma activation and increased
recruitment of follicular helper T cells, resulting from the
disruption of the inhibitory checkpoint HVEM/BTLA. Secretion
ofHVEMbyCAR-T cells binds BTLA avoiding this event (114). In
addition, CAR-T cells that secrete anti-PD-L1 antibodies prevent T
cell exhaustion and recruit NK cells to the tumors (115).

Furthermore, hypoxia is found in the TME and contributes to
the rapid growth of tumor cells. Under hypoxia, glucose is
fermented to lactate. The hypoxic TME also favors a glycolytic
metabolism and increased lactate production, dampening T and
NK cell effector functions and survival (59). Thus, armored
CAR-T cells that secrete catalase (CAT-CAR) overcome
hypoxia and reactive oxygen species (ROS) present in the TME
(116). Another option to overcome these obstacles is to modify
the CAR to express anti-oxidant factors such as N-acetylcysteine
(NAC) that reduces DNA damage in CAR-T cells lowering
activation induced-cell death in CAR-T cells (117).

Decidual-Like NK Cells: An NK Cell
Population Poorly Studied in Immunotherapy
The well-recognized anti-tumor activity of NK cells has led to
many clinical studies administering either NK cells or CAR-
Frontiers in Immunology | www.frontiersin.org 6
modified NK cells, although results to date have shown mainly
safety but not a high efficacy (18). These findings suggest the
need to optimize NK cell anti-tumor efficacy. Here, we present
studies that indicate that when NK cells arrive at the TME, events
might happen that modify their killer activity.

In this regard, there are two main populations of NK cells in
peripheral blood, the mature and cytotoxic NK with
CD56lowCD16high expression, which constitutes 90% of NK
cells, and the immature and immunoregulatory NK cells
characterized by CD56highCD16low/negCD25+ expression, which
comprise approximately 10% of peripheral blood (PB)-NK (18,
19). A third transient population, known as decidual NK (dNK)
cells, present at the fetal-maternal interface during the first
months of pregnancy, representing 70% of immune cells in the
decidua. dNK cells are also known as uterine NK (uNK) cells, as
classically, uNK cells were detected by Dolichos biflorus
agglutinin (DBA) lectin staining, where DBA+ cells were
defined as dNK cells. Decidualization is triggered during
blastocyst implantation and the menstrual cycle, characterized
by a marked increase in dNK cells. dNK or uNK cells are a
dynamic population, and their origin is not clear. A recent model
proposed that there is a first wave of proliferation of tissue-
resident NK cells in the pregnant uterus at the onset of the
decidualization process. Then, a second wave involves
the recruitment of conventional PB-NK cells during the
placentation process (118, 119).

dNK cells are immune-tolerant and characterized by
CD56brightCD16−CD9+CD49a+ and Eomes+ expression (120,
121). They are angiogenic, regulate trophoblast invasion and
vascular growth during the placental developmental process and
cooperate with other cells to serve as constructive elements
during early pregnancy. dNK cells produce large amounts of
proangiogenic factors, including VEGF, PlGF, CXCL8, IL-10,
and angiogenin, critical for decidual vascularization and spiral
artery formation (122). dNK cells also express chemokine
receptors, including CXCR3, CXCR4, CCR1, CCR9, and the
integrin ITGA3 (120), and through the interaction of HLA-G on
fetal trophoblast cells with ILT2 and KIR2DL4, they secrete other
growth-promoting factors, including pleiotrophin and
osteoglycin (121). Moreover, interaction of soluble HLA-G
with KIR2DL4 induces a pro-inflammatory response in dNK
cells, activating their senescence with SASP secretion that
promotes vascular remodeling and angiogenesis in early
pregnancy (58).

This “nurturing” role of dNK cells during early pregnancy
presents many homologies to NK cells infiltrated in different
types of tumors. Thus, a subset of NK cells in non-small cell lung
cancer, squamous cell carcinoma, or colorectal cancer turns into
dNK-like cells inducing human umbilical vein endothelial cell
migration and formation of capillary-like structures (36, 123–
125). Various studies have tried to determine different factors
during early pregnancy that might be responsible for this
polarization of PB-NK cells into dNK-like cells. Results suggest
that this polarization seems more specific for CD56bright than
for CD56dim NK cells. Of interest, NK cells administered in
immunotherapy treatments undergo an in vitro expansion that
August 2021 | Volume 12 | Article 717850
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turns them into CD56bright NK cells (17). Many of the factors
responsible for this NK polarization are present in both the
decidua and the TME, suggesting that these events occurring in
the TME might impact the growth of tumor cells. In the next
section, we detail the effect of secreted factors in the TME over
the phenotype and polarization of NK cells.

Impact of the Tumor Secretome in the
PB-NK Cell Activity and Their Transition
of Killer NK to dNK-Like Cells
Glycodelin-A is secreted in large amounts in the decidua and by
tumor cells in malignancies, such as Non-Small Cell Lung Cancer
(126), mesothelioma (127), ovarian cancer (128), and endometrial
cancer (129). Glycodelin-A converts immunoregulatory CD56bright

PB-NK cells into dNK-like cells, an effect that does not occur for
mature CD56low PB-NK cells. This mechanism occurs through
binding of Glycodelin-A to sialylated glycans on CD56bright NK cells
and causes enhanced expression of CD9, CD49a, and production of
VEGF and IGFBP-1 that regulate endothelial cell angiogenesis and
trophoblast invasion (57).

Soluble HLA-G is associated with bad prognosis in different
tumors (130–134). Of interest, soluble HLA-G mediates
polarization of PB-NK cells to dNK-like cells, with a senescent
phenotype, secretion of growth factors, and reduced killer
activity (58), thus, emerging as an essential target that can
polarize the activity of NK cells.

TGFb secretion can be beneficial at early stages and detrimental
at late-stage tumor development by remodeling the TME to favor
tumor growth (130, 135). TGFb converts both cytotoxic CD56dim

and CD56bright PB-NK cells into dNK-like cells (36, 37) (Figure 3).
Moreover, IL15and IL18 added toTGFb enhance the impact on the
polarization of PB-NK cells toward a dNK cell phenotype with
increased expression of CD9, CD49a, ITGA3, and CXCR4 (38). Of
interest, as previously mentioned, IL15 and IL18 are beneficial for
CAR-T cells (107–109), suggesting the negative role of these
cytokines when TGFb is added. Additional effects of TGFb over
NK cells include down-regulation of NKP30, NKG2D (39), and
DAP10 and, consequently, NKG2D (40) inhibiting NK cell
function (Figure 3). Of interest, this dual role of TGFb in the
TME is observed when at low doses facilitates NK cell recruitment
to the tumor by up-regulating CXCR4 and CXCR3, markers of
dNK; and at high doses, down-regulates NKp30, limiting NK killer
activity (41).

