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microRNAs (miRNAs) are important modulators of messenger RNA stability and translation, controlling
wide gene networks. Albeit generally modest on individual targets, the regulatory effect of miRNAs trans-
lates into meaningful pathway modulation through concurrent targeting of regulons with functional con-
vergence. Identification of miRNA-regulons is therefore essential to understand the function of miRNAs
and to help realise their therapeutic potential, but it remains challenging due to the large number of false
positive target sites predicted per miRNA. In the current work, we investigated whether genes regulated
by a given miRNA were under the transcriptional control of a predominant transcription factor (TF).
Strikingly we found that for ~50% of the miRNAs analysed, their targets were significantly enriched in
at least one common TF. We leveraged such miRNA-TF co-regulatory networks to identify pathways
under miRNA control, and demonstrated that filtering predicted miRNA-target interactions (MTIs) relying
on such pathways significantly enriched the proportion of predicted true MTIs. To our knowledge, this is
the first description of an in- silico pipeline facilitating the identification of miRNA-regulons, to help
understand miRNA function.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

microRNAs (miRNAs) are 18–26 nt short single stranded RNAs
controlling messenger RNA stability and translation. Directly per-
taining to their reliance on short complementary target sites to
control messenger RNAs, miRNA-target interactions (MTIs) are
very frequent with >10,000 genes putatively regulated per miRNA
[1]. Early studies in the field established the importance of the 50-
end of miRNAs (known as the seed region) in target recognition,
prompting the development of MTI prediction tools filtering target
sites based on the quality of interactions with the seed region and
the interspecies conservation of these regions [2]. Nonetheless,
recent studies based on high-throughput sequencing of miRNA tar-
get sites have now shown that seed dependence is not essential for
at least 20% of the target sites, underlining the potential bias of
seed-based MTI predictions [3,4].

Although more than 70 strategies of functional MTI identifica-
tion have been proposed in the past 15 years [5], the identification
of true miRNA targets which modulate cell function remains diffi-
cult, questioning whether their role has often been overestimated
[6]. Indeed, miRNA binding to its target does not necessarily relate
to translational repression [7], and when it does, the impact on
individual targets is generally less than two fold [8,9]. Nonetheless,
miRNAs can have important regulatory activities on pathways due
to their concurrent regulation of genes with converging function
[10–12]. While approaches leveraging pathway analyses to iden-
tify the function of biologically relevant MTIs have been reported,
they are also limited by the high number of pathways predicted for
each microRNA [13,14].
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With recent FDA approval of the first three small interfering
RNAs, the perspective of successful development of therapeutic
miRNAs based on similar delivery strategies and already pursued
in clinical trials is now more realistic than ever [15,16]. Yet, as
illustrated with the case of miRNAs in the field of inflammation,
the functional impact of miRNAs is most often context dependent
[12]. As such, characterisation of miRNA function is usually
inferred from that of a few selected targets that do not represent
the broad network of genes modulated by a miRNA. With in vivo
delivery of therapeutic miRNAs unlikely to be entirely specific to
target cells, it is therefore essential to better define pathway-
centric effects of miRNAs contemplated for clinical use.

In this work, we set out to define whether co-transcriptional
regulation of miRNA targets could be used to stratify miR-
regulons (i.e. a set of genes regulated by a miRNA), and prioritise
the pathways they modulate to better define miRNA function.
Relying on predicted miRNA and validated transcription factor
(TF) targets, we demonstrate that TF co-regulations can be used
to identify prevalent pathways. Critically, the use of tripartite
miRNA-TF-pathway associations to filter predicted MTIs signifi-
cantly enriched the proportion of true MTIs, while decreasing the
predicted interactions by more than 85%. Finally, we demonstrate
that our targeting predictions are associated with a decreased
expression of target mRNAs, confirming the biological significance
of our approach.
2. Material and methods

2.1. Regulary network and pathway network

2.1.1. miRNA datasets
Experimentally validated MTIs were downloaded from miRTar-

Base v7.0 human database, which is a manually curated database of
experimentally validated MTIs (based on luciferase assays, qPCRs,
micro-arrays and high-throughput RNA sequencing approaches
such as CLASH) [17]. To ensure that sufficient numbers of MTIs
were available, we restricted our analyses to the use of miRNAs
with a minimum of 75 MTIs, encompassing 660 miRNAs and
6,578 genes (representing a matrix of 99,375 interactions – Supple-
mentary Table S1).

