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Abstract

We present a method to measure the relative transmissibility (‘‘transmission fitness’’) of one strain of a pathogen compared
to another. The model is applied to data from ‘‘competitive mixtures’’ experiments in which animals are co-infected with a
mixture of two strains. We observe the mixture in each animal over time and over multiple generations of transmission. We
use data from influenza experiments in ferrets to demonstrate the approach. Assessment of the relative transmissibility
between two strains of influenza is important in at least three contexts: 1) Within the human population antigenically novel
strains of influenza arise and compete for susceptible hosts. 2) During a pandemic event, a novel sub-type of influenza
competes with the existing seasonal strain(s). The unfolding epidemiological dynamics are dependent upon both the
population’s susceptibility profile and the inherent transmissibility of the novel strain compared to the existing strain(s). 3)
Neuraminidase inhibitors (NAIs), while providing significant potential to reduce transmission of influenza, exert selective
pressure on the virus and so promote the emergence of drug-resistant strains. Any adverse outcome due to selection and
subsequent spread of an NAI-resistant strain is exquisitely dependent upon the transmission fitness of that strain.
Measurement of the transmission fitness of two competing strains of influenza is thus of critical importance in determining
the likely time-course and epidemiology of an influenza outbreak, or the potential impact of an intervention measure such
as NAI distribution. The mathematical framework introduced here also provides an estimate for the size of the transmitted
inoculum. We demonstrate the framework’s behaviour using data from ferret transmission studies, and through simulation
suggest how to optimise experimental design for assessment of transmissibility. The method introduced here for
assessment of mixed transmission events has applicability beyond influenza, to other viral and bacterial pathogens.
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Introduction

Under the selective pressure from the host immune system on

the influenza haemagglutinin (HA) and the ecological environ-

ment, antigenically novel HA ‘drift variants’ of influenza A (IAV)

generated by random mutation during replication emerge and

circulate in the human population. Intermittent cross-species

transmission and/or re-assortment events have the potential to

generate antigenically novel (at least for the HA and NA genes)

mutant strains of IAV. If transmissible such strains have

pandemic potential [1]. As seen in 1918/19, 1957 and 1968,

following a brief period of co-circulation with the existing

seasonal strain, the pandemic strain typically drives to extinction

the previously circulating seasonal variant, to which there is

greater prior immunity. However, replacement is not a necessity.

In 1977 the existing H3N2 strain continued to circulate after re-

emergence of H1N1. In 2010, indications are that the 2009

pandemic H1N1 has replaced the seasonal H1N1 but not the

seasonal H3N2 [1,2].

The use of antiviral drugs has the potential to provide an

additional selective pressure on the influenza virus. Between 2007

and 2009 widespread resistance to oseltamivir, the most common

neuraminidase inhibitor (NAI), emerged for the H1N1 seasonal

IAV [3–6], although this replacement event occurred despite the

absence of widespread use of oseltamivir in the human population.

The mutation in these oseltamivir-resistant H1N1 viruses is a

histidine-to-tyrosine mutation at residue 274 (H274Y) in the

neuraminidase (NA) gene. The epidemiological observation of

replacement indicates that it has a transmission fitness similar to,

or greater than, that of the sensitive strain. Other NAI-resistant

viruses can have significantly reduced fitness, such that they are

unlikely to spread through the population. For example, an

arginine-to-lysine mutation at residue 292 (R292K) in the NA

gene of seasonal H3N2 viruses confers oseltamivir resistance, but
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this mutant has not been observed to readily transmit from one

host to another [7,8]. At present, the 2009 pandemic H1N1 strain

remains largely sensitive to oseltamivir and has almost entirely

replaced the previously circulating NAI-resistant (H274Y) H1N1

strain [2,3,9].

Accordingly, during times of co-circulating seasonal strains,

emergence of new antigenic seasonal variants, seasonal to

pandemic transitions or emergence of drug-resistant strains,

assessment of whether or not one strain will out-compete the

other and come to dominate the human epidemiology is of

relevance to public health planning and response. Key to making

predictions on the dynamics of such events is the relative

transmission fitness of one strain compared to another. Our group

has previously published, in the context of NAI-resistant and NAI-

sensitive strains, observations of both growth of mixtures within an

animal model and sustained transmission of mixtures over multiple

host generations of infection [8]. The observation of transmission of

mixtures allow us to measure the relative transmissibility (‘‘trans-

mission fitness’’) of one strain compared to the other. Govorkova

et. al. employed a similar experimental design to compare the

within-host fitness of an oseltamivir-sensitive and oseltamivir-

resistant H5N1 influenza virus pair, but as H5N1 does not

transmit readily in the ferret, they were unable to make an

assessment of transmission fitness [10]. Duan et. al. have also

employed the technique to compare drug-sensitive and -resistant

H1N1 pandemic strains [11], probing both contact and respira-

tory droplet transmission routes.

We introduce a mathematical and statistical framework to

capture the key characteristics of transmission of mixtures. Our

framework allows us to derive a causative-model based estimate of

the transmission fitness-cost (or fitness-gain as the case may be) for

one strain compared to the other and suggest a method for

designing optimised animal experiments. Furthermore, we derive

an estimate for the number of successfully infecting units

transferred from the donor to recipient, an important measure-

ment for helping parameterize epidemiological models of

influenza transmission that consider, for example, the emergence

and subsequent spread of NAI-resistant strains [12–14].

Methods

Motivation
Figure 1 (adapted from the author’s results and reproduced with

permission [8]) presents data from a series of contact transmission

studies in naı̈ve ferrets. The abscissa shows the proportion of the

infecting ferret’s viral-load at the time of transmission that is

oseltamivir-resistant (the ‘‘mutant’’ strain). The remainder is

oseltamivir-sensitive (the ‘‘wild-type’’ strain). The ordinate shows

the proportion of the infected ferret’s viral-load that is the mutant.