PGE2 secretion in thyroid cancer and melanoma inhibits the
expression of NKG2D, NKp44, NKp30, and TRAIL on PB-NK
cells and their functional maturation leading to suppressed NK
cell cytotoxicity (10, 52) (Figure 3). PGE2 release by cancer-
associated fibroblasts in melanoma down-regulates NKp44 and
NKp30 leading to NK cell inhibition (53). Soluble PVR and
Nectin-2 released by tumor cells bind to TIGIT on NK cells
inhibiting NK cell cytotoxicity (50).

Hypoxia is another factor present in both the decidua and the
TME. Hypoxia in the TME avoids the ability of NK cells to
upregulate NKp46, NKp30, NKp44, and NKG2D in response to
activating cytokines (60) and degrades NK cell granzyme B by
autophagy (61), impairing the ability to kill and promoting
immune evasion (Figure 3). Moreover, exposure to a
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combination of hypoxia, TGFb, and 5-aza-2′-deoxycytidine,
results in the polarization of PB-NK cells to dNK-like cells.
These changes are more pronounced when all the factors are
together and lead to the expression of CD9, CD49a, chemokine
receptors, and VEGF secretion that leads to dNK-like cells with
capacity to promote invasion of trophoblast cell lines and
reduced cytotoxicity. Significantly, these parameters are
reversed after returning to normal conditions, indicating the
plasticity of immune cells (37). Exposure of PB-NK cells to
hypoxia also causes reduced NK cell ability to release IFNg,
TNFa, GM-CSF, CCL3, and CCL5, and preservation of
immature CD56bright NK cells expressing CCR7 and CXCR4,
resembling dNK-like cells (62).

The impact of these tumor secreted factors occur mainly on
CD56bright PB-NK cells, and NK cells used in immunotherapy
undergo an in vitro expansion that turn them into CD56bright NK
cells (17). These events suggest that in cases that NK cells do not
achieve complete removal of tumor cells they might have
polarized into dNK-like cells. Therefore, monitoring these
changes in immunotherapy NK cell studies will provide
relevant information to improve the clinical outcome of patients.

Role of Macrophages in
Immune Surveillance
Macrophages are innate immune cells with high plasticity which
traditionally, have been classified as two extremes being either
pro-inflammatory (M1: activated) or anti-inflammatory (M2:
alternatively activated). M1 inhibits cell proliferation and causes
tissue damage, while M2 promotes cell proliferation and tissue
repair.M1andM2enableTh1, andTh2 responses, respectively, and
consequently, Th1 and Th2 cytokines regulate their activity. Thus,
M1responds to IFN-g, TNF-a, andTLR4activation, andM2to IL-4
and IL-13 (136).However,macrophages present high plasticity and
convert to a wide variety of subpopulations depending on the
stimuli they receive from the TME (63, 137). Macrophages
represent the largest population of all infiltrating leukocytes in the
tumor (138), where tumor-associatedmacrophages (TAMs),which
present an M2-like phenotype, are considered highly responsible
for tumor progression, andmany studies have focused on trying to
polarize M2-like macrophages to M1 (139). However, M2 are the
macrophages with the highest phagocytic activity against apoptotic
tumor cells (140), suggesting that removing this activity might also
be detrimental. Therefore, efforts should be directed to preserveM1
macrophage activitywhile also enhancing the phagocytic activity of
M2 macrophages. Here, we will pay special attention to the
phagocytic function of M2 macrophages to remove tumor cells
and how secreted molecules in the TME can polarize macrophages
to an M2-like or M1 phenotype.

Phagocytosis of tumor cells by macrophages is performed
after recognizing “eat me” or don’t eat me” signals that will or
will not trigger phagocytosis. “Eat me” and “don’t eat me” signals
act as ligands for phagocytic receptors that will or will not trigger
the engulfment of the target. Different studies have shown the
beneficial impact in tumor regression of inhibiting these “don’t
eat me” signals. For instance, CD47 expression in small-cell lung
cancer cells engages SIRPa on macrophages inhibiting their
phagocytic activity, which is recovered with an anti-CD47 (75).
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FIGURE 3 | Impact of tumor secretome in NK cell activity. (A) In healthy conditions, NK cells recognize transformed cells through ligands of NKG2D and the family
of NCR receptors (NKp30, NKp44, NKp46) which are over-expressed in transformed cells. Pro-inflammatory forms of cell death attract additional immune cells to
cooperate in the killing. (B) In some cases, tumor cells down-regulate ligands for NK cell receptors or the tumor microenvironment (TME) causes down-regulation of
activating NK cell receptors leading to tumor escape with additional secretion of tumor secretome. (C) When tumor escape occurs, increased tumor secretome leads
to additional changes in NK cells. Specifically, release of Glycodelin-A and HLA-G converts immunoregulatory CD56bright PB-NK cells into dNK-like cells. TGFb
converts both cytotoxic CD56dim and CD56bright NK cells into dNK-like cells; and down-regulates NK cell activating receptors limiting NK killer activity. PGE2 and
hypoxia inhibit the expression of NK cell activating receptors and their functional maturation leading to suppressed NK cell cytotoxicity. Moreover, hypoxia, preserves
immature CD56bright NK cells with expression of receptors of dNK cells, resembling to dNK-like cells. In all cases, dNK-like cells will activate angiogenesis processes.
(D) Emergence of senescent tumor cells leads to SASP secretion that attracts NK cells to mediate their clearance. (E) When the number of senescent cells
increases, the SASP also does, leading to inhibition of NK cell activity, through mechanisms, such as the interaction of HLA-E with the inhibitory receptor NKG2A in
NK cells and binding of TSP1 with CD47 that inhibit NK cell activity. PGE2 and IL6 in the SASP also down-regulate NK cell activating receptors. Moreover, therapy-
induced senescence in established tumors down-regulates NK cell activating receptors on mature NK cells and their ligands on tumor cells.
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Moreover, inhibition of CD47 in tumor cells promoted their
phagocytosis and the anti-tumor activity of CD8 T cells while
inhibiting T-reg cells (141). Blocking PD-1 expressed in TAMs
or M2-like macrophages increases macrophage phagocytosis and
reduces tumor growth (76) (Figure 4).