Predicted MTIs were sourced frommiRDIP 4.1 [5] and Targetscan
7.2 [7]. miRDIP integrates MTI predictions across 30 different
sources, including Targetscan, and ranks the confidence of those
interactions into classes ranging from ‘‘very high” to ‘‘low” based
on an integrative score. Both databases were first filtered to keep
only the 660 miRNA present in the validation dataset, miRTarBase
(Supplementary Table S1). miRDIP high MTIs resulted from the
merging of rows marked ‘‘very high” and ‘‘high” confidence MTIs
frommiRDIP (82,199MTIs for 639miRNAs), while ‘‘low” confidence
MTIswere taken from rowsmarked ‘‘low” frommiRDIP. For step 3 of
the miRSTATION analyses presented belowwe filtered totalmiRDIP
MTIs supported by� 5 sources andwith an integrative score >0.1, to
generate a dataset of 2.3millionMTI predictions, referred to asmiR-
DIP* predictions herein. For Targetscan, the MTIs used were derived
from both the conserved and non-conserved humanMTIs, which rep-
resented respectively 184 and 453 miRNAs. In Figs. 1 and 3 where
miRDIP high/low or TargetscanMTIswere comparedwithmiRTarBase
MTIs, both predictive sets were filtered to have the same number of
targets as in miRTarBase, keeping the top predictions (e.g. if miR-X
had 100 MTIs in miRTarBase, only the best 100 MTIs for this miRNA
were used from miRDIP high/low or Targetscan).
2.1.2. Transcription factor (TF) datasets
For the initial studies shown in Fig. 1A and 1B, experimentally

validated TF interactions from the ENCODE project [18] were
4897
retrieved for the human genome as ‘‘.bigwig” files for hg19 and
hg38. The files were transformed into ‘‘.bed” files relying on the
bedGraph algorithm (https://genome.ucsc.edu/goldenpath/help/
bedgraph.html). TF sites were restricted to those present in the
1500 base-pair region upstream of transcriptional start sites. For
this purpose genome coordinates were normalised using Perl
scripts and CrossMap (http://crossmap.sourceforge.net/) to convert
genome coordinates from one assembly to another. The method
resulted in the use of 124 TFs targeting a total of 15,653 genes
for a total of 59,306 interactions (Supplementary Table S2).

For all other analyses, experimentally validated TF interactions

were retrieved from the ‘‘TFtargets” R package (https://github.com/

slowkow/tftargets) that aggregates multiple validated TF interac-
tions datasets. We selected four comprehensive TF-target interac-
tion datasets: ENCODE [18], ITFP [19], TRED [20] and TRRUST [21].
The aggregation of these TF target datasets resulted in the use of
1249 TFs targeting a total of 13,500 genes for a total of 86,070
interactions (Supplementary Table S3).

2.1.3. Pathway datasets
For the pathway dataset, we used MSIGdb [22], a collection of

annotated gene sets utilized for gene set analyses. Only the most
general and functionally informative categories of pathways were
selected : ‘‘C2_curated”, ‘‘C5_GO” and ‘‘Hallmark”. Additionally,
we arbitrarily filtered out gene sets with low (below 30) or high
(above 1000) gene numbers, reasoning that small gene sets would
miss overlaps of TF and miRNA regulons, while the too large gene
sets would be too unspecific for TF and miRNAs regulons. This gave
us 21,319 pathways with 1.3 M interactions in total, with gene
clustered into biological processes informing on their high-level
functions. The database was retrieved through the MSIGdb API
accessible through R with the package ‘‘msigdbr”.

2.1.4. miRNA Selection of TArgeting by Transcriptional co-regulatION
(miRSTATION)
2.1.4.1. Step 1: TF enrichment analyses. TF target and miRNA target
from miRTarBase, miRDIP high or low matrices were built with
genes as row and regulators (i.e. TF or miRNA) in columns. Multi-
plication of the matrices was used to identify the number of com-
mon targets in each miRNA-TF combination. We then compared
the proportion of TF targets in the miRNA-regulated gene sets to
the proportion of the TF targets in the ‘‘genome background”,
which is the number of unique genes in our dataset (i.e. 25,367).
The Fisher’s exact test was used with the following alternative
hypothesis, for each miRNA set of genes: the proportion of genes
with both miRNA and TF sites is greater than the proportion of sites
for this TF in the genome background. Associations having a p-
value lower than 0.05 and with 5 or more common targets were
considered as significantly enriched (Supplementary Table S4 -
for miRDIP high).