Briefly (see [8] for experimental details, and Section Effects due

to data ascertainment limitations for a detailed discussion of the

consequences), the ferrets were swabbed daily, and infection

identified by positive real-time RT-PCR. We plot the mutant-

proportion in the infected ferret’s first positive swab against the

mutant-proportion in the infecting ferret’s swab from the day

prior.

We see that the R292K mutant (circles) does not transmit: no

mutant virus is detectable in any of the infected ferrets, the data

covering a wide range for the infector’s mutant proportion.

For the H274Y mutation we have two generations of

transmission. A donor ferret experimentally inoculated with a

mixture transmits to a recipient ferret (squares). This ferret is then

the infector for the second generation of transmission to another

ferret (triangles). The data are consistent with the hypothesis that

the infectee’s mutant proportion is given by the infector’s mutant

proportion at the time of transmission.

For convenience, we will always refer to the infector as the

donor and the infectee as the recipient. We will use p to represent

the mutant proportion in the donor and q the mutant proportion

Figure 1. The infectee’s mutant (oseltamivir-resistant) propor-
tion, q, as a function of the infector’s mutant proportion, p. Each
point (p,q) in the figure is a single transmission event between two
ferrets. Circles (p) are transmission events for the R292K strain, the
mutant known to be severely compromised from previous studies. An
experimentally inoculated ‘donor’ infected a first generation ‘recipient’.
Squares (h) and triangles (D) are the first and second generation
transmission events for the H274Y strain: donors infecting first
generation recipients (squares), and those recipients infecting second
generation recipients (triangles). We show the dotted line q~p (unit
gradient) for reference. Figure (with minor modifications) reproduced
from the author’s previous work [8] with permission from the American
Society for Microbiology.
doi:10.1371/journal.pcbi.1002026.g001

Author Summary

Determining which of two related viruses will spread from
human to human more efficiently – e. g. an influenza virus
that is treatable with drugs and one that is resistant to
them – is important when forecasting the potential impact
of an emergent novel virus or developing public health
intervention strategies. However, making such measure-
ments of relative transmissibility directly through obser-
vation, even using an animal model, is difficult. We have
recently developed and published an experimental tech-
nique in which an animal is infected with both viruses of
interest at once, and then allowed to mix with other
animals and so transmit the infection. These experiments
provide the necessary data for analysis using the novel
mathematical framework that we introduce here. Our
mathematical and computational results exploit the power
of the experimental system, and allow us to make a
quantitative estimate of the relative transmissibility of a
drug-resistant influenza virus compared to its drug-
sensitive counterpart. Through computer simulation, we
demonstrate the wider application of our mathematical
technique, and suggest design criteria for future experi-
ments designed to measure the transmissibility of one
virus (or other type of pathogen) compared to another.

A Model for Determining Transmission Fitness
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in the recipient. A data set will be said to have K transmission

events (pk,qk), k[f1, � � � ,Kg.
Three key observations can be made for the H274Y data

(squares and triangles in Figure 1):

N The recipient’s proportion, q, is not constrained to be either

zero or one, indicating that there must be more than one virion

that successfully enters the recipient and establishes infection.

In fact, if we have observed the proportion in the recipient

early enough (that is, before significant exponential viral

replication has taken place), then the resolution at which the

proportions are reported suggests a lower bound on the

number of infecting virions. For example, if only three virions

were transmitted, then the initial mutant proportion, q, can

take only one of four values, seleted from the set

f0,1=3,2=3,1g. Of course, experimental error will allow for

some variation about any one of these four values.

N The fluctuations about the line q~p indicate that a stochastic

process is at play, either in the transmission event itself or in

the early growth phase of the infection within the recipient.

N For one of the second generation transmission events (triangles,

Figure 1) the recipient’s infection was pure wild-type even

though the donor’s infection was mixed (data point at

(p,q)~(0:1,0), lower left of Figure 1). This indicates that

mixed-infections can be lost over time due to the stochastic

nature of the transmission and early-replication processes.

We now introduce a model framework to help understand these

observations.

A simple model of mixture transmission
We consider a model with two viral strains, A and B. For

example, A could be the oseltamivir-resistant mutant (either

R292K or H274Y) and B the oseltamivir-sensitive wild-type, as in

Figure 1. We introduce the following notation:

N Just prior to transmission, a proportion, p, of an infectious donor

ferret’s viral load is of strain A and a proportion 1{p is of

strain B.

N Per infectious virion in the donor, a strain B virus is f times as

likely to be secreted (in a potentially infectious way) than a

strain A virus. Typically we consider f §1.

N Having entered the recipient host, the within-host reproductive

numbers of strain A and B viruses are RA and RB respectively.

Stage I: Seeding of virus in the recipient ferret. Suppose

that the recipient acquires V virions from the donor in the

transmission event, a mixture of strain A and strain B. For

completeness (and we will return to this in the Discussion), these

may be clumped in multiple infectious entities or separate. If

clumped, then each infectious entity may itself be a mixture of

strain A and strain B virions. In any case, a straightforward

calculation shows that the expected (mean) composition of this

load immediately upon infection is as follows:

N Vp

pz(1{p)f
particles are of strain A.

N V (1{p)f

pz(1{p)f
particles are of strain B.

Stage II: Subsequent extinction and growth of surviving

virus in the recipient ferret. Lodgement-site specific factors

within the host (independent of strain (A or B)) will prevent all but

a proportion E of the V virions from invading a susceptible cell. Of

those that do initiate replication, the expected proportion of strain A

that survive stochastic extinction is 1{1=RAð Þ, and similarly for

strain B [15].

