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Ahigh-confidence map of the direct, functional targets of each transcription factor (TF) requires convergent evidence from

independent sources. Two significant sources of evidence are TF binding locations and the transcriptional responses to di-

rect TF perturbations. Systematic data sets of both types exist for yeast and human, but they rarely converge on a common

set of direct, functional targets for a TF. Even the few genes that are both bound and responsive may not be direct functional

targets. Our analysis shows that when there are many nonfunctional binding sites and many indirect targets, nonfunctional

sites are expected to occur in the cis-regulatory DNA of indirect targets by chance. To address this problem, we introduce

dual threshold optimization (DTO), a newmethod for setting significance thresholds on binding and perturbation-response

data, and show that it improves convergence. It also enables comparison of binding data to perturbation-response data that

have been processed by network inference algorithms, which further improves convergence. The combination of dual

threshold optimization and network inference greatly expands the high-confidence TF network map in both yeast and hu-

man. Next, we analyze a comprehensive new data set measuring the transcriptional response shortly after inducing over-

expression of a yeast TF. We also present a new yeast binding location data set obtained by transposon calling cards and

compare it to recent ChIP-exo data. These new data sets improve convergence and expand the high-confidence network

synergistically.

[Supplemental material is available for this article.]

Mapping the circuitry by which cells regulate gene expression is a
fundamental goal of systems biology. Suchmaps would facilitate a
broad spectrum of research programs, much as maps of intermedi-
ary metabolism and genome sequences have. Transcriptional reg-
ulation has multiple layers and component types, including
sensors and signal transduction cascades. The bottom layer of tran-
scriptional regulation, which acts directly at the genome, features
sequence-specific DNA-binding proteins known as transcription
factors (TFs). Signaling cascades often change the activity levels
of specific TFs—the extent to which they exert their regulatory po-
tential on their target genes—via mechanisms that affect TFs’
abundance, localization, noncovalent interactions, or covalent
modifications. To map and model transcriptional regulation as a
whole, wemust knowwhich genes each TF regulates or has the po-
tential to regulate when activated.

A map of an organism’s TF network would have powerful ap-
plications. It could be used to infer the effects of specific signals,
drugs, or environments on the activity levels of TFs by analyzing
their effects on gene expression (Liao et al. 2003; Tran et al.

2005; Boorsma et al. 2008; Balwierz et al. 2014). It could be used
to predict the significance of naturally occurring genome variants
in TFs or TF binding sites (TFBSs). It could also be used to design
genome edits in TFs or TFBSs to achieve a desired transcriptional
state or behavior (Cahan et al. 2014; Michael et al. 2016;
Rackham et al. 2016). Crucial to all of these applications is the dis-
tinction between the direct functional targets of a TF—the genes it
regulates because it binds to their cis-regulatory DNA—and its in-
direct targets, which are regulated via intermediary proteins. For
example, a mutation inactivating a binding site for a TF in the
cis-regulatory DNA of one of its direct targets will affect the rela-
tionship between the TF and its direct target. However, a mutation
in a nonfunctional binding sitewhich happens to lie in the cis-reg-
ulatory DNA of an indirect target will not affect the relationship
between the TF and its indirect target.

In this paper, we analyze previously published and newly
described genome-wide data sets (Table 1) with both standard
and novel analytic techniques to reveal the current state-of-
the-art in identifying the direct, functional targets of a TF.
The data sets we focus on are those that aim to determine the
binding locations of TFs and those that attempt to measure the
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transcriptional response to perturbations of TF activity, such
as overexpressing the TF or deleting the gene that encodes it.
The binding location data are derived from either chromatin im-
munoprecipitation (ChIP) or transposon calling cards (Wang
et al. 2008; Ryan et al. 2012; Mayhew and Mitra 2016; Shively
et al. 2019).

Yeast data sets on TF binding locations and TF perturbation-
responses are more complete than those of any other eukaryote,
and yeast has a simpler genome with more localized regulatory
DNA. For those reasons, we start by focusing on yeast. In addition
to evaluating data sets and experimental and analytic methods,
we construct a preliminary map of the yeast TF network by inte-
grating the best available binding and perturbation response data
sets. For model invertebrates, there are large data sets on TF bind-
ing location (Brown and Celniker 2015; Kudron et al. 2018), but
there are currently no comparable data sets on the responses to
TF perturbations. Such data are available, however, for human
cell lines. We analyze large data sets on human K562 cells (The
ENCODE Project Consortium 2012; Sloan et al. 2016) and
HEK293 cells (Schmitges et al. 2016), producing TF networks for
each cell type.

Results

Simple comparison of yeast ChIP-chip to expression profiles of TF

deletion strains yields few high-confidence regulatory

relationships

Comprehensive binding and perturbation response data sets are available

for yeast TFs

In 2004, Harbison et al. assayed the binding locations of all yeast
TFs by using ChIP-chip (Harbison et al. 2004). In 2007, Hu et al.
published gene expression data on yeast strains in which each
nonessential yeast TF was deleted (Hu et al. 2007). This made it
possible to estimate the fraction of binding events that are func-
tional, andHu et al. remarked onhow small that fraction is—about
3%–5% in their data. In 2014, Kemmeren et al. published a second
such data set, which benefited from newer technology and the
hindsight afforded by the earlier study (Kemmeren et al. 2014).
In this section, we focus on the Kemmeren TF knockout (TFKO)

data because it demonstrates better agreement with the Harbison
ChIP data, on average.