2.1.4.2. Step 2: Pathway enrichment. Identification of pathways
enriched in miRNA-TF associations was carried out next. Target
matrices of pathways were built using the MSIGdb pathway data-
base as described for miRNA and TF matrices in Step 1. For each
miRNA-TF association identified in Step 1, pathways significantly
enriched in the miRNA and/or in the associated TF regulatory net-
works were searched separately. A pathway was considered as sig-
nificantly enriched in the miRNA-TF association if it passed the
Fisher’s exact test with an adjusted p-value lower than 0.1 in both
regulatory programs. When miRNAs were associated with more
than 1 TF, we selected the TF that had the lowest pathway enrich-
ment p-value. This resulted in miRNA-pathway associations. This
approach was chosen over calculating enrichment in common
miRNA-TF targets, since this strategy strongly reduced gene num-
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Fig. 1. Functional miRNA targets are enriched in transcription factor binding sites. (A) Cumulative histogram of miRNA counts, function of their number of targets, based on
the functional MTIs from miRTarBase (Supplementary Table S1). 660 miRNAs with more than 75 targets were included in all our analyses – shown in blue. (B) The cumulative
counts of miRNA networks co-regulated are shown for the top 15 TFs (out of 72). Above each bar, the rank of each TF based on its amount of its total targets is indicated. (C)
Violin plot of the number of enriched TF per miRNA for each of the 660 miRNAs and their targets, predicted by each approach: miRDIP high (Predicted MTIs high confidence),
miRDIP low (Predicted MTIs low confidence) and miRTarBase (Validated MTIs) (the lines in the violin plots represent the median – data based on Supplementary Table S4 for
miRDIP high). Wilcoxon ranking tests between datasets are shown. **** p < 0.0001, ns: non-significant. (For interpretation of the references to colour in this figure legend, the
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bers and compromised statistical analyses. It should be noted that
in some instances, two or more miRNA-TFs associations were asso-
ciated with the same pathway.

2.1.4.3. Step 3: miRDIP* filtering using miRNA-pathway associa-
tions. The third step of our analysis pipeline relied on miRNA-
pathway associations from Step 2 to filter miRDIP* predictions.
For each miRNA with at least 1 enriched pathway associated, miR-
DIP* MTIs were filtered based on their presence in the enriched
pathway. Only miRNA-pathway interactions producing a list with
more than 10 genes were kept for further analyses (i.e. 368 out
of 369 miRNAs passed this criteria).

2.1.4.4. Step 4: Identification of prevalent pathways. Many of the
miRNAs were associated with more than one pathway. In that case,
each miRNA-pathways association list was ranked according to the
number of TF sites present (from miRNA-TF associations), to filter
the top 3 miRNA-pathways association lists. We selected this
threshold on the basis that it allowed us to achieve filtering of
our starting MTIs from miRDIP* by more than 85%, while allowing
for the possibility that miRNAs and their target overlap on more
than one regulatory networks.

miRSTATION total predictions (based on miRDIP high) are pro-
vided in Supplementary Table S5.

2.2. Functional validation with TCGA datasets

Breast Cancer (BRCA), Prostate Adenocarcinoma (PRAD), Lung
Adenocarcinoma (LUAD), Kidney renal clear cell carcinoma (KIRC),
and Colon adenocarcinoma (COAD) small RNA and mRNA sequenc-
ing datasets were retrieved from The Cancer Genome Atlas (TCGA)
via the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov/repository). Correlations of expression between
the 368 miRNAs and each of their predicted targets in miRSTATION,
Targetscan, miRDIP high or miRDIP low were carried out using a test
for association between samples (cor.test function) in R (version 3)
on log2 transformed expression data for each cancer, separately.
The estimate of the association and significance of the correlations
4898
for each cancer types were calculated using the default cor.test
method (Pearson’s product moment correlation coefficient) and
are provided in Supplementary Table S6 (miRSTATION), Table S7
(miRDIP high), Table S8 (miRDIP low) and Table S9 (Targetscan). A
threshold of p < 0.0001 was then used as a cut-off to compare sig-
nificant correlations observed between different prediction tools,
and the means of these significant correlations were calculated
to determine overall regulatory trends between predicted MTIs
and miRNA levels for each prediction tool and cancer group
(Fig. 4A, 4B).
3. Results