The surviving progeny are then assumed to undergo exponen-

tial growth. We neglect mutation from one strain to another. Some

subtleties in the process just described are explored in the

Discussion. Thus after t units of generation-time the number of

strain A virus particles is:

Vp

pz(1{p)f
E(1{1=RA) exp½(RA{1)t�, ð1Þ

and likewise for the number of strain B particles. Thus, after some

algebra, the proportion of particles being strain A after t units of

generation-time is:

PA(p,t)~
p

pz(1{p)f :h(RA,RB,t)
, ð2Þ

where

h(RA,RB,t)~exp (RB{RA)t½ � 1{1=RB

1{1=RA

: ð3Þ

We will usually write PA(p) for PA(p,t) (and similarly h(RA,RB))
unless we are explicitly considering the generation-time in our

analysis. We identify q (the ordinate in Figure 1) with PA(p,t).

If RA~RB then h~1. Further, h(RA,RB) is an increasing

function of RB and a decreasing function of RA, so that if RBwRA

then hw1, and vice versa. Moreover, if strain A is less secreted

than strain B then we have f w1. Overall then, having hf w1
means that strain B would outgrow strain A in the recipient, given

an even mixture in the donor.

We write s~ln(hf ) as a shape parameter and introduce the

functional form:

PA(p,s)~
p

pz(1{p)es
, ð4Þ

where {?vsv?.

The shape parameter, s, may be interpreted as an overall

relative viral fitness of strain A compared to strain B, accounting

for three factors: (1) secretion from the donor, (2) the initial

extinction probability in the recipient and (3) subsequent growth in

the recipient.

For example, consider the case in which a drug-resistant mutant

(strain A) is seeded within a population where the wild-type (strain

B) is currently circulating. The strains are antigenically similar

(and assumed identical for the sake of this argument) removing any

possibility of immunologic selection. In the absense of any drug-

selective pressure, if s is positive then the wild-type has an

advantage over the drug-resistant mutant and so we expect it to

continue to dominate the epidemiology. Conversely, if s is

negative, then the mutant has a fitness advantage and over time

would be expected to replace the wild-type strain in the

population.

We have constructed s from two components, f and h, for

mathematical convenience and the form has allowed us to

interpret the meaning of sw0 and sv0. We also find it convenient

to decompose the overall measure of relative fitness, s, another

way. From the three biological factors identified above (labelled

(1), (2) and (3)), we consider two components: a within-host

‘‘replication fitness’’ (3) captured by the exponential term in h and

a relative ‘‘transmission fitness’’ of strain A compared to strain B,

A Model for Determining Transmission Fitness
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accounting for secretion (1) and extinction (2) given by:

w~
1

f

1{1=RA

1{1=RB

� �
: ð5Þ

For completeness, although not used herein, we write

s~ln 1=wð Þexp RB{RAð Þt½ �f g. Figure 2 shows four representative

curves for the mean behaviour expected from the model, for the

simplifying case RA~RB, in which t drops out of the model and

s~ln 1=wð Þ~ln(f ).

Variation in the recipient’s strain A (mutant) proportion
Equation 4 provides the mean estimate for the recipient’s strain

A proportion given the donor’s strain A proportion. We wish to

derive an estimate for the number of virions transmitted (in a

successfully infecting way) and to this end make use of the

variation about the mean predicted by equation 4.

We present an approach for the estimation of N, the number of

virions transmitted and that initiate infection per exposure event.

Note that NƒV and likely N%V , where V is the number of

virions secreted from the donor and that enter into the recipient’s

airways. The method relies on repeated observations of successful

transmission events. Initially we assume that there is no

experimental error on the data points and that the number of

virions transmitted is fixed across each exposure event.

Before proceeding, we introduce some useful nomenclature.

Scripted variables (e.g. Q) will represent simulated data, non-

scripted variables (e.g. P), calculations from model equations. Sets

will be denoted as f:g, with the kth element of a set given by f:gk.

Matching of the residual sum of squares between data

and simulation. If we are willing to assume that there is no

measurement error for the donor and recipient strain A

proportions – that is, that the only factor leading to the observed

deviation of the recipients’ proportions from the model predictions

is the inherent stochastic nature of the transmission process – then

we can make an estimate for N .

The usual estimation quantity for a binomial process is the

probability of success, given the number of draws. Here, we are

interested in the converse: the number of transmitted virions

(equivalently, ‘‘draws’’), given information on the probability of

infection per virion (equivalently, ‘‘success’’).

We consider K transmission events, each defined by a tuple

(pk,qk), k[f1, � � � ,Kg, plotted as in Figure 1. First, we determine

the best fit model (equation 4), PA(p,s) with corresponding

estimate, sest, for the shape parameter, and calculate the residual

sum of squares, RSSD, for the data from the model:

RSSD~
XK

k~1

PA(pk,sest){qkð Þ2: ð6Þ

Having determined the RSS of the data given the model,

RSSD, we now ask: What inoculum size, N, when used to

generate synthetic data from the best-fit model with shape

parameter sest, gives an RSS closest to RSSD?

As a function of N (with N~1 up to N~Nmax, with Nmax some

sufficiently large integer), we simulate the random draw of nk

particles of strain A from Bin(N,PA(pk,sest)), where PA(pk,sest) is

identified as the probability of selecting a strain A virion from the

N transmitted virions. We obtain a simulated data set Q(N), with

fQ(N)gk:PA(pk,N)~nk=N.

We calculate the residual sum of squares, RSSM(N), for the

simulated data (compared to the model) as a function of N :

RSSM(N)~
XK

k~1

PA(pk,sest){nk=Nð Þ2: ð7Þ

We then choose the minimum difference in RSS as our estimate

for N :

Nbest~ min
N
jRSSD{RSSM(N)jð Þ: ð8Þ

Finally, we repeat, scanning over N for many generated

synthetic data sets Q(N), on each occasion selecting that N with

minimum difference in RSS as our estimate Nbest. We obtain an

empirical distribution of best fit N s, from which we can calculate

an average, N̂N, and variance.

