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Yin and Yang - the Gastric X/A-like Cell as 
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Ingestion of food affects secretion of hormones from enteroendocrine cells located in the gastrointestinal mucosa. These hor-
mones are involved in the regulation of various gastrointestinal functions including the control of food intake. One cell in the 
stomach, the X/A-like has received much attention over the past years due to the production of ghrelin. Until now, ghrelin  
is the only known orexigenic hormone that is peripherally produced and centrally acting to stimulate food intake. Subsequent-
ly, additional peptide products of this cell have been described including desacyl ghrelin, obestatin and nesfatin-1. Desacyl 
ghrelin seems to be involved in the regulation of food intake as well and could play a counter-balancing role of ghrelin’s 
orexigenic effect. In contrast, the initially proposed anorexigenic action of obestatin did not hold true and therefore the in-
volvement of this peptide in the regulation of feeding is questionable. Lastly, the identification of nesfatin-1 in the same cell 
in different vesicles than ghrelin extended the function of this cell type to the inhibition of feeding. Therefore, this X/A-like 
cell could play a unique role by encompassing yin and yang properties to mediate not only hunger but also satiety.
(J Neurogastroenterol Motil 2012;18:138-149)
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Introduction
The stomach is the first site where food has a sustained con-

tact with the gastrointestinal tissue. Therefore, it is not surprising 
that the stomach plays an important role in the regulation of hun-
ger and satiety. In the past years specialized endocrine cells drew 
increasing attention and stimulated research in the field of physi-
ology, behavioral medicine and obesity research. Different endo-
crine cells present in the stomach were shown to regulate physio-

logical functions, predominantly gastric acid secretion. These 
cells encompass gastrin-producing cells, in low quantity seroto-
nin-producing enterochromaffin cells, somatostatin-producing D 
cells (5%-10% of gastric oxyntic endocrine cells in rats, ＞ 20% 
in humans) and histamine-containing enterochromaffin-like cells 
(65% in rats and 30% in humans).1 Another cell type has been 
described that resembled the phenotype of pancreatic A cells al-
though the function was unknown.1 Therefore, this cell was 
termed X/A-like cell (in humans the same cell was named P/D1 
cell).2,3 This cell type accounts for 20%-30% of the endocrine cell 
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population in the gastric oxyntic mucosa and is distributed 
throughout the mucosal layer.4 In addition to the stomach, 
X/A-like cells were also found in lower parts of the gastro-
intestinal tract with decreasing quantities.4 Interestingly, whereas 
in the stomach the predominant type of X/A-like cells is of round 
shape without contact to the lumen (closed-type), with aboral dis-
tance from the stomach, the percentage of elongated cells with lu-
minal contact (open-type) increases.4 In 1999 the food intake 
stimulatory peptide hormone ghrelin was discovered,5 and the 
identification of ghrelin in X/A-like cells2,6 stimulated research 
on this particular cell and its peptide product(s). In the following 
years, additional peptide products of X/A-like cells have been 
identified, namely desacyl ghrelin, obestatin and nesfatin-1 which 
were also suggested to be involved in feeding regulation. This re-
view will discuss the current knowledge on these peptides prod-
ucts and recent concepts on the involvement of this particular cell 
type in the regulation of not only hunger but also satiety.

Products of the X/A-like Cell
Besides ghrelin, desacyl ghrelin and n-decanoyl ghrelin2,7 as 

well as obestatin8 are derived from the same gene whereas nucleo-
bindin2 (NUCB2)/nesfatin-19 is encoded by a different gene.

Ghrelin, Desacyl Ghrelin and n-Decanoyl Ghrelin
In 1999 Kangawa and Kojima discovered the growth hor-

mone secretagogue, ghrelin as the endogenous ligand of the 
growth hormone secretagogue receptor 1a5,10 which was later re-
named ghrelin receptor (GRLN-R).11 The 28 amino acid pep-
tide has a unique fatty acid modification on the third amino acid. 
This n-octanoic residue is essential for the binding to the 
GRLN-R5,12 by increasing the peptide’s lipophilicity.5 A recent 
study showed that medium chain fatty acids in the diet are the di-
rect source for ghrelin’s hydrophobic modification.13 Interesting-
ly, also the first 5 N-terminal amino acids can activate the re-
ceptor when they bear a fatty acid residue.14 Recently, n-decanoyl 
ghrelin was identified as another acylated form and shown to rep-
resent a major circulating form of ghrelin in mice.7