Most bound genes in the Harbison ChIP data are not responsive

in the TFKO data

We began by calculating the response rate of bound genes for each
TF—the fraction of bound genes that are differentially expressed in
the TFKO strain, relative to the wild type (WT). The microarrays
used by Harbison et al. in their ChIP-chip study contained one
probe for each promoter, so their analysis yielded a simple P-value
for whether each promoter is bound. We eliminated from further
consideration the 16 TFs that were not called as bound to any pro-
moter. For the TFKO data, we used the authors’ statistical analysis
and considered a gene differentially expressed if its P-value (adjust-
ed for multiple comparisons) was <0.05. We eliminated from fur-
ther consideration any TF whose knockout resulted in no
significant changes, as well as the 32 TFs whose reported expres-
sion level in the strain lacking the TF was more than one half its
reported level in the WT. This can happen when the wild-type ex-
pression level of the TF is near or below the detection limit of the
microarray.

Figure 1A shows a histogram of the results. The median re-
sponse rate for bound genes was 18%. The mode was 0%; 25 of
the 97 TFs (26%) had both bound targets and responsive targets,
but none of the bound targets were responsive. Only 17 TFs
(18%)had a response rate above 50%. Tightening the statistical sig-
nificance threshold for responsiveness lowers the response rate fur-
ther, while tightening the threshold for binding causes very few
genes to be classified as bound and responsive (Supplemental
Fig. S1A–C). Thus, these data do not support the notion that
most binding is functional. The low response rate of bound genes
cannot be explained by saying that the TFs are inactive in the con-
ditions tested, since the median number of genes that respond
with P<0.05 is 318. A lot of genes respond, but they are not the
bound genes.

Many genes that are both bound and responsive in previously published data

are probably not direct functional targets

Given that available data suggest most binding sites are nonfunc-
tional, a logical procedure for finding the direct functional (DF)

Table 1. Data resources

Data type Technology Species
Proteins
targeted

Targeted TFs
analyzed

Genome
assembly

Strain/cell
line Publications

Binding
location

ChIP-chip S. cerevisiae 203 155 N/A W303 Harbison et al. 2004
ChIP-chip S. cerevisiae 200 36 N/A S288C Venters et al. 2011
ChIP-exo S. cerevisiae 26 26 R55, R64 (SGD) S288C Rhee and Pugh 2011;

Bergenholm et al. 2018; Rossi
et al. 2018a,b; Holland et al.
2019

Transposon calling
cards

S. cerevisiae 15 15 R61 (SGD) S288C Wang et al. 2012; Shively et al.
2019; Supplemental File S10

ChIP-seq H. sapiens 261 261 GRCh38 K562 Davis et al. 2018 (ENCODE)
ChIP-seq H. sapiens 131 131 GRCh37 HEK293 Schmitges et al. 2016
ChIP-exo H. sapiens 236 236 GRCh37 HEK293T Imbeault et al. 2017

Perturbation
response

TFKO S. cerevisiae 1484 164 N/A S288C Kemmeren et al. 2014
ZEV TF induction S. cerevisiae 201 139 N/A S288C Hackett et al. 2020
TFKD (shRNA,

siRNA)
H. sapiens 261 261 GRCh38 K562 Davis et al. 2018 (ENCODE)

CRISPR +CRISPRi H. sapiens 96 96 GRCh38 K562 Davis et al. 2018 (ENCODE)
TF induction H. sapiens 80 80 GRCh37 HEK293 Schmitges et al. 2016
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targets is to take the intersection of the genes bound by each TF
with the genes that respond to perturbation of that TF, a procedure
we refer to as the intersection algorithm. It is important to keep in
mind, however, that most responsive genes are not bound.
Comparing the ChIP datawith the TFKO data, themedian fraction
of responsive genes that are bound is 1% (Fig. 1B). Thus, most of
the responsive genes are indirect targets. Furthermore, it is reason-
able to assume that the distribution of indirect targets among all
genes is independent of the distribution of nonfunctional binding
sites, or at least that nonfunctional binding sites do not systemati-
cally avoid the promoters of indirect targets. This suggests that
some of the indirect targets also have nonfunctional binding sites.
These genes would be false positives of the intersection algorithm
—genes that are bound and responsive but are not responsive
because they are bound.

In Supplemental Box S1, we derive a new lower bound on the
expected false discovery rate (FDR) of the intersection algorithm,
as a function of its sensitivity (the fraction of direct functional
targets that are in the intersection) and four other variables: the
number of bound genes, |B|, the number of responsive genes, |R|,
the number of bound and responsive genes, |B> R|, and the total
number of genes assayed, |G|.

E[FDR] ≥ max (0, |B| − |R> B|/Sn)max (0, |R| − |R> B|/Sn)
|G||B> R|

The formula shows that, if a large fraction of bound genes is
not responsive and a large fraction of responsive genes is not
bound, the intersection procedure cannot have both high sensitiv-
ity and low false discovery rate. For example, Fig. 1C shows the re-
lationship between sensitivity and expected FDR for a fairly typical
TF, Gln3, based on the Harbison ChIP data and the TFKO response
data. The blue and red lines form the boundaries between the fea-
sible and infeasible regions for two different response thresholds.
They are calculated by varying the sensitivity and using the formu-
la shown above to calculate the corresponding lower bound on the
expected FDR. A reasonableminimum accuracy criterion for a pro-
cedure aimed at finding the DF targets of a TF is that it have sensi-
tivity ≥80% (it detects at least 80% of the DF targets) and an FDR≤
20%. However, that is not possible for Gln3, using these two data
sets (Fig. 1C, black dot). This is because the fraction of Gln3-bound
genes that are responsive to the Gln3 perturbation (53%) is only a
little more than the fraction of all genes that are responsive to the
Gln3 perturbation (43%; Fig. 1D). The 80–20 criterion is achiev-
able for only 43 TFs. Supplemental Figure S2 shows the effect of
varying the significance thresholds for binding and response.