Effects due to data ascertainment limitations
Until now, we have implicitly assumed that an observation (p,q)

is without error. However, experimental limitations, including

animal ethics principles and practicalities within the laboratory

environment, introduce uncertainty into any measurement of a

transmission event. Three sources of experimental error are of

potential significance:

1. The mutant and wild-type viral loads are measured using a

real-time RT-PCR (rRT-PCR) assay.

2. The animals are swabbed at periodic intervals, introducing a

sampling window for the time of infection. In the H274Y

experiments used here, and published in full by Hurt et. al.

[14], swabs are taken daily.

3. In the experimental design used by Hurt et. al. [14] there are

two donor ferrets housed with a single recipient ferret in the

first generation of transmission (squares in Figure 1).

Figure 2. Representative curves for four shape parameters,
s~ln(hf ). We assume RA~RB and so h~1. We label the curves by the
relative ‘‘transmission fitness’’ of strain A compared to strain B,
w~1=f ~exp({s). We have w~0:1 (s~2:3026) (solid line): strain A’s
transmission fitness is 10% that of strain B, w~0:9 (s~0:10536) (dashed
line): strain A’s transmission fitness is 90% that of strain B, w~1:0 (s~0)
(dotted line): strain A and strain B have equal transmission fitness, and
w~10 (s~{2:3026) (dash-dotted line): strain A’s transmission fitness is
10 times that of strain B.
doi:10.1371/journal.pcbi.1002026.g002

A Model for Determining Transmission Fitness
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Each needs to be assessed and if necessary accounted for when

performing the proposed analysis on a new data set. We address

each issue in turn, in a semi-quantitative way, using the H274Y

data to illustrate the issues.

The rRT-PCR assay. The strain A (mutant) proportion as

measured using the rRT-PCR assay is accurate to within 1–3

percentage points across experimental repeats [8]. Furthermore,

per assay, the result is extremely accurate as the following analysis

reveals. Per cycle in the rRT-PCR assay, the amount of product

doubles (prior to saturation). The cycle-threshold (Ct) is defined as

the number of cycles required for the product (marked by a

fluorescent signal) to exceed a specified threshold. A lower Ct

value indicates a larger quantity of product in the sample as fewer

doubling cycles are required to reach the threshold. The strain A
proportion is determined from the differences in Ct values for the

strain A and strain B strains as follows:

Proportion(mutant)~1{
1

1z2 CtB{CtAð Þ

 !
: ð9Þ

The Ct values are measured to two decimal places in the

experiments reported by Hurt et. al. [8]. A simple numerical

calculation probing the worst-case scenario (attempting to

maximise (or minimise) the difference CtB{CtA) shows that

with this accuracy on the recording of the Ct values, the mutant

proportion as calculated using this formula and reported by Hurt

et. al. [8] would be unchanged (at two significant figures for the

proportion) in almost all cases. A few of Hurt et. al. ’s reported

values could, in the worse case, fluctuate by just 1 percentage

point.

In summary, based on repeatability of rRT-PCR assay, we may

expect a small (v5) percentage point error to be introduced.

Periodic sampling for infection. The second issue proves

more interesting. With a daily sampling window for swabbing the

animals, we potentially introduce a systematic bias into the reported

paired (p,q) transmission results. Figure 3A represents a donor

(‘‘Donor’’) infected at day d~1 and infecting a recipient ferret

during the time window (d�,d�z1). We show two different – that is

non-concurrent and non-interacting – hypothetical transmission

events to a recipient, termed either ‘‘Recipient T1’’ or ‘‘Recipient

T2’’ as appropriate. All swabs for all animals are taken at days

1, . . . ,d�,(d�z1), . . .. A transmission event occurring in the time

window (d�,d�z1) will be recorded as (p,q1) or (p,q2) for

Recipient T1 or T2 respectively, and by construction, both of

these pair-values will be the same. However, as shown in Figure 3,

Recipient T1 was infected just after time point d� while Recipient

T2 was infected just prior to time point (d�z1). Figure 3B plots a

square at location (p,q) as recorded in the experiment. Assuming

that the within-host transmission fitness of the mutant is less than

that of the wild-type (RAvRB), and that stochastic processes do not

overwhelm this systematic effect of a reduced replication rate for the

mutant, the arrows (RT1 for Recipient T1 and RT2 for Recipient

T2) show the direction in which the true transmission pair (p,q1,2)
would lie. We argue as follows:

N For ‘‘Recipient T1’’, as d1?0, the measurement for p is exact,

while the measurement for q1 (recorded at time (d�z1)) is a

full time-unit too late. The correct value for q1 is that which

would have been recorded just after time point d�. Assuming

RAvRB, this will be a larger value. We can only infer this

value by fitting a model to the mutant proportion over time

and back projecting as the swab for Recipient T1 at time d�

was by definition negative.

N For ‘‘Recipient T2’’, as d2?0, the measurement for q2 is exact,

while the measurement for p (recorded at time d�) is a full time-

unit too early. The correct value for p is that recorded at time

point (d�z1). Assuming RAvRB this will be a smaller value.

The diagonal arrow shows the ‘‘correction-direction’’ for an

infection occurring at an arbitrary infection time during the time

window (d�,d�z1) for the case when RAvRB. Note that if the

mutant were more fit than the wild-type (RAwRB), the bias

(arrows) would be in the opposite direction. For equally fit viruses,

there is no bias introduced due to the measurement period.

The preceding argument assumed that the within-host dynam-

ics proceeded in a systematic noise-free way, with the measure-

ment for p or q over time being well behaved and well predicted by

the difference between RA and RB. If, however, stochastic

processes overwhelm the systematic within-host differences

between strains, then the potential bias introduced due to the

sampling may not be evident in the data. The revised mutant

proportion (in either the donor or recipient) may be either larger

or smaller than the reported value. In this case examination of the

experimental data on a case-by-case data is necessary and then

only ‘‘Recipient T2’’ type events may be reliably assessed as

without data at time point d� for a ‘‘Recipient T1’’ event no

revised estimate for q is available.
Multiple donor ferrets. The third issue arising from the

experimental design – and one which is easily avoidable in future

experiments – is that we do not know which donor ferret was

responsible for the transmission event to the first recipient. The

mutant proportion for the donor shown in Figure 1 is the average

of the mutant proportions in the two donor ferrets at the sample

time directly proceeding confirmation of infection in the recipient.