3.1. Functional miRNA targets are enriched for co-regulations by
transcription factor

Early in silico analyses of gene network co-regulation by
miRNA-TF pairs have previously suggested a functional overlap
between select miRNA targets and TF targets [23]. This indicates
that certain miRNAs more specifically modulate TF activities, con-
sistent with their effect in buffering protein expression from tran-
scriptional bursts [24,25]. Since the previously identified miRNA-
TF interactions exclusively relied on predicted miRNA targets and
TF targets, we initially decided to revisit the frequency of
miRNA-TF interactions relying on datasets of experimentally vali-
dated miRNA targets (miRTarBase V7 [17]) and TF targets (ENCODE
[18]). miRTarBase compiles a vast array of experimentally derived
miRNA-target interactions (MTIs), originating from both low-
throughput assays (e.g. Western blots, 30UTR luciferase reporter
assays, RT-qPCR) and high throughput approaches (e.g. RNA-seq
approaches following cross-linking immunoprecipitation, such as
CLIP-seq, HITS-CLIP, etc). Within the MTIs of miRTarBase, we
selected 660 miRNAs displaying greater than 75 targets for
detailed analysis, as lower thresholds did not increase the number
of miRNAs significantly associated with TF binding (Fig. 1A, Sup-
plementary Table S1 and Material and Methods; this represented
99,375 MTIs). TF binding site enrichment was calculated for the
promoters of the targets of these 660 miRNAs, based on validated
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binding sites of 124 TFs from ENCODE (Supplementary Table S2).
The targets of 348 miRNAs were significantly associated with at
least one TF, when compared to our ‘‘genome background” set
(i.e. 52.7% of the miRNAs from miRTarBase analysed here). 72 out
of the 124 TF networks were enriched in the targets of the 348
miRNAs from miRTarBase, and enrichment of the TFs was not
biased by the number of their ENCODE targets (Fig. 1B). As an
example, BCLAF1 was the most frequently enriched TF in the
miRNA networks analysed here, and this was not directly related
to its number of targets since it only ranked at position #38 when
considering the number of genes regulated per TF (Fig. 1B and Sup-
plementary Table S2). Finally, 293 (83%) of the 348 miRNAs with
enriched TFs (based onmiRTarBase targets) displayed no more than
two enriched TFs in their gene networks.
3.2. Enrichment for co-regulations by transcription factor is more
frequent for high-ranking predicted and validated miRNA targets

To define the biological relevance of TF enrichment in miRNA
targets, we next tested whether it was influenced by the functional
4899
nature of the MTIs, i.e. whether the MTIs were true targets or not.
For this purpose, we investigated how relying on in silico predicted
MTIs (which have a higher proportion of non-functional MTIs than
miRTarBase, as they strictly rely on predictions) would impact TF
enrichment. To obtain more comprehensive analyses, we relied
on validated binding sites of 1249 TFs from the TFtargets database
encompassing ENCODE TFs (Supplementary Table S3), affording a
larger dataset of TF-target sites than the ENCODE dataset itself
(86,070 target sites with TFtargets, versus 59,306 with ENCODE).

First, high-ranking MTI predictions from miRDIP (referred to as
miRDIP high herein), which collates MTIs from across 30 different
predictive resources [5], were analysed for TF enrichment, limited
to the targets of the 660 miRNAs defined in Supplementary
Table S1 (to allow for subsequent comparisons with miRTarBase
below). The miRDIP high targets of 369 miRNAs were significantly
associated with at least one TF, when compared to our ‘‘genome
background” set (i.e. 55.9% of the 660 miRNAs analysed here)
(the 369 miRNAs and associated enriched TFs are provided in Sup-
plementary Table S4). 477 out of the 1249 TFs networks were
enriched in the targets of the 369 miRNAs from miRDIP high, and
enrichment of the TFs was not strongly correlated with the number
of their targets in TFtargets (Supplementary Fig. 1). Finally, 186
(50.4%) of the 369 miRNAs with enriched TFs displayed no more
than two enriched TFs in their gene networks (Supplementary
Table S4 and Supplementary Fig. 1-).