The FDR lower bound does not guarantee anymaximum FDR
for the intersection algorithm. In fact, of the 43 TFs that could pos-
sibly achieve the 80–20 criterion in the ChIP-TFKO comparison,
only 27 have an intersection that is significantly larger thanwould
be expected by chance (hypergeometric P<0.01, not adjusted for

E

FB

A C

D

Figure 1. Overlap between bound and responsive gene sets. (A) Distribution of the response rates of TFs (fraction of bound genes that respond to TF
perturbation) in the Harbison binding and Kemmeren TFKO data sets. Stacked orange bar indicates the number of TFs with response rates of exactly
0. Binding threshold is P<0.001 and response threshold is P<0.05, as recommended in the original publications, with no minimum fold change.
(B) Median numbers of bound genes (17), perturbation-responsive genes (318), and intersection size (3), when comparing the ChIP-chip data to the
TFKO perturbation-response data. Thresholds are as in A. (C) Minimum expected FDR as a function of sensitivity for TF Gln3, when comparing ChIP to
TFKO. Genes are counted as responsive if they have adjusted P<0.05 (blue line) or adjusted P<0.05 and fold change >1.5 (salmon line). Eighty percent
sensitivity with 20% FDR is not attainable at either threshold, when comparing ChIP to TFKO. (D) The bound set, responsive set, and intersection for Gln3,
when comparing ChIP to TFKO. (E) Minimum expected FDR, as a function of sensitivity, withmoderate and tight thresholds for responsiveness, when com-
paring ChIP to ZEV15. Eighty percent sensitivity with 20% FDR is attainable at either threshold. (F ) The bound set, responsive set, and intersection for Gln3,
when comparing ChIP to ZEV15.
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multiple testing). Conversely, three TFs that passed the P<0.01 cri-
terion failed the 80–20 criterion. If we define “TF with acceptable
convergence” to be one that could pass the 80–20 criterion and
has a larger overlap between bound and responsive targets than
would be expected for randomly selected gene sets, then there
are 27 acceptable TFs with 448 interactions regulating 366 target
genes. If we take this to be our network map, ∼85% of TFs do
not have acceptable convergence, so they havenohigh confidence
targets, while 94% of genes have no identifiable regulator. In sum-
mary, using the simple intersection algorithm with just these two
data sets does not produce anything like a complete TF network
map.

Comparing yeast ChIP-chip data to expression profiling shortly

after TF induction enlarges the map

Recently, some of us released a data set in which the expression of
nearly every yeast TF was induced from a very low level to a high
level (http://idea.research.calicolabs.com) (Hackett et al. 2020).
This was accomplished by expressing ZEV, an estradiol-activated
artificial TF, and replacing the promoter of the gene to be induced
with a ZEV-responsive promoter (McIsaac et al. 2013, 2014). (Some
of the TFs were induced using an earlier iteration of the artificial TF
called GEV [McIsaac et al. 2011], but we refer to the data set as ZEV
for convenience.) Gene expression profiles were measured before
induction and at 5, 10, 15, 20, 30, 45, and 90 min after inducing
the expression of a natural yeast TF with estradiol. We reasoned
that genes that respond rapidlymight be enriched for direct targets
of the induced TF, since there would be limited time for intermedi-
ary proteins to be transcribed and translated. If the responders
were enriched for direct targets, the number of TFs showing accept-
able convergence might increase, expanding the network map. In
general, the expression profiles taken 15 min after TF induction
(ZEV15) were most enriched for bound genes, so we focus on the
15-min time point for the remainder of the paper (Supplemental

Fig. S3). For a detailed description of the strains, experiments,
and analysis, see Hackett et al. (2020).

The TF Gln3, which could not achieve 80% sensitivity with
20% expected FDR in the ChIP-TFKO comparison (Fig. 1C), can
in the ChIP-ZEV15 comparison (Fig. 1E). The reason is that the
number of responsive genes has decreased from 43% of all genes
to 24%, at the same time that the response rate of bound genes in-
creased from 53% to 60% (Fig. 1D,F). Across all TFs, the ChIP-
ZEV15 comparison identified 37 acceptable TFs, 23 of which had
not been identified in the ChIP-TFKO comparison (Fig. 2A). The
ChIP-ZEV15 comparison significantly expanded the network
map. Still, >72% of TFs do not show acceptable convergence in ei-
ther data set and hence have no identifiable targets, while >87% of
genes have no identifiable regulators.

Dual threshold optimization expands the TF network map

A possible limitation of the previous analyses is their sensitivity to
the statistical significance thresholds used to determine which
genes are bound and which are responsive. The statistics are cal-
culated separately for the binding and response data sets, and
statistical significance thresholds are, by their nature, arbitrary.
Furthermore, statistically significant levels of binding or perturba-
tion response might not be biologically significant. For example, a
TF may bind a site consistently in the ChIP data even though the
fractional occupancy of the site is too low to detectably affect
transcription.