Furthermore, anti-PD-L1 treatment reverses the immuno-
suppressive status of the TME and enhances specific T cell anti-
tumor effects in murine models of cancer (142). Interaction of b2M
subunit of HLA-I in tumor cells with LILRB1 on macrophages
protects tumor cells from phagocytosis by TAMs, and disruption of
this interaction potentiates phagocytosis of tumor cells (77). In
ovarian cancer and triple-negative breast cancer, tumor cells evade
clearance by macrophages through over-expression of CD24 that
interacts with Siglec-10 in TAMs, and its blockade augments the
phagocytosis of CD24-expressing tumors leading to a reduction of
tumorgrowth(78).Dectin-2, aC-type lectin receptor inmacrophages
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resident in the liver (Kupffer cells), promotes phagocytosis of cancer
cells, avoiding liver metastasis (143) (Figure 4).

Phagocytosis requires an intimate contact of the macrophage
and the target, where the glycocalyx, a layer that surrounds the
plasma membrane containing glycolipids, glycoproteins, and
surface-associated glycosaminoglycans, acts as a barrier for
these contacts. The size and charge of this glycocalyx can be
modified and modulated by enzymes or other molecules present
on the TME to promote phagocytosis (144). Of interest, we
described that NK cells release histones that bind to and degrade
the syndecans on the glycocalyx of multiple myeloma cells (145),
suggesting that by doing this, NK cells might also promote the
phagocytosis of tumor cells by macrophages, an event observed
during fungal infection (146).

Molecules secreted in the TME will also impact promoting an
anti-inflammatory or pro-inflammatory environment that will
FIGURE 4 | Impact of tumor secretome in the phagocytic activity of macrophages. In healthy conditions macrophages phagocyte transformed cells and senescent
fibroblasts to maintain tissue homeostasis. Normally, macrophages, through release of TNFa, induce apoptosis in senescent fibroblasts, leading to expression of
phosphatidylserine in their surface, which is recognized by STAB1 on macrophages to promote their phagocytosis. In advanced stages of senescence, phagocytic activity of
macrophages is inhibited by over-expression of ligands of immune-checkpoints (CD47, PDL-1 and CD27) that interact with their receptors on macrophages (SIRPa, PD1
and SIGLEC-10). Moreover, SASP factors, including IL1a and GM-CSF, down-regulate STAB1 and TNFa expression, avoiding the phagocytosis of senescent fibroblasts by
macrophages. In addition, IL6, IL34, CCL2 and VEGFa secretion in the TME, induce M2macrophage polarization and recruitment of inflammatory monocytes that polarize to
metastasis-associated macrophages that in summary promote tumor growth. Hypoxia in established tumors also promotes the release of exosomes containing the miRNAs
miR-301a-3p and miR-21 that promote M2 polarization, and TNFa, IL6, IL8, CCL2 and CCL5 secretion impacting in higher angiogenesis, and tumor growth.
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polarize macrophages into TAMs/M2-like or M1 phenotypes. For
instance, IL6 secretion in the TME induces M2 macrophage
polarization in colorectal cancer models (66). The release of
oncostatin M in the TME is involved in M2 polarization via
mTOR signaling complex 2-Akt1 (67). At breast cancer, the
release of CCL2 by tumor cells recruits inflammatory monocytes
that polarize to metastasis-associated macrophages, which secrete
CCL3, promoting lung metastasis (68). IL34 secretion by tumor
cells binds toCSF1R inmacrophages and polarizes them toM1 and
M2 (147). Also, IL34 contributes to osteosarcoma growth by
increasing the neo-angiogenesis and recruitment of M2
macrophages (69). In a skin carcinogenesis model, VEGF-A
expression on tumor cells with IL10 and IL4 secreted by tumor
cells and macrophages, respectively, induced M2 polarization that
promoted tumorgrowth(70).Releaseof theproteglycanversicanby
lung carcinoma cells activates macrophages to release TNFa
enhancing growth of tumor cells (71) (Figure 4).

Tumor hypoxia, a feature of the TME, promotes ID4 expression
in cancer cellswhich, throughVEGF, activates increased expression
of granulin in macrophages, conferring increased angiogenic
potential (63). In pancreatic cancer cells, the presence of hypoxia
promotes the release of exosomes containing the miRNA miR-
301a-3p that binds to TLR macrophages receptors, promoting M2
polarization, TNFa, and IL6 production, creating a pro-metastatic
environment (64). Hypoxia induces CXCL12 and CXCR4
expression, which modulate the migration of monocytes,
monocyte-derived macrophages, and TAMs (65) (Figure 4). Of
interest, when hypoxia is absent in tumor cells, TAMs can enhance
tumor hypoxia and glycolysis (148), being both features that
promote tumor aggressiveness (149).

Exosomes released in liver tumors bind to macrophages through
exosome integrins and prepare the pre-metastatic niche (150). In
pancreatic ductal adenocarcinomas, tumor-derived exosomes with
macrophage migration inhibitory factor are taken by Kupffer cells
causing TGFb secretion. Consequently, a fibroticmicroenvironment
emerges that recruits macrophages, creating a liver pre-metastatic
niche (72). Of interest, the release of ST2 in Rab37 exosomes skewed
M1 macrophage polarization leading to reduced tumor growth in
models of lung cancer. Moreover, lung cancer patients with low
Rab37, low soluble ST2, and low M1/M2 ratio presented worse
overall survival (73). SNAIL, a transcription factor expressed during
epithelial-mesenchymal transition, activates the production of
tumor-derived exosomes containing miR-21 that will be
phagocyted by monocytes leading to M2 macrophages, secretion of
IL6, IL8, CCL2, and CCL5 impacting in higher angiogenesis, and
tumor growth (74) (Figure 4).

ACQUISITION OF THERAPY
INDUCED-SENESCENCE (TIS) AFTER
CHEMOTHERAPY AND ITS IMPACT ON
IMMUNE CELLS

Studies have demonstrated that chemotherapy treatment can
lead to acquired resistance and the emergence of more aggressive
Frontiers in Immunology | www.frontiersin.org 10
tumor cells. In this regard, the tumor secretome is shaped by
chemotherapy treatment that will impact the immune response
and increase tumor aggressiveness. For instance, in breast cancer,
IL6 release after treatment converts differentiated tumor cells to
cancer stem cells through the IL6-JAK1-STAT3 pathway (151).
In non-small cell lung cancer, cisplatin induces IL6 secretion that
increases tumor progression and resistance to treatment through
up-regulation of anti-apoptotic proteins and DNA repair
associated genes (152). Paclitaxel enhances IRE1 RNase activity
that leads to the production of IL6, IL8, CXCL1, GM-CSF, and
TGFb2 in breast cancer cells contributing to the expansion of
tumor-initiating cells (153). Doxycycline treatment in squamous
cell carcinoma leads to TGFb secretion that activates the TGF-b/
SMAD pathway increasing tumorigenic potential (154).
Treatment with kinase inhibitors causes secretion of positive
mediators of the AKT pathway, including IGF1, EGF,
ANGPTL7, and PDGFD, accelerating the expansion and
dissemination of drug-resistant clones (155). Docetaxel induces
secretion of extracellular vesicle-encapsulated miRNAs,
including miR-9-5p, miR-195-5p, and miR-203a-3p, which
down-regulate the transcription factor ONECUT2, leading to
up-regulation of stemness-associated genes, that stimulate cancer
stem-like cells and resistance to therapy in breast cancer (156).