Second, we repeated the analyses described above usingmiRDIP
low. Our rationale was that if the miRNA-TF co-regulations
obtained previously with miRDIP high were only observed by
chance, low-ranking predicted MTIs would be expected to yield
similar numbers of enriched miRNA-TF associations, for the pre-
dicted targets of the 660 miRNAs studied above. Critically, using
similar target population sizes for each one of the 660 miRNAs, sig-
nificant TF enrichment was much lower in the targets predicted
with a lowmiRDIP confidence score, compared to those with a high
score – 70 of the miRNAs from miRDIP low had at least one associ-
ated TF, versus 186 for miRDIP high targets. We also re-ran our
analyses with miRTarbase relying on TFtargets. Direct comparison
of the number of enriched TFs per miRNA between miRTarBase,
miRDIP high and miRDIP low revealed that there were more
enriched TF sites in validated miRTarBase targets and high-
ranking predicted targets of miRDIP high, compared to lower rank-
ing predicted targets of miRDIP low (Fig. 1C). However, there was
no significant difference between the number of enriched TF asso-
ciations from miRTarBase and miRDIP high. Collectively, these anal-
yses supported the notion of functional overlap between select
miRNA targets and TF targets previously suggested [23].

3.3. miRNA-TF associations overlap with specific pathways

Functional association of the targets of a given miRNA has pre-
viously been suggested by several groups as a strategy to help
understand the biological activities of miRNAs at a network level.
DIANA-miRPath [13] and miRPathDB [14,26] for instance allow the
identification of enriched pathways in predicted and experimen-
tally validated miRNA targets. Nonetheless, this approach is lim-
ited by the large number of enriched pathways it can identify for
a miRNA network, making it hard to prioritise the most important
pathways. Since we were able to identify a significant overlap
between select miRNA and TF-regulated genes, we hypothesised
that TF co-regulations could be informative to prioritise the most
important pathways regulated by a miRNA.

This was tested by analysing MSIGdb pathway enrichment for
the targets of the 477 TFs selected previously, in parallel to path-
way enrichment for miRDIP high MTIs of the 369 miRNAs (noting
that some of the TFs targets considered in these enrichments were
not miRNA targets, and vice versa). Based on the previously defined
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miRNA-TF co-regulations identified above for miRDIP high, we next
looked for pathways concurrently enriched in co-regulated miR-
NAs and TFs. This strategy naturally decreased the number of
enriched pathways obtained for the targets of the miRNAs as
shown in Fig. 2A with the example of the targets of miR-5582-3p
(here from 93 enriched pathways, decreased down to 23 when
restricting the pathways to those also enriched in AR [Androgen
Receptor] regulated genes).

Relying on this approach, we further selected up to 3 highest
ranking enriched pathways associated with each one of our 369
miRNAs (significantly decreasing the number of enriched path-
ways for each miRNA network from 83,359 pathways down to
1,105 pathways for 365 miRNAs at p < 0.1) (see Material and Meth-
ods). Importantly, this analysis identified 552 unique pathways
enriched over the 369 miRNAs, underlining a good diversity of
pathway enrichment across the TFs, independent of the number
of their target genes. Accordingly, filtering the pathways associated
with miRNA regulons using the TF-pathway enrichment strategy
lowered the relation between the total number of targets in a path-
way and the number of miRNA targets enriched for this pathway,
going from a Pearson’s correlation of 0.931 to 0.467 (Fig. 2B, 2C).
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3.4. miR Selection of TArgeting by Transcriptional co-regulatION
(miRSTATION)

To gain further insights into the biological relevance of the
miRNA-regulated pathways identified above through TF prioritiza-
tion, we next investigated whether these pathways could help
enrich true positive MTIs from predicted MTIs, which have a high
rate of false positives. Our motive was to try to broaden miRNA
predictions to encompass a wide range of possible interactions that
are omitted by phylogenetic-conservation and seed weighting, yet
have biological relevance, while decreasing the number of false
positives that low stringency predictions generate. As such, we rea-
soned that biologically relevant pathways might be used to filter in
silico predicted MTIs, to enrich the number of true MTIs. For this
purpose, we generated a pipeline, which we refer to as miRNA
Selection of TArgeting by Transcriptional co-regulatION (or miRSTA-
TION), starting from 2.3 million miRDIP* MTI predictions with
low stringency for the 369 miRNAs with enriched pathways asso-
ciations under TF co-regulation (Fig. 3A). Restricting the predicted
MTIs to those overlapping with enriched MSIGdb pathways
reduced the number of miRDIP* MTIs by 87.2%, from an average
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of 4436.8 down to 566.54 MTIs per miRNA (Fig. 3A and Supple-
mentary Table S5). Critically, pathway filtering significantly
enriched the proportion of true MTIs validated in miRTarBase for
291 out of 369 miRNAs assessed here (with � 10 predicted targets
– at confidence level of 0.95). This demonstrates that pathway fil-
tering based on co-transcriptional regulations helps increase the
proportion of true MTIs from miRDIP*. Accordingly, our pipeline
led to the selection of 187,503 MTIs for 368 miRNAs and 721 path-
ways (with � 10 targets), and 6,117 (3.26%) of these MTIs were
present in miRTarBase (Fig. 3A and Supplementary Table S5).