The enzyme catalyzing the acylation of ghrelin was identified 
very recently in mice and humans as a member of the mem-
brane-bound O-acyltransferases (MBOATs), MBOAT4 that 
was renamed ghrelin-O-acyltransferase (GOAT).15,16 Both, C8 
and C10 medium chain fatty acids are substrates for GOAT re-
sulting in octanoyl and decanoyl ghrelin.16 It is assumed that 
GOAT acetylates pro-ghrelin before its transport to the Golgi 

apparatus where pro-ghrelin is cleaved by prohormone con-
vertase 1/3.15 Interestingly, in addition to GOAT mRNA and 
protein expression in gastric X/A-like cells,17,18 GOAT im-
munoreactivity was also identified in the circulation of rats and 
mice18 raising the possibility of an extracellular acyl modification 
of ghrelin.

In contrast to ghrelin, desacyl ghrelin does not bear a fatty 
acid residue and therefore does not bind to the GRLN-R.5 Both 
ghrelin and desacyl ghrelin are predominantly derived from gas-
tric X/A-like cells and represent the major circulating forms with 
a proportion in the blood initially reported to range between 
1:1519 and 1:55.20 However, recent advances in blood processing 
for labile peptides indicated a proportion of acyl/total ghrelin of 
1:5 compared to 1:19 observed after standard blood processing 
(EDTA blood on ice).21

Obestatin
In 2005, a computer-based search for alternative splicing and 

post-translational processing predicted the cleavage site of pro- 
ghrelin leading to obestatin, a peptide assumed to curtail body 
weight and to antagonize ghrelin’s orexigenic action.8,22 Obesta-
tin is also expressed in human gastric endocrine P/D1 cells23,24 
and rat gastric X/A-like cells25 with a subcellular localization in 
secretory granules.23,24

Nucleobindin2/Nesfatin-1
The group of Mori recently reported the identification of 

NUCB2/nesfatin-1 in the rat hypothalamus.26 Subsequent stud-
ies confirmed this finding27-29 and extended its expression to the 
periphery with a 10-fold higher mRNA expression in gastric mu-
cosa than in the brain.9 Interestingly, ghrelin and nesfatin-1 im-
munoreactivity co-localized in the same oxyntic endocrine X/A- 
like cells as visualized by double immunofluorescence staining 
and high-resolution confocal microscopy from a single X/A-like 
cell indicated the occurrence of these 2 peptides in different sub-
sets of vesicles.9 Another finding indirectly supporting the pro-
duction of ghrelin and nesfatin-1 in the same cell came from the 
observation of prohormone convertase 1/3 in X/A-like cells,15 a 
hormone involved in the processing of both peptides.15,30

Peptide Release and Action on Receptors

Ghrelin and Desacyl Ghrelin
Ghrelin is mainly produced by gastric X/A-like cells31 as in-
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dicated by a pronounced decrease of circulating ghrelin levels af-
ter gastrectomy.32 In addition, ghrelin is produced in the intes-
tine,2 pancreas33 and other peripheral organs, namely kidney, liv-
er, heart, testis, adipose tissue and skin,34,35 although in much 
lower quantities compared to the gastric source. Circulating 
ghrelin levels are largely affected by the metabolic condition with 
an increase before meals and a decrease thereafter.36,37 Moreover, 
fasting stimulates ghrelin mRNA expression,38-40 whereas gastric 
ghrelin peptide content decreases pointing towards stimulated 
production and release of ghrelin under these conditions.39,40 In 
addition to these short-term changes, circulating ghrelin concen-
trations depend on the metabolic status over time with increased 
levels under conditions of anorexia and cachexia and a decrease in 
overweight and obese subjects.41-43 Similar to the observed 
changes of ghrelin, gastric GOAT mRNA as well as circulating 
GOAT protein levels were increased during fasting condi-
tions.18,44