As it may be that the mutant proportion as measured each day in

any given ferret is subject to substantial fluctuations, and that each

donor ferret has a unique experience, there is significant potential

for this source of error to be large.

For the five relevant transmission events in the H274Y

experiment we have the following donor p pairs (not (p,q) pairs)

at the time of transmission: (0.00,0.00), (0.09,0.09), (0.38,0.31),

(0.56,0.64) and (0.96,0.94). In this small sample, we have up to a 4

percentage point difference between the average across donors

and individual recorded values.

In general, there is scope for significant uncertainty due to

multiple potential sources of infection and the statistical inference

should take this into account.

Synthetic data for simulation-estimation studies for
algorithm testing and experiment design

With only a limited amount of data available from ferret

experiments, we use results from simulation-estimation studies to

optimize future experimental design and make predictions on the

likely precision of estimates for shape parameters from future

experimental observations.

Our simulation model has four free parameters:

N K , the observed number of transmission events. We consider

k[f1, � � �Kg;
N fpkg, the set of assumed values for the donors’ strain A

proportion at the times of transmission;

N s, the assumed shape parameter, which if we assume RA~RB

and so h~1, is determined by the relative transmission fitness,

w~exp({s), of strain A compared to strain B; and

N Nk, the assumed number of virions transferred from the

donor to recipient in the kth transmission event. Here we will

assume Nk~ �NN Vk but in general may consider Nk to be

A Model for Determining Transmission Fitness
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sampled from N*Poiss( �NN), where �NN is the expected number

of virions transferred from the donor to recipient in a

transmission event.

Synthetic data, Q with fQgk:PA(pk,Nk), for k[f1, � � � ,Kg
transmission events, each from a donor transmitting Nk virions

with strain A proportion pk at the time of transmission, is

generated as follows.

First, we specify the shape parameter s for equation 4, defining

PA(p). If Nk is a random integer drawn from Poiss( �NN) and nk is a

random integer drawn from Bin(Nk,PA(pk)) then our synthetic

data, Q, are given by (k[f1, . . . ,Kg):

PA(pk,Nk)~nk=Nk: ð10Þ

If Nk~ �NN Vk[f1, � � � ,Kg then fQgk~PA(pk, �NN)~nk= �NN.

Estimation of s and N
We estimate the shape parameter, s, by fitting the model

(equation 4) to either real or synthetic data, by application of non-

linear least squares regression (routine nlinfit in MATLAB

R2010a). We estimate the number of virions, N , using equations

6 through 8.

Results

We now present results of applying our model to both data from

ferret experiments and simulation studies. We re-iterate that our

use of data from the contact transmission study [8] is to

demonstrate proof-of-principle, and that our results cannot be

seen as definitive for the particular influenza virus pair used in that

experiment, due to the small number of observed transmission

events and some of the limitations as discussed earlier in Section

Effects due to data ascertainment limitations.

Estimates for s (and so w) and N from the H274Y ferret
experiments

Applying our model equation 4 to the data for the H274Y

mutation shown in Figure 1 (and assuming the data are

recorded without error – see below for a generalised analysis)

provides an estimate for the shape parameter of

exp(s274)~0:771 with a 95% confidence interval of (0.259,

2.30), calculated under the assumption of i.i.d Gaussian

residuals, which is not strictly true. Assuming RA~RB – which

is a valid approximation given the within-host analysis of this

data set [8] – the corresponding estimate for the relative

transmission fitness for the H274Y mutant, in a direct-contact

scenario, is w~1:30 (0.44,3.9). We predict that an average 3.8

virions were responsible for each transmission event, with a

variance for our estimate of 5.9, but we caution that this

estimate is based on an assumption of data recorded without

error. Figure 4A shows the model fit to the H274Y data and

Figure 4B shows a histogram of the best N’s.

Assessment of effects due to bias in the sampling

window. We now account for the three sources of error

discussed in Section Effects due to data ascertainment limitations.

Firstly, the rRT-PCR assay introduces a small (1–3 percentage

point) uncertainty into our data (both p and q). Secondly, as

reported on in detail by Hurt et. al., data were collected at daily

intervals from the ferrets [8]. An examination of that data

indicates that stochastic, rather than systematic, effects dominate.

The mutant (strain A) proportion measured at adjoining time

points shows significant variation over and above the systematic

reduction expected from the marginally reduced within-host

fitness of the mutant. In consequence, while we cannot make an

assessment of the ‘‘Recipient T1’’ error (see below), we can still

make a direct estimation of the ‘‘Recipient T2’’ error from the

daily mutant proportion data. We estimate (in a semi-quantitative

way) that we may introduce up to a 10–15 percentage point error

in p due to this stochastic variation, but it may be far less for any

Figure 3. Bias due to periodic sampling for infection. A: A sketch of two hypothetical transmission events occurring at some time between
days n and nz1. Measurements of viral load are taken from the donor and recipients on days f1,2, . . . ,d�,d�z1, . . .g. The transmission from Donor to
Recipient T1 occurs at time d�zd1 . The transmission from Donor to Recipient T2 occurs at time d�z1{d2. For both events we record the Donor’s
strain A proportion, p, at time d� and the recipient’s strain A proportion, q, at time d�z1. B: A sketch of the recorded data point (h) assuming that
systematic processes dominate and that the strain A proportion drops over time due to a reduced within host reproduction fitness of the strain A
strain. The arrows RT1 and RT2 for recipients 1 and 2 respectively in A indicate the direction in which the true infection event lies in the (p,q)-plane
for small d. The diagonal arrow shows the ‘‘correction-direction’’ for an infection event occurring at an arbitrary time point between times d� and
d�z1. Note that because the process of viral growth within the host is non-linear, the relative shift horizontally and vertically cannot be related
directly to the time of infection between d� and d�z1. If the strain A virus had a higher within-host replication fitness than the strain B, then the
arrows would be reversed. If stochastic processes dominate, the systematic effect may be overwhelmed, leading to reduced bias due to the sampling
window.
doi:10.1371/journal.pcbi.1002026.g003
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individual data point. Conservatively, in the absence of