In addition, the proportion of predicted MTIs present in miRTar-
Base was compared between miRSTATION, miRDIP high and Tar-
getscan (best scores) for the 368 miRNAs – relying on the same
number of MTIs per miRNA (see Material and Methods) (Fig. 3B,
3C). miRSTATION filtering of miRDIP* significantly increased the
selection of true MTIs compared to miRDIP high both for precision
(number of true positive on total number of predicted targets,
Fig. 3B) and recall (number of true positive on total number of true
positive, Fig. 3C). In addition,miRSTATION also significantly outper-
formed the precision of Targetscan, though it showed decreased
recall (Fig. 3B, 3C). The different results seen between miRDIP high
and Targetscan were unexpected since miRDIP high comprises pre-
dictions from Targetscan, but probably relate to the ranking system
used in miRDIP that gives priority to the number of tools concur-
rently predicting an MTI. Collectively, these results supported the
biological function of the tripartite miRNA-TF-pathway associa-
tions identified, since they could be used to enrich the proportion
of predicted true MTIs.

3.5. miRSTATION predicted targets are negatively correlated with
miRNA levels in several cancers

To validate further the capacity of our approach to identify bio-
logically relevant MTIs in an unbiased manner, we next assessed
the correlation between the expression levels of miRNAs and their
MTIs, in datasets from The Cancer Genome Atlas (TCGA). Since
miRNAs predominantly impact mRNA translation by decreasing
mRNA levels [27], we were interested to test whether correlations
between miRNA levels and those of the MTIs predicted by miRSTA-
TION were more often negative correlations than positive ones.
First, we created a correlation analysis of miRNA and mRNA
expression levels for each patient with Breast Cancer (BRCA), Pros-
tate Adenocarcinoma (PRAD), Lung Adenocarcinoma (LUAD), Kid-
ney renal clear cell carcinoma (KIRC), and Colon adenocarcinoma
(COAD), in the selected datasets (having concurrent small and
mRNA sequencing data available), restricted to the 368 miRNAs
and the 187,503 MTIs identified by miRSTATION. We restricted
our analyses to these 5 cancer types out of 32 from the TCGA on
the basis that they had enough samples to obtain meaningful
results. In parallel, we also created control analyses based on the
MTIs predicted bymiRDIP high,miRDIP low and Targetscan for these
368 miRNAs .

We subsequently compared the obtained correlations between
the different prediction tools for the 368 miRNAs studied, for each
of the 5 cancer groups (Supplementary Table S6 [miRSTATION],
Table S7 [miRDIP high], Table S8 [miRDIP low] and Table S9 [Tar-
getscan]). Overall, Targetscan predictions performed the best and
were more often negatively correlated with miRNA levels (as seen
with the negative mean values) in each cancer type (Fig. 4A, 4B).
miRSTATION predictions also performed relatively well with the
exception of the analysis of LUAD, where its predicted MTIs were
rather positively regulated with miRNA levels (as seen with the
positive mean values – Fig. 4B). Critically, the correlations obtained
between predicted MTIs and miRNA expression with miRSTATION
significantly outperformed the ones obtained with miRDIP high
and miRDIP low in all 5 cancer types (Fig. 4A, 4B), as revealed by
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the lower means obtained for miRSTATION in all cases. In addition,
and further validating the relevance of this approach, the correla-
tions obtained with miRDIP low were the worst performing and
resulted in mean positive correlations between MTIs and miRNAs
for 3 out of 5 cancers, while being greater than those obtained with
the three other tools (Fig. 4A, 4B). This indicates that correlations
between MTIs and miRNA expression levels analysed here were
directly associated with the strength/quality of the MTIs consid-
ered, giving further support to the biological relevance of the MTIs
predicted by miRSTATION.