Ghrelin is affected by a multitude of hormones and trans-
mitters which were tested in vitro and in vivo. The most estab-
lished action is the inhibitory effect of somatostatin on circulating 
levels of ghrelin reported in experimental studies and hu-
mans,45-47 likely mediated via the somatostatin receptor subtype 2 
which is expressed on X/A-like cells (P/D1 cells) in animals48 
and humans.49 Similarly, prostacyclin is likely to reduce circulat-
ing ghrelin levels50 via direct interaction with the prostacyclin I2 
receptor expressed on X/A-like cells.50 Moreover, glucagon-like 
peptide,51-53 cholecystokinin-8,54 insulin46,55 and bombesin45 re-
duce circulating levels of ghrelin although the mode of inter-
action remains to be established. On the other hand, central vagal 
cholinergic activation56,57 and adrenaline as well as noradrena-
line,45,46,58 have been consistently shown to increase circulating 
levels of ghrelin in experimental animals. Stimulatory effects of 
dopamine have been reported in vitro46 but not in vivo.45 The 
ghrelin releasing effect of cannabinoids,59 oxytocin and vaso-
pressin,46 secretin,45 and endothelin 1 and 345,61 were reported ei-
ther in vitro or in vivo and are yet to be further confirmed. 
However, one has to note that the underlying mechanisms regu-
lating ghrelin production and release at the cellular and molecular 
levels are poorly characterized. Establishing pure preparations of 
isolated ghrelin cells using ghrelin promoter models coupled to 
fluorescent dye62 or the recent use of the ghrelin-producing 
mouse cell line, MGN3-146 could be promising venues to con-
duct these investigations.

Interestingly, acyl and desacyl ghrelin are not uniformly 
regulated as shown by a recent study where lowering the gastric 

pH stimulated the release of desacyl ghrelin whereas acyl ghrelin 
was not affected.3 In addition, also immunological63 or physical48 
stressors lead to differential ratios of circulating levels of acyl and 
desacyl ghrelin indicative of a more rapid decrease of the acylated 
form, which could be attributed to a reduction in GOAT protein 
expression as recently suggested.48 However, the exact mecha-
nisms are unknown and warrant future investigation.

Ghrelin is the endogenous ligand of the GRLN-R which is 
expressed in the brain and peripheral structures and organs in-
cluding the pituitary, vagal afferents, pancreas, spleen, myocar-
dium, adipose tissue, thyroid gland, adrenal gland and gastric 
myenteric neurons.34,64-66 This receptor is characterized by high 
constitutive activity67 which is likely to hamper blockade of ghre-
lin signaling by ghrelin antagonists and may favor the develop-
ment of inverse agonists.68 In addition, the GRLN-R forms het-
erodimers with other receptors such as the cannabinoid 1 re-
ceptor65 and the dopamine receptor 169 thought to result in in-
creased signaling. Conversely, the GRLN-R desensitizes after 
stimulation through endocytosis via clathrin-coated pits and is 
characterized by slow dissociation with ghrelin,70 likely prevent-
ing available GRLN-R available for binding.

Unlike ghrelin, desacyl ghrelin is unable to bind to the 
GRLN-R and the receptor for this peptide remains to be 
established. The existence of a specific desacyl ghrelin receptor is 
strongly suspected based on the findings that desacyl ghrelin ex-
erts several biological actions in cells that do not express the 
GRLN-R, as shown by the inhibition of cell proliferation in 
breast cancer71 and prostate cancer72 cell lines and stimulation of 
insulin release from INS-1E cells.73

Obestatin
In contrast to the suggested role of obestatin as regulator of 

food intake, obestatin levels do not change dependent on meta-
bolic status.8,74 During fasting conditions gastric obestatin pep-
tide content25 and plasma obestatin levels8 remain unaltered. One 
study reported a decrease of circulating obestatin during fast-
ing,75 a finding to be replicated. Initially, obestatin was described 
as the endogenous ligand of the 7 transmembrane domain G pro-
tein-coupled receptor, GPR39.8 However, subsequent studies 
conducted by several independent groups76-79 as well as the origi-
nal investigators80 did not reproduce the initial findings of bind-
ing of obestatin to recombinant GPR39 and activation of the 
receptor. However, recent studies by Zhang et al81 provided new 
evidence for obestatin binding to GPR39 to regulate functions of 
diverse gastrointestinal and adipose tissues. One has to note that 
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the GPR39 displays high constitutive activity in the absence of li-
gand binding similar to the GRLN-R.82 Taken together, there is 
need for further experiments in order to elucidate the endogenous 
ligand of the GPR39.