information to inform the ‘‘Recipient T1’’ error we allow for an

additional 10 percentage point error on q. Finally, we can also

assess the possible modifications to model based inferences due to

averaging across the two donor ferrets for the first transmission

event in each experiment. We estimate that the variation due to

this is of the order of 5–10 percentage points, again an influence

on p and variable from data point to data point. The data in [8]

allows us to make a direct estimate of this on a transmission-event

by transmission-event basis.

Listing the transmission events shown in Figure 4A from left to

right on the p-axis, Table 1 shows our estimate for the plausible

range for that tuple’s p and q values. For clarity, we list all entries

as percentage points, rather than proportions.

To make an assessment of the influence that these uncertainties

may have in estimating the relative transmission fitness of strain A,

we take a simulation approach. We generate 1,000 equivalent

synthetic data sets in which, for each of the 10 observed

transmission events, p and q for the tuple are drawn independently

and randomly from the uniform distribution over the range

identified in Table 1. For each of the 1,000 synthetic data sets we

fit the model, recording the best fit shape parameter s. Reporting

the relative transmission fitness for convenience, we recover

west~1:05 (0.51, 1.73), where the 95% confidence interval is

empirically determined from the distribution of recovered best fit

values for w over the 1,000 simulations. Similarly, to determine the

number of transmitted virions, N , we apply equations 6–8 to each

synthetic realisation, and combine the empirical distributions,

obtaining a mean of 4.3 and variance of 9.8. Figure 5 shows the

results.

Comparing these results to those in Figure 4, the key difference

is an extension in the tail of the distribution for the number of

virions transmitted. Over the 1,000 samples of the synthetic data,

some will fall closer to the model curve, and so the residual

variation, attributed to the stochastic nature of the transmission

process, will be smaller. The consequence is a larger estimate for

N . A minority of synthetic data sets based on the distributions for p
and q as shown in Table 1 have this reduced residual variance,

while the mean is almost unchanged, suggesting that the method

first presented in which the three sources of experimental error are

ignored is valid, at least for this data set.

Estimation of s and N from simulations
Simulated scenarios. For reporting convenience we here

assume that RA~RB and present the relative transmission fitness,

w~exp({s) rather than the shape parameter, s. If RA=RB one

needs to make an estimate of the reproduction numbers by other

means to separate out the within-host and transmission com-

fponents of the overall relative fitness of strain A compared to strain B.

To assess the possible variation in observed data and implications

for inference, we generate 1,000 simulated data sets for each

specified combination of parameters shown in Table 2. We then

extract the best fit shape parameter, s and number of transmitted

virions, N , for each simulated data set. Determination of the

average best fit shape parameter and average best fit number of

virions is done numerically in order to avoid unnecessary

assumptions of normality when estimating confidence intervals.

Scenario A1, based on the H274Y data, provides the reference

point for all other scenarios. Scenarios A2, A3 and A4 explore a

Figure 4. Model fit (s and N) for the H274Y data. A: Best fit (sold line) and 95% confidence interval (dashed lines) model curves for the H274Y
data (squares) shown in Figure 1. B: Histogram of the best fit number of virions, based on 1,000 sets of simulation scans over N . The mean is N̂N~3:8
and variance is 5.9.
doi:10.1371/journal.pcbi.1002026.g004

Table 1. Assessed credible range for the H274Y transmission
data tuples (p,q).

Transmission
event (p,q)

p, assessed
interval for p

q, assessed
interval for q

(0,0)* 0, [0,0] 0, [0,0]

(8,0) 8, [6,19] 0, [0,0]

(9,20) 9, [7,32] 20, [12,28]

(12,43) 12, [10,36] 43, [35,51]

(34.5,68) 34.5, [3,40] 68, [60,76]

(60,33) 60, [44,73] 33, [25,41]

(82,63) 82, [64,84] 63, [55,71]

(95,99) 95, [92,100] 99, [91,100]

(99,94) 99, [97,100] 94, [86,100]

The experimentally reported data tuples (p,q) (shown as a percentage for
clarity) for each of the 10 transmission events shown in Figure 4A (column 1)
and an estimate for the uncertainty in p (column 2) and q (column 3) based on
the three sources of error as discussed above and in the Methods.
*Note that there are two transmission events at (0,0).
doi:10.1371/journal.pcbi.1002026.t001
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reduction in the relative transmission fitness to 0.9, 0.8 and 0.5

respectively, while keeping the number of transmission events, K ,

fixed at 10. In scenarios B1{4 the number of observed

transmission events is increased by a factor of three to 30, while

all other biological and experimental parameters are kept

unchanged relative to the A-scenarios. Scenarios C1{4 examine

a further increase in the number of observed transmission events to

90. Scenarios D1 and D2 explore if more limited strain A
proportion ranges in the donors (the set fpkg) may change the

precision of the estimates for w and/or N. Scenarios E1 and E2

examine hypothetical mutants which transmit a larger number of

virions (N~50) in a typical transmission event.