To address these problems, we developed dual threshold opti-
mization (DTO), a method that sets the binding and response
thresholds by considering both data sets together. DTO chooses,
for each TF, the pair of (binding, response) thresholds that mini-
mizes the probability that the overlap between the bound and re-
sponsive sets results from random gene selection (Fig. 2B). For this
analysis, we ranked all genes by their absolute log fold change in
the ZEV15 data and, separately, by their negative log P-value in
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Figure 2. Dual threshold optimization (DTO) and network inference in yeast. (A) Numbers of acceptable TFs, unique target genes, and network edges,
when comparing Harbison ChIP data to TFKO or ZEV15 response data. “Unique targets” are genes that are in the bound-responsive intersection of at least
one acceptable TF and thus are plausible direct functional targets. Edges connect acceptable TFs to the genes in their bound-responsive intersection. The
ZEV15 response data yield more acceptable TFs, more unique targets, and more regulatory edges. (B) Illustration of DTO algorithm. Each dot represents
one gene. Red lines indicate the chosen (optimal) thresholds for binding (vertical red line) and regulation (horizontal red line). The lower left quadrant,
relative to the red lines, contains the bound and responsive genes, which are presumed to be direct functional targets (red dots). Gray lines indicate
some of the other possible thresholds on binding or response, and locations where the gray lines cross are possible combinations of binding and response
thresholds, each of which is evaluated by the DTO algorithm. (C) Numbers of acceptable TFs and unique target genes for comparison of Harbison ChIP
binding data to TFKO or ZEV15 response data, after dual threshold optimization. The requirement that the overlap between the bound and responsive
targets be greater than chance at P<0.01 was checked by comparing the nominal hypergeometric P-value for the overlap to a null distribution obtained
by running dual threshold optimization on 1000 randomly permuted binding and response data sets. DTO increases the network size, relative to using
fixed significance thresholds. ZEV15 still yields more acceptable TFs, regulated genes, and regulatory interactions than TFKO. (D) Comparison of TFKO
and ZEV15 networks derived from fixed thresholds, DTO on raw gene expression, and DTO on gene expression data processed by NetProphet 2.0.
The use of DTO on the raw expression data (blue bars) increases the size of both the intersection of the ZEV15 and TFKO (left bar grouping) and their union
(right bar grouping). Postprocessing with NetProphet 2.0 (green bars) further increases the number of acceptable TFs.
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the ChIP-chip data. We then chose the pair of (binding, response)
rank thresholds that minimized the nominal hypergeometric
P-value of the overlap between bound and responsive gene sets.
The only constraint on the thresholds chosen was that the P-value
for the ChIP data could not exceed 0.1. To test the significance of
the overlap at the chosen thresholds, we randomly permuted the
assignment of binding and response signals to genes 1000 times
and ran DTO on each random permutation (see Supplemental
Methods for details).

After DTO, we applied the same acceptable convergence crite-
ria as before—the bound-responsive overlap must be significant (P
<0.01, permutation-based) and 20% FDR at 80% sensitivity must
be theoretically achievable. DTOexpanded the networkmap again
(Fig. 2C). Combining the results from TFKO and ZEV15, 60 TFs
showed acceptable convergence. For these 60, the bound-respon-
sive overlap contained 2074 regulatory interactions involving
1430 unique target genes. The number of TFs that are acceptable
in both response data sets, 29, nowexceeds the number that are ac-
ceptable in either of the data sets alone (TFKO: 14, ZEV15: 17). In
this map, ∼33% of TFs have at least one target and ∼24% of genes
have at least one regulator. The maps based on DTO of TFKO and
ZEV15 data are provided as Supplemental Files S1 and S2.

Processing yeast gene expression data with a network inference

algorithm further expands the map

There aremany algorithms that attempt to infer TF-target relation-
ships by processing gene expression data but not binding location
data (e.g., Margolin et al. 2006; Faith et al. 2007; Huynh-Thu et al.
2010; Haury et al. 2012; Greenfield et al. 2013; Haynes et al. 2013;
Roy et al. 2013; Kang et al. 2018). Typically, they assign a confi-
dence score to each possible TF-target interaction. If all possible
targets of a TF are ranked according to their score, DTO can be ap-
plied to compare this ranking to binding location data. As long as
the network inference algorithm does not use any binding data,
DTO can provide independent, convergent evidence. There are
also network inference algorithms that weigh and integrate data
sources, including gene expression and TF binding location data
or curated sources influenced by binding data (e.g., Siahpirani
and Roy 2017; Wang et al. 2018; Castro et al. 2019). These algo-
rithms are not suitable for our current purpose, which is to assess
the convergence of independent evidence from gene expression
and binding location data.

To test this idea, we focused on our lab’s network inference al-
gorithm, NetProphet 2.0 (Kang et al. 2018). Amajor component of
the NetProphet score is the degree to which the target gene re-
sponds to direct perturbation of the TF. However, it also considers
the degree to which the mRNA level of the TF is predictive of the
mRNA level of the potential target, acrossmany different perturba-
tions. NetProphet also makes use of two other ideas: (1) that co-
regulated genes tend to have similar sequence motifs in their
promoters; and (2) that DNA-binding domains with similar amino
acid sequences tend to bind similarmotifs. It does not use any data
on TF binding location, either directly or indirectly.