Nucleobindin2/Nesfatin-1
Plasma NUCB2/nesfatin-1 is regulated by nutritional status 

with a significant decrease after 24-hour fasting in rats and a re-
turn to baseline after refeeding.9 However, so far these meal-re-
lated alterations have not been observed in humans under con-
ditions where ghrelin levels are decreased.83,84 Interestingly, a 
study in non-obese male subjects showed a negative correlation 
between body mass index (BMI) and fasting plasma levels of 
NUCB2/nesfatin-1.83 In addition, other groups reported a pos-
itive correlation between NUCB2/nesfatin-1 plasma levels and 
BMI with lower levels in anorexic patients85 and higher levels in 
obese subjects86,87 giving rise to the regulation of NUCB2/nesfa-
tin-1 by the amount of white adipose tissue, a tissue where 
NUCB2/nesfatin-1 was recently identified to be expressed.86

It is important to note that mature nesfatin-1 (10 kDa) has 
been described only in the initial report so far.26 Subsequent stud-
ies only detected full length NUCB2 (47 kDa) in the brain,28,88,89 
gastric mucosa, pancreas, pituitary and adipose tissue,9,86 whereas 
exogenous nesfatin-1 could be visualized with the techniques 
used.9,89 This discrepancy raises the possibility of post-secretory 
processing of NUCB2 to nesfatin-1 in the blood or cerebrospinal 
fluid. This hypothesis is supported by the finding of processed 
nesfatin-1 in human plasma samples using a sensitive sand-
wich-type ELISA recognizing exclusively nesfatin-1 but not full 
length NUCB2.83

Despite the fact that our knowledge on the regulation of 
NUCB2/nesfatin-1 has increased over the past years, the re-
ceptor mediating NUCB2/nesfatin-1’s actions remains to be 
identified. One study suggested an interaction with a G-pro-
tein-coupled receptor based on the finding that nesfatin-1 led to 
an increase of [Ca2+] linked with protein kinase A signaling in 
isolated cultured rat hypothalamic cells.27

Effects on Food Intake and Energy Homeo-
stasis

Although the physiological role of obestatin remains con-
troversial90 and those of desacyl ghrelin91 and nesfatin-192 are still 
scarcely described, all these products of the X/A-like cell have 
been implicated in feeding regulation with ghrelin being the only 

stimulator of food intake and desacyl ghrelin and nesfatin-1 ex-
erting anorexigenic actions.

Ghrelin, Desacyl Ghrelin and n-Decanoyl Ghrelin
Contrasting with the multitude of anorexigenic modulators 

of feeding,93 ghrelin is the only known peripherally produced and 
centrally acting hormone that stimulates food intake in ani-
mals94,95 and humans.96 In line with the similar binding of octa-
noyl as well as n-decanoyl ghrelin to the GRLN-R, both forms 
stimulate feeding7 and ghrelin-induced feeding is inhibited by 
various GRLN-R antagonists.97 Further corroborating the key 
role of this receptor, injection of ghrelin did not result in an orexi-
genic response in GRLN-R knockout mice.98,99 Ghrelin stim-
ulates food intake via direct actions on the GRLN-R located on 
food regulatory brain nuclei after passage through the blood- 
brain barrier100,101 and expressed on vagal afferents well estab-
lished to convey gut peptide signaling influencing food in-
take.102,103 Further supporting the importance of vagal signaling, 
subdiaphragmatic or gastric vagotomy prevented the orexigenic 
response to intravenous injection of ghrelin in rats.102 However, 
another study reported a stimulation of food intake by intra-
peritoneally injected ghrelin in rats that underwent elective sub-
diaphragmatic vagal deafferentation.104 These discrepant results 
may be related to different routes of administration of the peptide, 
higher doses recruiting alternative mechanisms and modalities of 
surgery that should be delineated in future studies.