In addition, chemotherapy and radiotherapy treatments trigger
a premature state of senescence in tumor cells termed “therapy-
induced senescence” (TIS) that will shape the tumor secretome (29,
157). TIS can reactivate the cell cycle and bring on cancer daughter
cells that survive therapy more transformed than the original
population (158, 159). This secretome is unique because it is
induced by senescence, being termed senescence-associated
secretory phenotype (SASP). SASP includes various cytokines,
chemokines, growth factors, and matrix metalloproteinases, such
as IL1a, IL1b, IL6, IL8, CXCL1,CCL2,VEGF, andCXCR2 (29, 160,
161), that interfere with the paracrine activity of senescent cells. Of
interest, SASP released by tumor cells after TIS induces
transmission of senescence to non-senescent neighboring cells
(162, 163). The SASP can foster an immunosuppressive
environment favoring metastasis (160), and on the other side,
attracts immune cells including macrophages, neutrophils, and
NK cells to remove senescent cells, a process known as
“senescence surveillance” (164–167).

Moreover, cancer is associated with aging. A physiological
consequence of aging is the development of immunosenescence
due to a functional degradation of the thymus, resulting in
decreased functional naïve CD4 and CD8 T cells and a
peripheral oligo-clonal expansion of memory T cells. These
events provide a contracted T cell antigen receptor (TCR)-
repertoire diversity with secretion of SASP (29, 168).
Immunosenescence associated with aging also occurs due to
exposure to virus infections or chronic inflammation (169); and
additional factors such as nutrition, sex, genetics, previous
diseases, or tumors (170, 171). Therefore, the immune cells of
elderly cancer patients will probably be already senescent; and
moreover, SASP secretion by senescent tumor cells after
chemotherapy will accelerate this immunosenescence process
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(171). Here, we will mention some SASP factors released by tumor
cells that impact the anti-tumor immune response.

Impact of the SASP in T Cells and
Immunosenescent T Cells
Studies have shown a significant accumulation of senescent T
cells in certain types of cancer patients (172), and that tumor
SASP induces T cell senescence leading to suppression of
responses of naïve/effector T cells (173), suggesting that this
might be a strategy used by malignant cells to evade immune
surveillance. Transformed senescent T cells are in cell cycle arrest
and develop significant phenotypic alterations, such as down-
regulation or loss of CD27 and CD28.Through SASP factors
including pro-inflammatory cytokines or inhibitory molecules
like IL10 or TGFb, senescent T cells will amplify the
immunosenescence process. Moreover, the development of
exhaustion with high expression of immune checkpoints, such
as TIM-3 and other co-inhibitory receptors as CD57 or KLRG-1,
will promote replicative senescence of T cells (174).

TGFb1 and TGFb3 are early SASP factors that regulate
thymic T cell homeostasis, inhibit cytotoxic T cell proliferation,
and promote T-reg generation (175). Tumor senescent cells up-
regulate NOTCH1 and drive a TGFb-rich secretome that
suppresses the release of a pro-inflammatory SASP and
contributes to the transmission of senescence through cell-cell
interaction via NOTCH-JAG1 pathway. Of interest, NOTCH1
inhibition recovers the secretion of pro-inflammatory cytokines,
promoting lymphocyte recruitment and senescence surveillance
(176). Senescent cells, after genotoxic stress, secrete IL6 and IL8
that promote epithelial-mesenchymal transition, increasing
tumor cells’ invasiveness. Moreover, IL6 recruits myeloid cells
that inhibit T cell responses (177).

MAPK signaling is a relevant pathway that controls T cell
senescence (178) through activation of p53, p21, and p16 (179).
Recent research demonstrated that tumor-derived T-reg cells
exhibit an accelerated glucose uptake, competing with effector T
cells for glucose through TLR8 signaling, leading to MAPK
activation, which induces T cell senescence (180). Another
study showed that T-reg cells, through p38, ERK1/2 signaling,
p16, p21, and p53 induce senescence in responder naïve and
effector T cells. This event is reverted by the block of TLR8
signaling and or by specific ERK1/2 and p38 inhibition (181).
Moreover, the p53 isoforms D133p53 and p53b regulate
proliferation and senescence in human T lymphocytes. Thus,
decreased D133p53 and increased p53b expression in healthy
individuals and lung cancer patients associated with age-
dependent accumulation of senescent CD8 T cells (182).

The hypoxic TME leads to the accumulation of adenosine and
tumor-derived cAMP. This cAMP is a SASP factor that induces
T cell senescence in naïve/effector T cells. Of interest, activation
of TLR8 signaling in tumor cells reverses this event resulting in
enhanced anti-tumor immunity (183). Moreover, the
accumulation of adenosine in the TME also inhibits the anti-
tumor activity of T cells through the adenosine receptor A2AR,
which in healthy conditions regulates immune cells protecting
from inflammatory damage (184).
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CAR-T Cells
Whereas the immunosenescence process has been widely studied in
Tcells, there is a lackof information related toCAR-Tcell senescence.
It could be exciting todelve into themechanismsof senescence of this
type of cells tofindpathways to inhibit senescencewithout impacting
their anti-tumor activity. Specifically, CAR-T cells undergo a
significant in vitro expansion (185) to obtain enough CAR-T cells
to treat thepatients.This expansionmight impact thedevelopmentof
senescence due to continuous in vitro proliferation. Moreover, the
transfer of senescence from tumor cells in the TMEmediated by cell-
cell contactor through factorspresent in theSASPwill impactCAR-T
cell activity. CAR-T cells can be engineered to avoid these events.
Thus, recently,CAR-Tcells havebeenusedas senolytic agents in lung
adenocarcinoma to remove chemically induced senescent cells by
targeting the urokinase-type plasminogen activator receptor (186).