Parameter estimates for scenarios. Figure 6 shows a

summary of the recovered estimates for the relative transmission

fitness, w and the transmitted inoculum size, N, for the 12

simulations A1 through C4 listed in Table 2. Results for scenarios

D and E are presented in Text S1. Each boxplot shows the

median, 25th and 75th centiles with tails extending to the upper

and lower adjacent values and outliers shown as crosses. The

asterisk marks the true value used in the simulation. Note that a

log scale has been used for N due to the extended right tail. Text

S1 contains detailed results for all simulation runs.

Figure 6A shows that we have an unbiased estimator for the

relative transmission fitness, w. As expected, the uncertainty in the

estimate for w reduces with increasing number of observations (e.g.

compare simulations C to A). To exclude w~1 from the estimate

(of key relevance to public health) a larger number of transmission

observations need to made when the true value of w is closer to 1.

We have an accurate, although slightly biased estimator for the

transmitted inoculum size, N. The mean and median estimates for

N are always larger than the true value, while the mode is

unbiased (see Text S1 for more details). Figure 6B indicates that

the bias reduces as the number of observed transmission events, K ,

increases. If the true value for the transmitted inoculum size is

greater, the estimator is far less able to exclude very large values

for N (see Text S1, simulations E1 and E2)

Discussion

The relative transmissibility of one strain of influenza compared

to another is important in a number of different contexts:

seasonal/seasonal interactions, seasonal/pandemic interactions

and NAI-resistant/NAI-sensitive interactions. Given the compet-

itive mixtures animal model paradigm is applicable in all three

contexts, the mathematical framework presented here has wide

applicability in influenza research.

Our results indicate that application of equation 4 and

equations 6–8 to transmission data from mixed infection studies

allows estimation of both the transmission fitness of a new strain of

interest (strain A) relative to that of the existing wild-type (strain B)

and the transmitted inoculum size. Our consideration of the

uncertainties inherent in the data source due to experimental

procedures indicate that the method is robust to these issues,

although we caution that any application of the method should

consider each source of uncertainty in the data on its merits.

The simulation studies show that the method accurately recovers

the relative transmission fitness, w of strain A compared to strain B.

As expected, the closer the true value of w is to unity, the greater the

number of transmission events that need to be observed to exclude 1

from the 95% confidence interval for west. For recovering the

number of virions transmitted and successfully initiating infection,

the mode of the distribution is unbiased, while the mean and

median are consistently slightly larger, due to the extended right-tail

of the distribution. It follows that this method can be used in

experiment design to ensure that studies are sufficiently powered to

provide estimates of a specified precision for the transmission fitness.

In our proof-of-principle analysis of the H274Y data set [8], for

both simplicity and because the data indicate that it is a good

approximation, we have assumed that RA~RB and so w~exp({s)
in equation 4. If the within-host replication fitnesses of the two

strains were not equal, then an estimate of the effective reproduction

numbers (RA and RB) and the generation time, t, for the within-host

dynamics would be necessary to correctly infer the relative

transmission fitness, w, from the estimate of the shape parameters,

s. Furthermore, a simulation analysis allowing for uncertainty in

infection time (along the lines of the argument laid out in Section

Effects due to data ascertainment limitations) would also be necessary.

Our method does not explicitly require knowledge of the

immune status of the ferrets, the shape parameter providing

information on the effective fitness of strain A compared to strain

B given the natural history of infection and/or vaccination of the

animals. Differences in immunity to strains A and B manifest as

changes in the effective reproduction numbers (RA and RB).

Consequently (as just discussed above), to determine the relative

Figure 5. Parameter estimation for the H274Y data when taking experimental data uncertainty into account. A: The transmission
fitness, w. B: The transmitted inoculum size, N .
doi:10.1371/journal.pcbi.1002026.g005
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transmission fitness, w, one must obtain independent knowledge of

RA, RB and t. This may be achieved by conducting an analysis of

the within-host dynamics of competitive-mixtures infection in

naı̈ve and non-naı̈ve animals. Estimation of the within-host

reproduction number is a key focus of the rapidly developing

within-host influenza dynamics literature [16–20].

Our method indicates a number of potential improvements in

competitive-mixtures experimental design. Firstly, the use of

Table 2. Simulation scenarios for model validation.

Simulation set (K , N , w~e{s) fpkg Comments

A1 (10, 4, 1.05) Evenly spaced from 0.05 to 0.95. Estimates from the H274Y experiment data.

A2 (10, 4, 0.9) Evenly spaced from 0.05 to 0.95. As per A1 , 10% compromised mutant.

A3 (10, 4, 0.8) Evenly spaced from 0.05 to 0.95. As per A1 , 20% compromised mutant.

A4 (10, 4, 0.5) Evenly spaced from 0.05 to 0.95. As per A1 , 50% compromised mutant.

B1 (30, 4, 1.05) Evenly spaced from 0.05 to 0.95. As per A1 , three times as many
transmission events.

B2 (30, 4, 0.9) Evenly spaced from 0.05 to 0.95. As per B1 , 10% compromised mutant.

B3 (30, 4, 0.8) Evenly spaced from 0.05 to 0.95. As per B1 , 20% compromised mutant.

B4 (30, 4, 0.5) Evenly spaced from 0.05 to 0.95. As per B1 , 50% compromised mutant.

C1 (90, 4, 1.05) Evenly spaced from 0.05 to 0.95. As per B1 , three times as many
transmission events.

C2 (90, 4, 0.9) Evenly spaced from 0.05 to 0.95. As per C1 , 10% compromised mutant.

C3 (90, 4, 0.8) Evenly spaced from 0.05 to 0.95. As per C1 , 20% compromised mutant.

C4 (90, 4, 0.5) Evenly spaced from 0.05 to 0.95. As per C1 , 50% compromised mutant.

D�1 (30, 4, 1.05) Evenly spaced from 0.4 to 0.6. As per B1 , observations clustered around
central values for p.

D�2 (30, 4, 1.05) Evenly spaced from 0.05 to 0.25 and 0.75 to 0.95. As per B1 , observation clustered near the
boundary values for p.