As suggested by the negative correlation with BMI, ghrelin 
is not only affected by chronic changes in metabolic status but al-
so involved in the long-term regulation of body weight homeo-
stasis. Chronic infusion of ghrelin increases body weight gain in 
rodents which is due to increased appetite but also caused by the 
stimulation of fat storage and decrease of lipid mobilization re-
sulting in enlargement of the fat depots.41,105,106 In line with these 
findings, mice lacking both ghrelin and the GRLN-R have an in-
creased energy expenditure associated with a decreased body 
weight,107 whereas mice lacking either ghrelin107,108 or the 
GRLN-R107 do not show these alterations leading to the hypoth-
esis of additional ligands and role of constitutive activity of 
receptors. In addition, ghrelin increased the mRNA expression 
of fatty acid synthase, acetyl-CoA carboxylase alpha, stearo-
yl-CoA desaturase-1 and lipoprotein lipase, all enzymes involved 
in the mediation of fat storage, whereas the mRNA expression of 
a major fat oxidation enzyme, carnitine palmitoyl transferase-1- 
alpha, was decreased.109 Further supporting the physiological 
role of ghrelin in these processes, ghrelin knockout mice display 
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an opposite expression pattern of these enzymes.109 Interestingly, 
in mice lacking β1-, β2- and β3-adrenoceptors and injected in-
tracerebroventricularly with ghrelin these changes are not ob-
served109 pointing towards an involvement of the sympathetic 
nervous system in these homeostatic actions of ghrelin. Further-
more, the role of GOAT was investigated using genetic ap-
proaches in mice lacking GOAT or over-expressing ghrelin and 
GOAT.110 GOAT knockout mice did not display alterations in 
body weight when fed a standard rodent diet but showed a reduc-
tion of body weight under conditions of high fat diet feeding 
compared to GOAT expressing wild type littermates.110 Interest-
ingly, substituting dietary medium-chain triglycerides results in a 
decrease of fat mass and body weight in mice lacking GOAT, 
leading to the speculation of GOAT acting as a lipid sensor.110

Besides its peripheral production, ghrelin is also expressed, 
although in lower quantities, centrally in the arcuate nucleus of 
the hypothalamus111 and in neurons adjacent to the third ventri-
cle.112 The arcuate nucleus is crucially involved in the central or-
chestration of food intake113 and neuroanatomical evidence in-
dicated that ghrelin neurons in the arcuate nucleus are connected 
with neurons containing the orexigenic peptides,114 agouti-re-
lated peptide (AgRP) and neuropeptide Y (NPY).112,115 Peri-
pheral injection of ghrelin selectively activates NPY neurons in 
mice116 and similarly, intracerebroventricular injection of ghrelin 
activates NPY/AgRP positive arcuate neurons and upregulates 
the expression of NPY and AgRP mRNA.117 The importance of 
NPY and AgRP signaling for the mediation of ghrelin’s orexi-
genic effects was highlighted pharmacologically using anti-NPY 
and anti-AgRP antibodies.118 Experiments in genetically modi-
fied mice showed that animals lacking NPY and AgRP do not 
respond to a peripheral ghrelin injection, whereas mice lacking 
either NPY or AgRP still increase food intake upon ghrelin ad-
ministration119 indicating a compensatory action of these two 
peptides. In addition to the stimulation of these NPY/ AgRP-re-
lated orexigenic pathways, ghrelin inhibits the activity of proopio-
melanocortin containing neurons resulting in reduced anorexi-
genic melanocyte stimulating hormone and cocaine- and amphet-
amine-regulated transcript signaling.112

Along with the underlying neural network involved in ghre-
lin orexigenic action, recent studies underpinned the subcellular 
signaling mechanisms in theses neurons. Ghrelin increases mi-
tochondrial respiration in NPY arcuate neurons, an effect shown 
to depend on uncoupling protein 2 (UCP2) by the use of UCP2 
knockout mice.120 In addition, ghrelin-induced activation of 
NPY neurons and associated increase of food intake was also re-

duced in mice lacking UCP2120 indicating a crucial involvement 
of this signaling pathway in ghrelin’s orexigenic action. Fasting 
stimulates phosphorylation of hypothalamic AMP activated pro-
tein kinase (AMPK) resulting in decreased hypothalamic levels 
of malonyl-CoA and increased carnitine palmitoyltransferase 1 
activity, effects mimicked by brain injection of ghrelin.121 
Conversely, blockade of AMPK signaling blunted the feeding 
stimulatory action of ghrelin.121 This ghrelin-induced activation 
of AMPK was still observed in mice lacking UCP2,120 whereas 
blockade of AMPK signaling reduced food intake in wild type 
but not UCP2 knockout mice, indicating that UCP2 is a down-
stream mediator of AMPK.120 Lastly, chronic injection of ghre-
lin results in greater body weight gain in UCP2 knockout mice 
compared to UCP2 expressing wild type littermates which was 
associated with decreased fat oxidation,122 a finding indicating the 
importance of UCP2 for the restriction of fat storage.