A tempting option that could be tested is to reverse early-
stage senescent CAR-T cells by blocking critical mediators of this
process, such as proteins involved in the DDR, p38, p53, p21, or
ATM (187). However, these changes could also decrease T cell
functionality by impacting other relevant functions. For instance,
p38 is involved in the induction of senescence and IFNg and
TNFa secretion (188), and its inhibition have diminished these
cytokines in different inflammation or virus infection models
(189, 190). Moreover, blockage of DDR and p53 involves a risk of
DNA damage on T cells that might induce malignancy (191).

SASP Impact in NK Cells and
Senescence Surveillance
NK cells have an essential role in the senescence surveillance of
tumor cells. Senescence surveillance is initiated by the SASP that
activates immune cells to clear senescent cells preventing tumor
initiation (167), where both macrophages and NK cells have an
important task (32, 192, 193). Proteins present in the SASP, such
as CCL2, attract PB-NK cells to remove senescent cells through
NKG2D (194). Of interest, this role of PB-NK cells removing
senescent cells is also observed by decidual uterine NK cells to
control embryo implantation. Specifically, dNK cells after being
activated by IL15, present in the SASP, target and clear decidual
cells that became senescent in an IL8 dependent manner. This
mechanism of NK cells is mediated through granule exocytosis
and involvement of NKG2D (195).

SASP secretion by senescent tumor cells up-regulates HLA-E,
the ligand of the inhibitory NKG2A NK receptor (196), and
cleave NKG2D ligands inhibiting NK cell activity (197).

Soluble Thrombospondin-1 (TSP1), released in the SASP, is
involved in Ras-induced senescence (198). Moreover, TSP1
released by tumor cells binds CD47 on NK cells inhibiting its
activity (199). CD47 is described as a relevant modulator of NK
cell function in virus infection (200). Of interest, after TIS,
binding of soluble TSP1 to CD47 causes emergence of tumor-
resistant cells and metastasis in triple-negative breast cancer
(201), and inhibits anti-melanoma NK cell activity with
reduced granzyme B and IFNg production (202) (Figure 3).

IL1b is another crucial molecule present in the SASP with a
relevant pro-tumor activity (203). In detail, IL1 signaling
controls the SASP production (204), and transmission of IL1b
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to neighboring cells induces cell senescence (205, 206). A dual
role for IL1b is observed in NK cell activity. For example, IL1b is
required by CD56bright NK cells to produce IFNg (207) to activate
pyroptosis, necessary for the anti-microbial (208) and anti-
tumor (145) activity of NK cells. In addition, IL1b released by
M1 macrophages increases NK cell cytotoxicity up-regulating
NKp44 and NKG2D and triggering IFNg production by NK cells.
Of interest, these IL1b-primed NK cells can reverse M2
macrophage polarization (209). On the other side, a negative
impact of IL1b has been described over NK activity. Thus,
tumor-derived IL1b induces accumulation of MDSCs that
impair NK cell development and functions (210). Moreover, a
higher secretion of IL1b in endometrial cancer patients
compared to healthy tissues correlates with infiltrating
CD56bright NK cells in the tumor with exhausted phenotype,
indicated by TIGIT and TIM3 expression (211).

IL6 and IL8, present in the SASP, favor the acquisition of
migration/invasion and stem-like features, increasing tumor
aggressiveness in breast cancer cells (212, 213). Moreover, IL6
also inhibits NK cytotoxic activity by down-regulating perforin
and Granzyme B (214). In esophageal squamous cell carcinoma,
tumor cells activate the STAT3 pathway on NK cells through IL6
and IL8, leading to down-regulation of NKp30 and NKG2D on
NK cells and tumor progression (215) (Figure 3). In addition,
increased levels of IL6 in the peritoneal fluid of endometriosis
patients reduced the cytolytic activity of NK cells with down-
regulation of granzyme B and perforin (216). IL8 activates and
recruits immune cells (217) but also has tumor-promoting
functions (218). IL8 is produced by CD56 bright NK cells
(219), and stimulation with IL18 and IL12 induces higher IL8
production by NK cells (220).

PGE2 secretion, present in the tumor secretome, inhibits NK
cell activity (10, 52, 53). Moreover, PGE2 is also present in the
SASP at early tumorigenesis stages, secreted by COX-2, a critical
regulator of the SASP, and promotes senescence surveillance
(221) (Figure 3).

Senescent cells show high ROS levels and lactate production
that induce and maintain cell senescence (222, 223). ROS can
present contradictory effects on the activity of NK cells.
Specifically, lactate production by metastatic colorectal cancer
cells induces mitochondrial stress, increased ROS, and apoptosis
in NK cells (224). On the other side, ROS is required for the anti-
tumor activity of NK cells (225). Moreover, TIS up-regulates
NKG2D ligands (MICA, MICB, and PVR) in an oxidant-
dependent manner, resulting in enhanced NK cell activity
against myeloma cells (226). This up-regulation of NKG2D
ligands upon oxidative stress was also observed in colon
carcinoma cells, leading to improved NK cell killing (227).
However, in established tumors, ROS down-regulates NKp46
and NKG2D on mature CD56dim NK cells inducing suppression
of NK activity against melanoma (228) and acute myeloid
leukemia cells (229). Of interest, we previously observed that
cord blood-derived NK cells reduce ROS levels in multiple
myeloma cells (230). This negative role of ROS in tumors has
led to antioxidant treatments in cellular immunotherapy studies.
For instance, as previously mentioned, in solid tumors, CAR-T
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cells modified to express the enzyme catalase presented an anti-
oxidant capacity to protect bystander T cells and NK cells (116).

All these studies suggest the beneficial and detrimental role of
the SASP at early and late stages of tumorigenesis, respectively.
As high levels of SASP inhibit NK cell activity, a strategy to treat
advanced cancer patients with cellular immunotherapy, could be
to administer senescence inhibitors to decrease the number of
senescent cells. Once reduced levels of SASP are achieved,
immune cells could be administered, that would be attracted to
remove the remaining senescent tumor cells.

Macrophages
Macrophages are attracted and stimulated by SASP factors including
MCP-1, MIP-1a, and GM-CSF to remove senescent cells (231).
Macrophages are also affectedby age-related immunosenescence and
the consequences of inflammaging, a chronic inflammation
occurring with aging, leading to macrophage dysfunction.
Increased levels of A20, a suppressor of the NFkB and MAPK
signaling, mediated this dysfunction, leading to poor NFkB and
MAPK activation following TLR stimulation (232).

There is a disparity in the impact of TIS and the SASP in
macrophage polarization and their phagocytic activity. Thus, in a
model of skin aging, macrophage activity is inhibited when there
are a high number of senescent cells (233). Specifically, through
TNFa release, macrophages induce apoptosis in senescent
fibroblasts, leading to the expression of phosphatidylserine on
their surface. Phosphatidylserine is recognized by the STAB1
receptor on macrophages to promote their phagocytosis.
However, SASP factors, including IL1a and GM-CSF, down-
regulate STAB1 and TNFa expression, avoiding the killing and
phagocytosis of macrophages, with no impact observed in the
macrophage polarization (233).