Finally, we were interested to see whether the miRSTATION pre-
dicted regulons could be used to inform on miRNA function. As a
proof of principle of this concept, we looked at miR-122-5p, which
is a well-studied miRNA predominantly expressed in liver hepato-
cytes. We noted that in our miRSTATION analyses miR-122-5p was
associated with the pathway ‘‘GOBP_RESPONSE_TO_CYTOKINE”
from MSIGdb (Supplementary Table S5). Importantly, this path-
way/gene signature was not identified in the top three pathways
enriched from the best MTIs of miRDIP high and Targetscan. Simi-
larly, miR-122-5p was not predicted as an enriched miRNA for
the pathway ‘‘Response To Cytokine” in miRPathBD [26].

Type-I interferons (IFN) are a family of cytokines which control
expression of thousands genes, and are essential to the control of
viral infections [28]. In patients, miR-122-5p intra-hepatic levels
are negatively correlated with the expression of several type-I
interferon (IFN) regulated genes (IRGs – STAT1, IFI27, CXCL10
and USP18), suggesting that miR-122-5p could regulate IFN
responses [29]. Critically, we noted that miRSTATION predicted tar-
geting of the IFN receptor 1 and 2 (IFNAR1 and IFNAR2) and JAK1,
which are directly involved in the molecular complex sensing type-
I IFN [30], along with STAT1 and STAT2 which transduce the signal
to activate expression of genes exhibiting an IFN Stimulated
Response Element (ISRE) in their promoter (Fig. 4C). Similarly,
miRSTATION predicted targeting of many other antiviral IRGs
including STAT3, OAS1, OAS2, OAS3, MX1, IFIT1, IFIT2, IFIT3,
IFI16, CCL5, and RNASEL (Fig. 4C). The convergence of these predic-
tions suggested that miR-122-5p could functionally regulate sens-
ing of type-I IFN (by down-regulating the expression of the
receptor complex), but also through direct targeting of key antivi-
ral effectors of the pathway. Aligning with this, transfection of syn-
thetic miR-122-5p significantly reduced IFN signalling, as
measured by ISRE-luciferase reporter [31]. Conversely, inhibition
of miR-122-5p in hepatic Huh7 cells (which have high levels of
miR-122-5p) significantly enhanced IFN response, collectively sug-
gesting that miR-122-5p does impact IFN responses [31].
4. Discussion

Until recently, the characterisation of miRNA function has pre-
dominantly been inferred from the function of a few of their target
genes, with canonical seed targeting. While useful in some
instances, this widespread target-centric approach has generally
limited our understanding of miRNA function, which is overall very
mild at the level of individual targets [8,9]. This has also probably
led to the over-claiming of significance of specific target genes,
whilst under-claiming the true effects of miRNAs as modulators
of regulons and genetic networks. However, the discovery that
miRNA-mRNA interaction sites could be captured in chimera reads
by small RNA sequencing has revolutionised the landscape of
miRNA-target interactions, leading to the identification of more
than a hundred thousand miRNA target sites, often independent
of seed targeting [3,4,32]. Although some of these miRNA-mRNA
target sites may not functionally modulate expression of their tar-
get [7], we reasoned that large sets of miRNA-mRNA interactions
derived from such high-throughput screens and other more dis-
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crete approaches collectively compiled in miRTarBase, could offer a
novel opportunity to performed unbiased characterisation of
miRNA function.

Our analyses of the miRTarBase targets of 660 miRNAs suggest
that for greater than 50% of these (i.e. 348 miRNAs) an overlapping
layer of transcriptional regulation can be identified. This overlap-
ping effect of miRNAs on mRNAs that are co-regulated by the same
TFs supports the concept that miRNAs help buffer transcriptional
programs [23–25]. Critically, there were more enriched miRNA-
TF associations when using validated miRTarBase and high quality
predicted MTIs from miRDIP high, compared to poorer predicted
MTIs from miRDIP low, underlining that these associations are
not a mere result of chance.

Relying on the miRNA-TF associations identified for high quality
predicted MTIs from miRDIP high, we next proposed to stratify
MSIGdb pathways enriched amongst the targets of each one of
the 369 miRNAs. As such, we hypothesised that concurrent regula-
tion at transcriptional and posttranscriptional levels converged
towards a specific cellular function, and that these co-regulations
could help prioritise the prevalent functional networks regulated
by a miRNA. This approach allowed us to select up to three MSIGdb
pathways significantly enriched for each miRNA network of tar-
gets. Most importantly, we show that the MSIGdb pathways
selected through this approach can be used to filter poorly strin-
gent miRDIP* MTI predictions, and significantly enriched these in
true positive MTIs (based on miRTarBase validated targets). It is
also noteworthy that this approach significantly increased the
selection of true MTIs compared to miRDIP high MTIs for both pre-
cision and recall. SincemiRDIP high relies on high quality MTIs con-
currently predicted by several different algorithms, and miRDIP*
MTIs encompass those of miRDIP high, these findings suggest that
co-transcriptional prioritisation of functionally relevant MTIs per-
forms better than algorithms existing to date – noting that com-
pared to Targetscan, miRSTATION showed a decreased recall level.
Importantly, pathway ranking based on TF co-regulations per-
formed better than relying solely on the p-values of MSIGdb path-
ways enrichment, for its capacity to enrich in true positive MTIs in
miRDIP* (preliminary analyses not shown).