In contrast to the vast amount of data on ghrelin, the effects 
of desacyl ghrelin on food intake are less well characterized.123 
Initial studies reported a capsaicin insensitive reduction of food 
intake following intraperitoneal injection of desacyl ghrelin in 
rats124 and intracerebroventricular or intraperitoneal injection in 
mice.125 However, other studies did not report this anorexigenic 
effect following peripheral injection of desacyl ghrelin in fasted 
rats126 or mice.127 One study even reported a stimulation of food 
intake following intracerebroventricular injection of desacyl ghre-
lin at low dose in rats,128 an effect that could reflect acylation of 
the peptide. In addition, another study showed that intra-
peritoneal injection of desacyl ghrelin, although not altering food 
intake when injected alone, abolished the ghrelin-induced stim-
ulation of food intake following simultaneous intraperitoneal in-
jection in rats.126 This leads to the hypothesis of an interaction be-
tween these two peptide forms which could play a role in the reg-
ulation of food intake. Additionally, mice over-expressing both 
ghrelin and desacyl ghrelin show a decrease of food intake.129

In addition to the regulation of food intake, desacyl ghrelin 
has also been implicated in the regulation of long-term body 
homeostasis. Mice over-expressing desacyl ghrelin show reduced 
body size accompanied by a decreased body weight130 associated 
with reduced perirenal and epididymal fat depots131 compared to 
wild type littermates, whereas food intake was not altered130 sug-
gesting that desacyl ghrelin may act as a negative regulator of fat 
storage. However, one has to keep in mind that these mice dis-
played supraphysiological (10-50 fold increased) circulating de-
sacyl ghrelin levels130 that could greatly influence the results. 
However, in vitro desacyl ghrelin stimulates intracellular lipid ac-
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cumulation in human adipocytes derived from obese subjects132 
which may contribute to the fat storage under conditions of 
obesity. These divergent results could be due to in vivo versus in 
vitro conditions or reflect species differences to be further 
characterized.

Obestatin
The initial study describing obestatin suggested a physio-

logical anorexigenic role for obestatin and proposed a coun-
ter-regulatory mechanism opposing ghrelin’s action.8 However, 
only very few subsequent studies were able to partially reproduce 
these data,133-136 whereas the vast majority of those studies con-
ducted were unable to demonstrate an inhibitory effect of obe-
statin on food intake or body weight.75,77,78,136-148 Thus, obestatin 
is not considered a physiological regulator of feeding or body 
weight homeostasis and therefore it was proposed to be renamed 
ghrelin-associated peptide.149

Nucleobindin2/Nesfatin-1
The landmark paper of Oh-I and colleagues26 described a 

food intake inhibitory action following third ventricular injection 
of full length NUCB2 and nesfatin-1. In addition, repeated ad-
ministration reduces body weight gain associated with a decrease 
in fat mass. The nesfatin-1 injection into the lateral or third brain 
ventricle-induced anorexigenic action with a delayed onset has 
been consistently reproduced in consecutive studies in ro-
dents150-155 and also in goldfish.88 Conversely, blocking endoge-
nous NUCB2/nesfatin-1 signaling using an anti-NUCB2 anti-
sense oligonucleotide or anti-nesfatin-1 antibody injected into the 
third brain ventricle increased food intake in rats26 indicating a 
physiological inhibitory effect of NUCB2/nesfatin-1 on food 
intake. In addition to the forebrain action, nesfatin-1 injected into 
the hindbrain at the level of the cisterna magna or the fourth ven-
tricle also decreased dark phase food intake within the first hour 
post injection153 pointing towards several responsive brain sites 
which may involve different downstream signaling. This is also 
supported by the fact that blockade of the anorexigenic cortico-
tropin releasing factor receptor 2 (CRF2) signaling system156,157 
using the CRF2 antagonist, astressin2-B injected into the lateral 
brain ventricle abolished the nesfatin-1-induced decrease of dark 
phase feeding, while the hindbrain nesfatin-1-induced anorexi-
genic effect was not altered.153 Moreover, the melanocortin 3/4 
receptor antagonist, SHU911926,158 and an oxytocin antago-
nist150,154 abolished the forebrain nesfatin-1-induced decrease of 
food intake while leptin signaling is not involved.26,150,159 Taken 