In a model of thyroid cancer, monocytes exposed to
conditioned media from senescent thyrocytes and thyroid
tumor cells, undergo M2-like polarization displaying tumor-
promoting. These events were related to the production of
PGE2 (234). In liver fibrosis and cirrhosis, hepatic stellate cells
made senescent by carbon tetrachloride treatment produce
cytokines that recruit M1 macrophages, promoting a tumor-
suppressive environment. However, in the absence of p53, a
promoter of senescence, the released secretome induces M2
polarization, enhancing premalignant cells’ proliferation (235).
In a model of pancreatic cancer with oncogene-induced
senescence, the SASP factor CXCL1 activates CXCR2 that leads
to recruitment of M1 macrophages, inhibiting carcinogenesis.
However, oncogene-induced senescence and SASP are bypassed
at late stages, and M2 macrophages are recruited to enhance the
proliferation of the transformed pancreatic cancer cells (236).
IMPACT OF THE TYPE OF CELL DEATH
ACTIVATED IN THE TUMOR SECRETOME

Finally, we call the reader’s attention to the type of cell death
activated in tumor cells after the attack of immune cells in
adoptive cellular immunotherapy. Inflammatory forms of cell
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death include pyroptosis, which activates the NLRP3
inflammasome, leading to IL1b production (237). As previously
mentioned, IL1 signaling controls the SASP production (204). Of
interest, CAR-T cells and NK cells used in adoptive cellular
immunotherapy activate pyroptosis when they encounter the
tumor cell (145, 238). These events suggest that the
consequences of this IL1b release should be considered.
Expressly, inflammasome activation and pyroptosis execution
represent a double edge-sword in cancer immunotherapy, as on
one side, pyroptosis executes cell death. On the other side,
pyroptosis and IL1b production activate multiple signaling
pathways and inflammatory mediators that promote tumor
growth and metastasis in cancer models (239, 240), triggering
TAMs to boost tumor angiogenesis (241). Moreover, the role of
pyroptosis is highly relevant to attracting other immune cells
through IL1b and IL18 secretion. These events are observed in
microbial infections, where pyroptosis attract immune cells to kill
the previously trapped pathogen and remove the infected cell (208,
242). In adoptive cellular immunotherapy, removing dead tumor
cells after being killed by immune cells is required, suggesting an
advantage of pyroptosis in this context.
CONCLUSIONS

To conclude, adoptive cellular immunotherapy has emerged as a
promising treatment to treat cancer patients in the last years.
However, results still need to be improved in a variety of
malignancies. Immune cells present a high capacity of
plasticity when they receive stimuli from secreted molecules in
the TME. Thus, if immune cells do not remove tumor cells,
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tumor secretome could modify their killer activity to an
angiogenic or immunosuppressive one. A highly relevant
aspect that needs to be considered to avoid these events is an
efficient removal by macrophages of dying/dead tumor cells
after the attack of immune cells, such as NK cells or CAR-T
cells. Of interest, NK cells present additional functions to
their classic killer activity that might help in this tumor cell
surveillance. Inflammatory forms of cell death activated by in
vitro expanded immune cells might also impact these processes.
In summary, to achieve complete and permanent responses in
cancer patients treated with adoptive cellular immunotherapy, all
these aspects together need to be considered and count on the
activity of the whole immune response and not just one immune
cell population.
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Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) (2020) 12
(11):3139. doi: 10.3390/cancers12113139
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33. Massagué J. Tgfbeta in Cancer. Cell (2008) 134:215–30. doi: 10.1016/
j.cell.2008.07.001

34. Sun X, Cui Y, Feng H, Liu H, Liu X. TGF-b Signaling Controls Foxp3
Methylation and T Reg Cell Differentiation by Modulating Uhrf1 Activity.
J Exp Med (2019) 216:2819–37. doi: 10.1084/jem.20190550

35. Chen W, Jin W, Hardegen N, Lei K-J, Li L, Marinos N, et al. Conversion of
Peripheral CD4+CD25- Naive T Cells to CD4+CD25+ Regulatory T Cells by
TGF-Beta Induction of Transcription Factor Foxp3. J Exp Med (2003)
198:1875–86. doi: 10.1084/jem.20030152

36. Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N,
et al. The Proangiogenic Phenotype of Natural Killer Cells in Patients With
Frontiers in Immunology | www.frontiersin.org 14
non-Small Cell Lung Cancer. Neoplasia (2013) 15:133–42. doi: 10.1593/
neo.121758

37. Cerdeira AS, Rajakumar A, Royle CM, Lo A, Husain Z, Thadhani RI, et al.
Conversion of Peripheral Blood NK Cells to a Decidual NK-Like Phenotype
by a Cocktail of Defined Factors. J Immunol (2013) 190:3939–48.
doi: 10.4049/jimmunol.1202582

38. Siewiera J, Gouilly J, Hocine H-R, Cartron G, Levy C, Al-Daccak R, et al.
Natural Cytotoxicity Receptor Splice Variants Orchestrate the Distinct
Functions of Human Natural Killer Cell Subtypes. Nat Commun (2015)
6:10183. doi: 10.1038/ncomms10183

39. Castriconi R, Cantoni C,Della ChiesaM, VitaleM,Marcenaro E, Conte R, et al.
TransformingGrowth Factor Beta 1 Inhibits Expression of Nkp30 andNKG2D
Receptors: Consequences for the NK-Mediated Killing of Dendritic Cells. Proc
Natl Acad Sci USA (2003) 100:4120–5. doi: 10.1073/pnas.0730640100

40. Park YP, Choi S-C, Kiesler P, Gil-Krzewska A, Borrego F, Weck J, et al.
Complex Regulation of Human NKG2D-DAP10 Cell Surface Expression:
Opposing Roles of the Gc Cytokines and TGF-b1. Blood (2011) 118:3019–27.
doi: 10.1182/blood-2011-04-346825

41. Castriconi R, Dondero A, Bellora F, Moretta L, Castellano A, Locatelli F,
et al. Neuroblastoma-Derived TGF-b1 Modulates the Chemokine Receptor
Repertoire of Human Resting NK Cells. J Immunol (2013) 190:5321–8.
doi: 10.4049/jimmunol.1202693

42. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH. CD4(+) and CD8(+)
Anergic T Cells Induced by Interleukin-10-Treated Human Dendritic Cells
Display Antigen-Specific Suppressor Activity. Blood (2002) 99:2468–76.
doi: 10.1182/blood.v99.7.2468

43. Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. IL-10 Elicits
Ifng-Dependent Tumor Immune Surveillance. Cancer Cell (2011) 20:781–96.
doi: 10.1016/j.ccr.2011.11.003

44. Schwich E, Hò G-GT, LeMaoult J, Bade-Döding C, Carosella ED, Horn PA,
et al. Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2
Positive and ILT-2 Negative CD8 T Cells Complementary. Front Immunol
(2020) 11:2046. doi: 10.3389/fimmu.2020.02046

45. Chen J, Feng Y, Lu L, Wang H, Dai L, Li Y, et al. Interferon-G-Induced PD-
L1 Surface Expression on Human Oral Squamous Carcinoma via PKD2
Signal Pathway. Immunobiology (2012) 217:385–93. doi: 10.1016/
j.imbio.2011.10.016

46. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-Like
Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell (2019)
176:334–47.e12. doi: 10.1016/j.cell.2018.11.010

47. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The
Tim-3 Ligand Galectin-9 Negatively Regulates T Helper Type 1 Immunity.
Nat Immunol (2005) 6:1245–52. doi: 10.1038/ni1271

48. Devilard E, Xerri L, Dubreuil P, Lopez M, Reymond N. Nectin-3 (CD113)
Interacts With Nectin-2 (CD112) to Promote Lymphocyte Transendothelial
Migration. PloS One (2013) 8:e77424. doi: 10.1371/journal.pone.0077424

49. Russo E, Runge P, Jahromi NH, Naboth H, Landtwing A, Montecchi R, et al.
CD112 Regulates Angiogenesis and T Cell Entry Into the Spleen. Cells (2021)
10(1):169. doi: 10.3390/cells10010169

50. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The
Interaction of TIGIT With PVR and PVRL2 Inhibits Human NK Cell
Cytotoxicity. Proc Natl Acad Sci USA (2009) 106:17858–63. doi: 10.1073/
pnas.0903474106

51. Kalinski P. Regulation of Immune Responses by Prostaglandin E2.
J Immunol (2012) 188:21–8. doi: 10.4049/jimmunol.1101029

52. Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, et al.
Melanoma Cells Inhibit Natural Killer Cell Function by Modulating the
Expression of Activating Receptors and Cytolytic Activity. Cancer Res (2012)
72:1407–15. doi: 10.1158/0008-5472.CAN-11-2544

53. Balsamo M, Scordamaglia F, Pietra G, Manzini C, Cantoni C, Boitano M,
et al. Melanoma-Associated Fibroblasts Modulate NK Cell Phenotype and
Antitumor Cytotoxicity. Proc Natl Acad Sci USA (2009) 106:20847–52.
doi: 10.1073/pnas.0906481106

54. Qian X, Zhang J, Liu J. Tumor-Secreted PGE2 Inhibits CCL5 Production in
Activated Macrophages Through Camp/PKA Signaling Pathway. J Biol
Chem (2011) 286:2111–20. doi: 10.1074/jbc.M110.154971

55. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, et al. Tumor
Indoleamine 2,3-Dioxygenase (IDO) Inhibits CD19-CAR T Cells and Is
August 2021 | Volume 12 | Article 717850

https://doi.org/10.1056/NEJMoa1910607
https://doi.org/10.1371/journal.pone.0076781
https://doi.org/10.3390/cancers12113139
https://doi.org/10.3390/ijms18091868
https://doi.org/10.4274/tjh.2018.0196
https://doi.org/10.3389/fimmu.2021.681984
https://doi.org/10.3390/ijms22042150
https://doi.org/10.1093/annonc/mdz398
https://doi.org/10.1016/j.coph.2021.05.004
https://doi.org/10.1016/j.biopha.2020.110873
https://doi.org/10.1056/NEJMoa1709866
https://doi.org/10.1056/NEJMoa1817226
https://doi.org/10.3389/fonc.2014.00131
https://doi.org/10.3390/ijms21124346
https://doi.org/10.1073/pnas.211053698
https://doi.org/10.1007/s40264-018-0779-3
https://doi.org/10.1186/s12979-020-00187-9
https://doi.org/10.1016/j.cell.2008.07.001
https://doi.org/10.1016/j.cell.2008.07.001
https://doi.org/10.1084/jem.20190550
https://doi.org/10.1084/jem.20030152
https://doi.org/10.1593/neo.121758
https://doi.org/10.1593/neo.121758
https://doi.org/10.4049/jimmunol.1202582
https://doi.org/10.1038/ncomms10183
https://doi.org/10.1073/pnas.0730640100
https://doi.org/10.1182/blood-2011-04-346825
https://doi.org/10.4049/jimmunol.1202693
https://doi.org/10.1182/blood.v99.7.2468
https://doi.org/10.1016/j.ccr.2011.11.003
https://doi.org/10.3389/fimmu.2020.02046
https://doi.org/10.1016/j.imbio.2011.10.016
https://doi.org/10.1016/j.imbio.2011.10.016
https://doi.org/10.1016/j.cell.2018.11.010
https://doi.org/10.1038/ni1271
https://doi.org/10.1371/journal.pone.0077424
https://doi.org/10.3390/cells10010169
https://doi.org/10.1073/pnas.0903474106
https://doi.org/10.1073/pnas.0903474106
https://doi.org/10.4049/jimmunol.1101029
https://doi.org/10.1158/0008-5472.CAN-11-2544
https://doi.org/10.1073/pnas.0906481106
https://doi.org/10.1074/jbc.M110.154971
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Etxebeste-Mitxeltorena et al. Tumor Secretome in Cellular Immunotherapy
Downregulated by Lymphodepleting Drugs. Blood (2015) 125:3905–16.
doi: 10.1182/blood-2015-01-621474

56. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al.
LDHA-As soc i a t ed Lac t i c Ac id Produc t i on B lun t s Tumor
Immunosurveillance by T and NK Cells. Cell Metab (2016) 24:657–71.
doi: 10.1016/j.cmet.2016.08.011

57. Lee C-L, Vijayan M, Wang X, Lam KKW, Koistinen H, Seppala M, et al.
Glycodelin-a Stimulates the Conversion of Human Peripheral Blood CD16-
CD56bright NK Cell to a Decidual NK Cell-Like Phenotype. Hum Reprod
(2019) 34:689–701. doi: 10.1093/humrep/dey378

58. Rajagopalan S, Long EO. Cellular Senescence Induced by CD158d
Reprograms Natural Killer Cells to Promote Vascular Remodeling. Proc
Natl Acad Sci USA (2012) 109:20596–601. doi: 10.1073/pnas.1208248109