In addition to decreasing the amount of predicted MTIs
by greater than 85% for the miRNAs studied, one important partic-
ularity of our approach is that it did not make any assumption on
the type of miRNA-mRNA target sites considered – although our
analyses were restricted to sites predicted by � 5 different tools
in miRDIP. Since several MTI prediction tools in miRDIP are pre-
dominantly relying on energy of miRNA-mRNA interactions, they
can encompass non-canonical binding sites. This contrasts with
current approaches that favour binding to the 50-end region of
the miRNA (the seed), the mRNA sequence context and also inter-
species site conservation to filter the most relevant sites from
the greater than 10,000 possible predictions otherwise available
per miRNA, such as Targetscan or DIANA-microT [7,33]. For this rea-
son, our approach encompasses a very large set of possible miRNA
target sites independent of their adherence to the canonical defini-
tion. In doing so we can capture miRTarBase validated MTIs that
would not otherwise be considered. We also demonstrate that
the expression of miRSTATION predicted targets is significantly
more negatively correlated with miRNA expression levels, than
that seen with predicted targets obtained withmiRDIP high, relying
on 5 cancers. This unbiased global analysis gives further support to
the biological significance of our approach relying on enriched
pathways to filter large numbers of MTIs, independent of the type
of miRNA-mRNA interactions. Nonetheless, the Targetscan MTIs
performed best in this correlative analysis, which we attribute to
the fact that its prioritisation is based on conservation of sites
between orthologous species, and that such sites are associated
with stronger repression of the target [8].
4902
To our knowledge, this is the first demonstration that leverag-
ing experimentally validated TF networks of genes can help priori-
tise pathways enriched in miRNA predicted targets, which in turn
can be used to identify novel MTIs. We propose that this can help
define a bird’s-eye view of the functional regulation of a miRNA
based on a set of key regulated genes, the individual contribution
of which may only be very limited to the overall miRNA function.
As such, in addition to target genes that are under strong miRNA
control and may individually contribute to another specific func-
tion of the miRNA, our approach has the capacity to define less
obvious miRNA-regulons, with converging activities. We illustrate
this concept with the identification of IFNAR1, IFNAR2, JAK1, STAT1
and STAT2 as potential targets of miR-122-5p with converging
activity on the sensing of type-I IFNs. Although further experi-
ments will be necessary to confirm direct targeting of these genes
by miR-122-5p, the previous reports that modulation of miR-122-
5p levels controlled the response to type-I IFNs [31], and that miR-
122-5p levels were negatively correlated with IRG expression in
human hepatocytes [29], do support the concept of a regulon with
converging activity controlling type-I IFN responses, aligned with
the ‘‘RESPONSE_TO_CYTOKINE” pathway. Importantly, miR-122-
5p was not associated with this pathway relying on Targetscan
and miRDIP high predictions, or in miRPathDB or DIANA-miRPath,
illustrating the unique potential of miRSTATION.

In conclusion, we demonstrate here the feasibility to identify
functional miRNA-regulon based on overlapping transcriptional
and translational co-regulations. By avoiding standard MTI predic-
tion biases, our approach represents a paradigm shift in the defini-
tion of miRNA targets and miRNA function. Although currently
limited by the number of miRNAs targets present in miRTarBase
(i.e. 660 miRNAs used to benchmark our analyses), and the use
of miRDIP as a starting point in the MTIs selected, we demonstrate
proof-of-principle that this approach can identify miRNA-regulons
directly informing on miRNA function for 368 miRNAs. It will be
interesting to test, in further analyses, whether some of the TF-
miRNA co-regulatory networks identified through our approach
can be further modulated through targeting of the TF itself by
the miRNA it associates with, since predicted miRNA targets are
enriched for TFs [34]. Collectively our findings should help the
miRNA community move away from target-centric definitions of
miRNA function, which have prevailed to date in the field [12].
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