together, nesfatin-1 mediates its anorexigenic action via down-
stream CRF2, melanocortin 3/4 and oxytocin signaling. In addi-
tion, also the blockade of NPY signaling may contribute to the 
anorexigenic effect based on in vitro data showing that nesfatin-1 
hyperpolarizes isolated arcuate NPY neurons.160 Interestingly, 
nesfatin-1 selectively inhibits dark phase food intake under ad li-
bitum feeding conditions,26,150,153,158 whereas during the light 
phase and after fasting inconsistent results were reported.153,158 
These data may support a specific interaction of nesfatin-1 with 
other neuronal circuitries uniquely recruited during the physio-
logical dark phase of eating161-163 which has to be investigated in 
future studies. A recent study characterized the feeding micro-
structure following intracerebroventricular injection of nesfatin-1 
in mice showing that the peptide decreases dark phase feeding by 
inducing satiation (indicated by reduction of meal size) and sati-
ety (indicated by decreased meal frequency associated with pro-
longed inter-meal intervals).152

While good progress has been made in identifying the central 
food intake reducing actions of nesfatin-1, the peripheral role is 
less well established. One study reported that full length nesfa-
tin-1 and the 30 amino acid mid segment, nesfatin-124-53 reduce 
the dark phase feeding following intraperitoneal injection of a 
higher dose in ad libitum fed mice.164 This is likely mediated by 
the vagus nerve since capsaicin pretreatment abolishes this ef-
fect164 and nesfatin-1 activates the Ca2+ influx in primary cul-
tured nodose ganglion neurons in vitro.165 However, another 
study did not observe the anorexigenic effect of peripherally in-
jected nesfatin-1 in mice and152 as well as in rats,153 whereas in 
goldfish only at a high dose, nesfatin-1 also reduces food intake.88 
Based on these data, nesfatin-1 exerts its anorexigenic action 
more potently when injected into the brain than peripherally and 
its peripheral effects still await thorough characterization. Whether 
different receptor subtypes are involved will also have to be 
established.

Summary and Perspectives
During the past decade the gastric endocrine-brain axis was 

the object of growing interest in the context of its role in food in-
take regulation. While the gastric endocrine X/A-like cell was 
thought to be restricted to the stimulation of food intake due to 
the synthesis and release of the orexigenic peptide, ghrelin, new 
developments, namely the better characterization of desacyl ghre-
lin along with the identification of the anorexigenic hormone, 
nesfatin-1 in X/A-like cells provided a paradigm shift promoting 
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Figure. Peptide products of the gastric 
X/A-like cell and their effects on food 
intake. Red arrows indicate inhibition, 
the green arrow stimulation of food 
intake and the black a lack of effect on 
feeding. The question marks indicate 
lack of knowledge on effect and medi-
ation. The insert shows rat gastric mu-
cosa stained with an anti-ghrelin anti-
body. GOAT, ghrelin-O-acyltransferase;
GRLN-R, ghrelin receptor; NUCB2, 
nucleobindin2.

this cell type as a dual regulator of food intake (Figure). In addi-
tion to the effects on feeding, all these hormones are involved in 
long-term body homeostasis with a stimulatory role of ghrelin 
and an inhibitory effect described for desacyl ghrelin and nesfa-
tin-1. Although our knowledge greatly increased over the past 
years, several important questions remain to be answered. Those 
encompass the identification of yet unknown receptors using de-
sacyl ghrelin and nesfatin-1 as their endogenous selective ligands 
and related signaling pathways. In addition, mechanisms regulat-
ing the activity of the ghrelin acylating enzyme, GOAT remain to 
be characterized and the role of peripheral nesfatin-1 has to be 
better defined. New tools including the isolation of ghrelin cells 
using mouse models (eg, those expressing green fluorescent pro-
tein bound to the ghrelin promoter) will help to advance the field 
and answer those questions.
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