59. Schurich A, Magalhaes I, Mattsson J. Metabolic Regulation of CAR T Cell
Function by the Hypoxic Microenvironment in Solid Tumors.
Immunotherapy (2019) 11:335–45. doi: 10.2217/imt-2018-0141

60. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, et al.
Hypoxia Downregulates the Expression of Activating Receptors Involved in
NK-Cell-Mediated Target Cell Killing Without Affecting ADCC. Eur J
Immunol (2013) 43:2756–64. doi: 10.1002/eji.201343448

61. Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K, et al.
Granzyme B Degradation by Autophagy Decreases Tumor Cell
Susceptibility to Natural Killer-Mediated Lysis Under Hypoxia. Proc Natl
Acad Sci USA (2013) 110:17450–5. doi: 10.1073/pnas.1304790110

62. Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, et al.
Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their
Immunoregulatory Profile, and Influences NK Cell Subset Migration. Front
Immunol (2018) 9:2358. doi: 10.3389/fimmu.2018.02358

63. Donzelli S, Milano E, Pruszko M, Sacconi A, Masciarelli S, Iosue I, et al.
Expression of ID4 Protein in Breast Cancer Cells Induces Reprogramming of
Tumour-Associated Macrophages. Breast Cancer Res (2018) 20:1–15.
doi: 10.1186/s13058-018-0990-2

64. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic Tumor-
Derived Exosomal MiR-301a Mediates M2 Macrophage Polarization via
PTEN/PI3Kg to Promote Pancreatic Cancer Metastasis. Cancer Res (2018)
78:4586–98. doi: 10.1158/0008-5472.CAN-17-3841

65. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, et al.
Regulation of the Chemokine Receptor CXCR4 by Hypoxia. J Exp Med
(2003) 198:1391–402. doi: 10.1084/jem.20030267

66. Chen L, Wang S, Wang Y, Zhang W, Ma K, Hu C, et al. IL-6 Influences the
Polarization of Macrophages and the Formation and Growth of Colorectal
Tumor. Oncotarget (2018) 9:17443–54. doi: 10.18632/oncotarget.24734

67. Shrivastava R, Asif M, Singh V, Dubey P, Ahmad Malik S, Lone M-U-D,
et al. M2 Polarization of Macrophages by Oncostatin M in Hypoxic Tumor
Microenvironment is Mediated by Mtorc2 and Promotes Tumor Growth
and Metastasis. Cytokine (2019) 118:130–43. doi: 10.1016/j.cyto.2018.03.032

68. Kitamura T, Qian B-Z, Soong D, Cassetta L, Noy R, Sugano G, et al. CCL2-
Induced Chemokine Cascade Promotes Breast Cancer Metastasis by
Enhancing Retention of Metastasis-Associated Macrophages. J Exp Med
(2015) 212:1043–59. doi: 10.1084/jem.20141836
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187. Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al.
Reversal of Human Cellular Senescence: Roles of the P53 and P16 Pathways.
EMBO J (2003) 22:4212–22. doi: 10.1093/emboj/cdg417

188. Akbar AN, Henson SM. Are Senescence and Exhaustion Intertwined or
Unrelated Processes That Compromise Immunity? Nat Rev Immunol (2011)
11:289–95. doi: 10.1038/nri2959

189. Lee M, Kim DW, Khalmuratova R, Shin S-H, Kim Y-M, Han DH, et al. The
IFN-G-P38, ERK Kinase Axis Exacerbates Neutrophilic Chronic
Rhinosinusitis by Inducing the Epithelial-to-Mesenchymal Transition.
Mucosal Immunol (2019) 12:601–11. doi: 10.1038/s41385-019-0149-1

190. NayakTK,MamidiP, SahooSS,KumarPS,MahishC,ChatterjeeS, et al. P38and
JNK Mitogen-Activated Protein Kinases Interact With Chikungunya Virus
Frontiers in Immunology | www.frontiersin.org 18
Non-Structural Protein-2 and Regulate TNF Induction During Viral Infection
inMacrophages. Front Immunol (2019) 10:786. doi: 10.3389/fimmu.2019.00786

191. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, et al. PML
Regulates P53 Acetylation and Premature Senescence Induced by Oncogenic
Ras. Nature (2000) 406:207–10. doi: 10.1038/35018127

192. Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V. Granule
Exocytosis Mediates Immune Surveillance of Senescent Cells. Oncogene
(2013) 32:1971–7. doi: 10.1038/onc.2012.206

193. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, et al.
Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell (2008)
134:657–67. doi: 10.1016/j.cell.2008.06.049

194. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH. P53-
Dependent Chemokine Production by Senescent Tumor Cells Supports
NKG2D-Dependent Tumor Elimination by Natural Killer Cells. J Exp Med
(2013) 210:2057–69. doi: 10.1084/jem.20130783

195. Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, et al.
Clearance of Senescent Decidual Cells byUterineNatural Killer Cells in Cycling
Human Endometrium. Elife (2017) 6:e31274. doi: 10.7554/eLife.31274

196. Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P,
Patel N, et al. Senescent Cells Evade Immune Clearance via HLA-E-
Mediated NK and CD8+ T Cell Inhibition. Nat Commun (2019) 10:2387.
doi: 10.1038/s41467-019-10335-5

197. Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M,
Ludwig A, et al. Tumor-Associated MICA Is Shed by ADAM Proteases.
Cancer Res (2008) 68:6368–76. doi: 10.1158/0008-5472.CAN-07-6768

198. Baek K-H, Bhang D, Zaslavsky A, Wang L-C, Vachani A, Kim CF, et al.
Thrombospondin-1 Mediates Oncogenic Ras-Induced Senescence in Premalignant
Lung Tumors. J Clin Invest (2013) 123:4375–89. doi: 10.1172/JCI67465

199. Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD.
Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol
Sci (2021) 22(9):4570. doi: 10.3390/ijms22094570

200. Nath PR, Gangaplara A, Pal-Nath D, Mandal A, Maric D, Sipes JM, et al.
CD47 Expression in Natural Killer Cells Regulates Homeostasis and
Modulates Immune Response to Lymphocytic Choriomeningitis Virus.
Front Immunol (2018) 9:2985. doi: 10.3389/fimmu.2018.02985

201. Guillon J, Petit C,MoreauM, Toutain B, Henry C, Roché H, et al. Regulation of
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Combined Stimulation With Interleukin-18 and Interleukin-12 Potently
Induces Interleukin-8 Production by Natural Killer Cells. JIN (2017)
9:511–25. doi: 10.1159/000477172
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