We built separate NetProphet networks using the TFKO and
ZEVdata (Methods). ForTFKO,we input threewild-type expression
profiles and the complete set of 1484 expression profiles from
strains lacking one gene; some of the deleted genes encode TFs,
but others encode other putative regulatory proteins, such as
kinases andphosphatases. For ZEV,weused590 expressionprofiles
from 15 , 45 , or 90min postinduction.We then ranked the poten-
tial targets of each TF by their NetProphet scores and ran dual

threshold optimization, treating the NetProphet score as we did
the perturbation response strength. Combining the results from
NetProphet applied to TFKO and ZEV data, dual threshold optimi-
zation yielded 84 TFs (46%)with acceptable convergence (Fig. 2D).
For these TFs, the bound-responsive intersection had 2153 regula-
tory interactions involving 1327 unique target genes (23%)
(Supplemental Fig. S4A,B). The number of TFs that are acceptable
in both perturbation data sets, 44, is now much larger than the
number that are acceptable in either data set alone (TFKO: 22,
ZEV: 18). Supplemental Files S3 (TFKO) and S4 (ZEV) contain the
regulatory edges for each acceptable TF. Results from comparing
binding data to output from three other network inference
algorithms, Inferelator (Greenfield et al. 2013), GENIE3 (Huynh-
Thu et al. 2010), and MERLIN (Roy et al. 2013), can be found in
Supplemental Figure S4C.

RunningNetProphet on gene expression data and feeding the
result into dual threshold optimization has enlarged the map, but
it is still smaller than what is generally expected for the complete
yeast TF network. To improve it further, we need binding data
that are more accurate or more specifically focused on functional
binding.

Without network inference, data on human cell lines yield

a few acceptable TFs

The ENCODEProject (The ENCODEProject Consortium2012) has
produced a wealth of data on human cell lines, including 743 TF
ChIP-seq experiments and 391 RNA-seq experiments following
knockdown of a TF by siRNA or shRNA (TFKD), or by CRISPR inter-
ference (Gilbert et al. 2014) or CRISPR knockout (CRISPRi +
CRISPR KO). In K562 cells, 42 TFs have both ChIP-seq and TFKD
data, while 45 TFs have both ChIP-seq and CRISPRi or CRISPR
KO data. We focus on this K562 data, as it is by far the biggest rel-
evant data set.

We considered two ways of assigning ChIP-seq peaks to the
genes they potentially regulate. The first is the traditional approach
of choosing a fixed interval around the transcription start site
(TSS)—we used 10 kb upstream to 2 kb downstream. The second
is to take a small proximal promoter region (TSS −500 bp to +500
bp) along with enhancer regions that have been identified and as-
signed to the target gene in the GeneHancer database (Fishilevich
et al. 2017). GeneHancer uses a variety of data types, including pre-
dicted and ChIP-based TF binding sites, enhancer RNAs, histone
marks, chromosome conformation, and cis-eQTLs. We used only
the ‘elite’ enhancers and ‘elite’ associations, each of which is sup-
ported by at least two sources of evidence. Ninety-one percent of
the ‘elite’ enhancers were supported by evidence from ENCODE,
much of which comes from K562 cells. The enhancer-based ap-
proach generally yielded one or two more TFs with acceptable
convergence than the fixed interval approach, so we used the en-
hancers in subsequent analyses.

Unlike the yeast array data, the human sequencing data yield-
ed many more bound than responsive genes (Fig. 3A,B). Among
the TFs that had at least one bound and one responsive gene, seven
(TFKD) and seven (CRISPRi +CRISPR KO) had no genes that were
both bound and responsive. The median response rate for bound
genes was <0.5%. In a fixed-threshold intersection with K562
ChIP-seq data, TFKD and CRISPRi +CRISPR KO each yielded
five TFs with acceptable convergence. We then ran dual threshold
optimization limiting the bound and responsive gene sets to have
P≤0.1; such limits are necessary because DTO occasionally choos-
es implausible thresholds, such as counting all genes as responsive.
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Among all TFs with both binding and response data, TFKD yielded
14% acceptable TFs (6/43) and CRISPRi +CRISPR KO yielded 13%
(6/45), a slight improvement over fixed-threshold intersections
(Fig. 3C, left and center).

We also analyzed a data set on 88 human GFP-tagged C2H2
zinc finger TFs with matched ChIP-seq data and response-to-over-
expression data in HEK293 cells (Schmitges et al. 2016). Using
DTO on the ChIP-seq and differential expression data and limiting
the total number of responsive genes to 300,000, three of 88 TFs
showed acceptable convergence (Fig. 3C, right).

Processing human data through network inference algorithms

greatly increases the number of acceptable TFs

We ran NetProphet 2.0 on both the K562 data (TFKD and CRISPRi
+CRISPR KO) and the HEK293 data followed by DTO, limiting the
total set of responsive genes to those with the top 500,000 (K562)
or 300,000 (HEK293) NetProphet scores (see Supplemental
Methods for details). Among the TFs that were both perturbed
and ChIPped, the number showing acceptable convergence in-
creased from six to eight (K562 CRISPRi +CRISPR KO), from six
to 17 (K562 TFKD), and from three to 71 (HEK293 overexpression)
(Fig 3C). Comparable results for other network inference algo-
rithms are shown in Supplemental Figure S4D. NetProphet and
other inference algorithms can also infer targets for TFs that
have not been directly perturbed, by exploiting correlation be-
tween the expression of the TF and its targets when other TFs are
perturbed. Processing all the perturbation response data and eval-
uating only on the nonperturbed TFs, we found that the
Inferelator scores yielded the largest number of TFswith acceptable
convergence (Supplemental Fig. S4E). This is not surprising, since
NetProphet weighs the response to direct perturbation heavily in
its score. This suggests that, for TFs that have not been directly per-
turbed, Inferelator is the best choice of analysis tool.