E�1 (10, 50, 1.05) Evenly spaced from 0.05 to 0.95. As per A1 , lower variability (increased N).

E�2 (30, 50, 0.5) Evenly spaced from 0.05 to 0.95. As per B4 , lower variability (increased N).

For each simulation A through E, we specify four parameters: K , the number of transmission events observed, N , the number of virions transmitted in each
transmission event, w~exp({s) (assuming RA~RB) the relative transmission fitness of strain A compared to strain B, and the set fpkg, the mutant proportion in the
donors for each transmission event k[f1 . . . Kg. *Results for simulations D and E are presented in Text S1.
doi:10.1371/journal.pcbi.1002026.t002

Figure 6. Recovered estimates for w and N for simulations A, B and C . The simulations are described in Table 1. A: The transmission fitness,
w. B: The transmitted inoculum size, N . Note the log scale for the estimate of N . Each boxplot shows the median, 25th and 75th centiles with tails
extending to the upper and lower adjacent values and outliers shown as crosses. The asterisk marks the true value used in the simulation. The dashed
vertical lines are a visual aid to separate simulations A, B and C. The horizontal line in A shows a relative transmission fitness of 1. Note that the
median and 25th centiles for the estimated N are commensurate for simulation C. The uncertainty in estimates for both w and N reduces with
increasing number of transmission events (e.g. compare scenarios C to A in both panels). For a given number of transmission observations (fixed K),
the estimate for w is more constrained for lower true values of the transmission fitness (e.g. compare A4 (w~0:5) to A2 (w~0:9) in A). The estimate for
N does not improve for lower true (and so predicted) values of the transmission fitness (e.g. compare A4 and A1 in B).
doi:10.1371/journal.pcbi.1002026.g006
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multiple donor ferrets – introduced by Hurt et. al. as a ‘‘reliability’’

factor in the face of uncertainty of infection following inoculation –

introduces unnecessary complications and should be avoided given

that experimental inoculation has been shown to reliably result in

infection. Secondly, regular sampling is essential so as to tie down

as closely as possible the strain A proportion in both donor and

recipient at the time of transmission. This is of particular

importance if RA=RB as just discussed. An alternative way to

more accurately ascertain (p,q) may be to introduce recipient

ferrets to the infectious donor for controlled and limited times.

Such a design has the additional appeal of allowing determination

of the donor’s time-dependent infectivity, of particular relevance to

public health planning in influenza (see, e. g. [21]).

We see scope for improvement to the mathematical framework

in a number of ways. Firstly, the number of virions transmitted

and successful at initialising infection in the recipient was assumed

constant (Nk~ �NN in equation 10). Clearly this is not strictly true

and it would be possible to probe the effects of the Poisson nature

of the process, from transmission event to transmission event, in

more detailed simulation studies.

We have also assumed that virions are deposited and die or

replicate independently of one another. However, it is plausible

that virions and indeed mixtures of strain A and strain B virions,

clump together in the process leading to their secretion from the

donor and transmission to the recipient, for example, in droplet or

aerosol particles. Our analysis of the H274Y contact transmission

data indicates that N, the number of virions that successfully

establish infection is small, although the result has not been

established for aerosol or droplet transmission. While we are not

aware of any direct experimental evidence from influenza studies

allowing comparison, Abrahams et. al. report that for HIV

infection, 78% of infections involved a single variant (using their

terminiolgy, a single ‘‘infectious unit’’ and so we tentatively suggest

a single virion), while the remaining infections were established by

between 2 and 5 (median 3) ‘‘infectious units’’ [22]. While we

estimate that N is small, it is entirely plausible that the total

number of potentially infectious virions transmitted, V , may be

somewhat or perhaps even much larger (N%V ). Each transmitted

entity (or ‘‘unit’’), itself containing perhaps multiple virions, may

either lodge at a site compatible with replication or not. Of those

that do (essentially the proportion e in equation 1), local within-

host competitive processes between strain A and B virions will

then come into play. If multiple entities are successful in

establishing local sustained growth within the host, the eventual

establishment of a mixed-infection may be due to a hybrid of the

heterogeneity in mixtures across entities, and the local within-host

processes at play as each entity establishes infection. How to probe

such possibilities, both experimentally and theoretically, presents

as an interesting future research opportunity.

The third avenue for improvement concerns accounting for re-

assortment of strains A and B during the within-host dynamics, in

both the donor(s) and recipient(s). For the H274Y data, this is not

of concern, due to the similarities between the two strains [8], but

more general experiments, say comparing a new pandemic strain

to an existing seasonal strain of a different sub-type, would need to

be analysed accounting for the additional complexity.

With the limited data available from the H274Y experiment, we

were unable to meaningfully constrain the relative transmission

fitness of the NAI-resistant strain (w~1:30 (0.44, 3.9)). We also

caution that the result is for contact transmission, and there are

indications that respiratory droplet and/or aerosol transmission

experiments may yield different results, as demonstrated recently

by Duan et. al. [11]. However, our simulation analysis, which can

be considered as a computational power calculation, indicates that

we should be able to identify a relative transmission fitness – in

either contact or droplet transmission studies – of 0.9 or less with a

large but not prohibitive number of ferrets (N&100). It should be

kept in mind that our analysis can be performed on pooled data

from multiple experiments, each with other primary end-points of

interest, as long as those experiments do not probe interventions

that may be expected to modify the relative transmissibility of one

strain compared to the other (such as immune changes,

vaccination etc.).

Finally, the method presented here is applicable to pathogens

other than influenza as any series of observations of transmission of

mixtures may be represented as in Figure 1. The most critical

factor requiring thought will be the within-host dynamics of the

two strains, and in particular, appropriate consideration of any

competitive or synergistic effects due to co-infection.

Supporting Information

Text S1 Results of simulation studies. We present detailed results

from the simulation studies outlined in Table 2.

(PDF)
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