We also compared the output of NetProphet 2.0 when run on
HEK293 perturbation response data to a recently published ChIP-
exo data set (Imbeault et al. 2017) focusing on KRAB zinc finger
TFs. ChIP-exo (Rhee and Pugh 2011, 2012; Perreault and Venters

2016; Rossi et al. 2018b) is a variant of ChIP-seq inwhich the affin-
ity-purified chromatin is digested by an exonuclease, leaving
much smaller pieces that are partially protected by protein. Of
the 27 TFs that were in both perturbation and ChIP-exo data
sets, 20 showed acceptable overlap with NetProphet scores. For
the same 27 TFs, using the previously described ChIP-seq yielded
24 TFs with acceptable convergence. This small difference may
be due, in part, to the fact that the ChIP-exo experiments were
done on a derivative cell line known as HEK293T.

In yeast, newer ChIP data do not necessarily yield better

convergence with perturbation response

To assess whether the age of the Harbison ChIP-chip data was re-
sponsible for some of its limitations, we analyzed a 2011 ChIP
data set from Venters et al. (2011), which included 26 factors that
were also ChIPped by Harbison and perturbed by TFKO and ZEV.
The results did not improve on those of Harbison et al. (Fig. 4A).

In yeast, ChIP-exo yields better convergence than

traditional ChIP

We also ran DTO on ChIP-exo data from yeast (Rhee and Pugh
2011; Bergenholm et al. 2018; Rossi et al. 2018a,b; Holland et al.
2019). Twenty TFs had data in ChIP-exo, Harbison ChIP-chip,
TFKO, and ZEV15, enabling all-way comparisons. Regardless of
the perturbation-response data set, ChIP-exo showed acceptable
convergence for more TFs than ChIP-chip did (Fig. 4B). (For the
sixteen TFs with ChIP-exo data in four different growth condi-
tions, we used the glucose-limited chemostat data as it gave the
best results [dotted blue lines, Supplemental Fig. S5A,B].) After pro-
cessing the ZEV perturbation-response data through NetProphet
2.0, all 20 TFs showed acceptable convergence (Fig. 4B).

Transposon calling cards yields more acceptable TFs than

traditional ChIP

Transposon calling cards is a method of determining TF binding
locations by tethering a transposase to a TF, recovering the inserted

BA C

Figure 3. Network inference with dual threshold optimization in human cell lines. (A) Medians of number of bound genes, number of perturbation-re-
sponsive genes, and number of genes that are both bound and responsive, when comparing ENCODE K562 ChIP-seq data to ENCODE TFKD data.
Excludes TFs with either no bound genes or no responsive genes. Binding threshold is P<0.05 and response threshold is P<0.05 with no minimum
fold change. (B) Comparison of ENCODE K562 ChIP-seq data and ENCODE CRISPRi +CRISPR KO data, as in A. (C) Comparison of human networks derived
from fixed thresholds, dual threshold optimization on raw perturbation-response data, and DTO on perturbation-response data processed by NetProphet
2.0. The vertical axis is the number of TFs showing acceptable convergence divided by the number that were both ChIPped and perturbed (K562: ChIP-
CRISPRi +CRISPR KO=45, K562: ChIP-TFKD=43, HEK293: ChIP-TF_over = 80). Asterisk indicates that no fixed threshold analysis for HEK293 is available
due to the lack of response P-values.
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transposons with their flanking sequences, and counting the in-
sertions in a given genomic region. It does not require crosslink-
ing, sonication, or affinity purification (Wang et al. 2011; Ryan
et al. 2012; Mayhew and Mitra 2016). Here, we analyze previously
published calling cards data on seven TFs (Wang et al. 2011;
Shively et al. 2019) and new, never-before-analyzed data on eight
TFs. Binding data fromChIP-chip and calling cards were compared
to perturbation-response data from TFKO and ZEV15, using the 12
TFs present in all four data sets (Fig. 4C). In all comparisons, calling
cards yielded substantially more acceptable TFs than ChIP-chip.
This is particularly impressive given that the calling cards experi-
ments were carried out in different growth conditions from the
ZEV experiments—synthetic complete medium with galactose
on agarose plates at room temperature versus minimal medium
in phosphate-limited continuous-flow chemostats with glucose
at 30°C (Hackett et al. 2020). Figure 4C also shows that, holding
all other factors constant, ZEV was always better than TFKO and
postprocessing by NetProphet was always beneficial. Lists of ac-
ceptable TFs and their bound and responsive targets for all calling
cards analyses in Fig. 4C are provided as Supplemental Files S5–S8.

Figure 4D shows the−log P-value of themost significantGene
Ontology (GO) term for the predicted targets of each TF for which
we have calling cards data, excluding GO terms that describe >300
or fewer than three genes. To highlight the progress reported here,
results are shown for the best combination of experimental and
analytic methods (DTO on calling cards data and NetProphet out-
put after processing TFKO and ZEV 15-, 45-, and 90-min samples)
compared to the simple intersection of bound and responsive
genes using TFKO and ChIP-chip. For 10 of 12 TFs, the best combi-
nation of methods had a more significant GO term P-value, and
the differences were large. For two of 12 (Ino4 and Sfp1), simple in-
tersection had the more significant P-value, but the differences
were smaller. The median −log10 P-value for the best combination
ofmethodswas 11.2, while that of simple intersectionwas 1.5. The
best combination ofmethods assigned the top GO term to 117 tar-
get genes, whereas simple intersection assigned the top term to
only 41 genes. For most TFs, the most significant GO term had a
clear relationship to the known function of the TF. In some cases,
the term selected is an immediate parent of the most familiar term
associatedwith the TF. For example, Gcr2 (Glycolysis Regulation 2)

EBA C

D

Figure 4. Generating a high-confidence yeast TF network. (A) Percentage of TFs showing acceptable convergence, when comparing the Harbison ChIP
and Venters ChIP data on the same 26 TFs. Regardless of the perturbation data set or the processing byNetProphet 2.0, the Harbison ChIP data always yield
more acceptable TFs. (B) Among the 20 TFs for which we have data in Harbison ChIP-chip, ChIP-exo, TFKO, and ZEV, the percentage that show acceptable
convergence. Regardless of the perturbation data set or processing by NetProphet 2.0, ChIP-exo always yields more acceptable TFs. For both TFKO and
ZEV, NetProphet postprocessing yields more acceptable TFs than raw differential expression. WhenNetProphet-processed ZEV data are compared to ChIP-
exo data, all TFs show acceptable convergence. (C) Among the 12 TFs for which we have data in Harbison ChIP, calling cards, TFKO, and ZEV, the per-
centage that show acceptable convergence. When NetProphet-processed ZEV data are compared to calling cards, all TFs show acceptable convergence.
(D) For each of the 12 TFs for which we have data in Harbison ChIP, calling cards, TFKO, and ZEV, the Gene Ontology (GO) term that is most strongly
enriched in the TF’s targets. Targets are determined either by simple intersection of the bound and responsive genes in Harbison ChIP and TFKO data,
using fixed thresholds (blue) or by dual threshold optimization on calling cards data and output fromNetProphet 2.0 run on the TFKO and ZEV expression
data (red). The colored numbers indicate the number of target genes annotated to themost significant GO term. Asterisk indicates no GO enrichment with
P<0.01. (E) Among all TFs for which the indicated analyses can be carried out, the percentage that are acceptable in either TFKO or ZEV data or both. The
fraction shows the number of acceptable TFs over the total number of TFs that could be analyzed. (FT) Fixed threshold, (DTO) dual threshold optimization.
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is known as a regulator of genes encoding glycolytic enzymes. Its
most significant GO term is “ADP metabolic process,” annotating
13 predictedGcr2 targets, but 12 of those targets are also annotated
with “glycolytic process,” a subcategory of “ADP metabolic pro-
cess.” This can be seen in Supplemental Figure S6, which shows
the top five GO terms for each TF.

Another way to look at the contributions of various methods
is to plot the fraction of available TFs that show acceptable conver-
gence, combining TFKO and ZEV, using each combination of
methods described here (Fig. 4E). Only 15 TFs are currently avail-
able for calling cards and either ZEV15 or TFKO (12 for both),
but analyzing these with DTO and NetProphet results in a much
larger fraction of TFs being acceptable. This includes TFs that are
not thought to be active in the ZEV or TFKO growth conditions,
such as Gal4, presumably because ZEV overexpression of Gal4 sig-
nificantly exceeds the number of Gal80 molecules available to
bind and inactivate it. The second best percentage of TFs showing
acceptable convergence was obtained by comparing NetProphet
scores to ChIP-exo data (Fig. 4E).

The combination of ZEV and calling cards greatly increases

response rates

We began this paper by observing that, using fixed threshold anal-
ysis of the TFKO and ChIP data, most binding appears to be non-
functional. To revisit the question of functionality using ZEV15
and calling cards data, we plotted the fraction of bound genes
that are responsive as a function of binding strength rank. Figure
5A shows that, for the TF Leu3, the combination of calling cards
and ZEV15 gives much higher response rates than any of the other
three combinations—ChIP-ZEV15, calling cards-TFKO, or ChIP-

TFKO—regardless of binding strength. Nine out of the 10 most
strongly bound and 48 out of 100 most strongly bound genes
were responsive. To make the comparison between ZEV15 and
TFKO fair, we fixed the number of Leu3-responsive genes in each
perturbation data set to be the same. Thus, we labeled the 156
most strongly responsive genes in each data set as Leu3-responsive,
because 156 was the minimum of the numbers of genes that were
significantly differentially expressed in the two data sets for Leu3.
Although the number of responsive genes in each data set was the
same, a larger fraction of the ZEV15-responsive genes was bound,
as compared to the TFKO-responsive genes. Figure 5B shows a sim-
ilar plot of the average response rates at each binding threshold
across the 12 TFs for which we have all four combinations of
data sets. Again, the combination of ZEV15 and calling cards gives
higher response rates at all binding thresholds. On average, the re-
sponse rate of the 10 most strongly bound genes is 61.7%.
Individual rank-response plots for the 11 other TFs present in all
four data sets are shown in Supplemental Figure S7.

Figure 5C shows a direct comparison of binding strengths as
assessed by calling cards, ChIP-exo, and ChIP-chip for the eight
TFs for which we had data from all methods. Each binding data
set was compared to ZEV15 data on the same TF. At the highest
binding strengths, calling cards appears to be a bit more discrimi-
nating, but ChIP-exo catches up when 20 or more top binding tar-
gets are considered. Both calling cards and ChIP-exo greatly
outperform ChIP-chip.

Comparison of nonresponsive genes that are bound in each assay

Genes that appear to be bound by a TF but are not responsive to it
could reflect false positives of the binding assay, nonfunctional

E
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Figure 5. Comparison of yeast perturbation-response and binding data sets. (A) The fraction of most strongly Leu3-bound genes that are responsive to
Leu3 perturbation, as a function of the number of most strongly bound genes considered. (B) Same as A, with response rates averaged across the 12 TFs for
which Harbison ChIP, calling cards, TFKO, and ZEV datawere available. (C ) Same as B, with response rates averaged across the eight TFs for which Harbison
ChIP, calling cards, ChIP-exo, and ZEV15 datawere available. (D) Venn diagram for the 20 genes that aremost strongly bound by Leu3 in each assay but not
responsive to Leu3 perturbation (ZEV15). Only the top 20 nonresponsive genes ranked by their binding strengths are shown. (E) The analysis shown in D,
applied to the eight TFs for which we have data in ChIP-chip, ChIP-exo, calling cards, and ZEV. The three colored box plots show the genes that are only
bound in one of the three binding sets. The box plot in gray shows the genes with evidence in at least two binding sets.
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binding sites, or genuinely bound genes that are not responsive
because of network compensation, saturation, or other biological
mechanisms (see Discussion). To estimate the contribution of false
positives of the binding assays, we compared the bound but non-
responsive targets according to each assay, for the eight TFs for
which we had all three assays (Fig. 5D). The nonresponsive genes
that are bound in only one assay are more likely to be false posi-
tives than those that are supported by multiple assays. Binding
at these genes could be supported by another assay at a level below
the thresholdwe used for this analysis, sowe cannot conclude that
they are definitely false positives. We found that ChIP-chip had
more likely false positives than either calling cards or ChIP-exo,
which were comparable to one another (Fig. 5E). The nonrespon-
sive genes that were supported by at least two assays aremost likely
true bound sites that are nonresponsive for biological reasons. The
relatively large size of this set suggests that there are a substantial
number of truly bound, nonresponsive genes.

Combining all available data sets yields the best result

ChIP-exo and calling cards data are not yet available for most yeast
TFs. Furthermore, the data sets that are best overall may not be best
on every TF. Therefore, we combined the data sets described above
using NetProphet 2.0, DTO, and our FDR lower bound. We used
the following procedure, which can be applied to any data sets
available for any species:

Union the network edges produced by performing the following
procedure on each perturbation-response data set:
1. Using the entire perturbation-response data set, run a suitable

network inference algorithm that does not use binding location
data either directly or indirectly. Rank all possible edges accord-
ing to their score. If desired, multiple inference algorithms can
be run (Marbach et al. 2012).

2. For each TF:
a. Compare the network inference scores of the TF’s targets to

each binding location data set using DTO to select thresh-
olds. Among all binding data sets for the TF, choose the
one that yields the best hypergeometric P-value.

b. Using the chosen data set and DTO thresholds, check
whether the TF is acceptable as defined above. If so, return
edges from the TF to targets that are above the thresholds
for both expression and binding.

We carried out this procedure on the TFKO and ZEV expres-
sion data with the Harbison ChIP, ChIP-exo, and calling cards
binding data. For the TFs for which ChIP-exo or calling cards
data were available, one of these data sets was chosen over
Harbison ChIP 92% of the time (TFKO comparison) or 96% of
the time (ZEV comparison). Considering all data sets, the resulting
network comprises 96 acceptable TFs with 3268 edges impinging
on 1686 unique target genes (Supplemental File S11).

Discussion

The fundamental question behind this investigation is whether TF
binding locations and TF perturbation responses could provide
convergent evidence about the direct functional targets of each
TF in an organism. Using standard methods to compare binding
data from chromatin immunoprecipitation (ChIP) to published
perturbation-response data, we found that most of the genes
whose cis-regulatory DNA is bound by a TF are not functionally

regulated by that TF. We found this to be the case for two yeast
ChIP data sets as well as ENCODEChIP-seq experiments in human
K562 cells and another 88 ChIP-seq experiments in human
HEK293 cells, consistent with previous reports based on different
data sets (Hu et al. 2007; Gitter et al. 2009; Lenstra and Holstege
2012; Cusanovich et al. 2014).

If the problem is that most bound genes are not responsive, a
natural solution would be to focus on those that are—that is, to
take the intersection of the genes a TF binds and the genes that re-
spond to perturbation of the TF as its direct functional targets.
However, we proved that this procedure does not effectively iden-
tify the direct functional targets when the sets of bound and re-
sponsive genes are much larger than their intersection. The
reason is that, when there are many genes with nonfunctional
binding sites and many genes that respond to the perturbation
because they are indirect targets, it is expected that some indirect
targets will have nonfunctional binding sites in their cis-regulatory
DNA. These are not direct functional targets, yet they inhabit and
contaminate the intersection of bound and responsive genes.

We quantified this problem by setting minimal criteria for
considering the genes that are bound and responsive to be likely
direct functional targets. First, the intersection procedure must
be able to achieve, in principle, 80% sensitivity with an expected
false discovery rate of no more than 20%. Second, the intersection
must be larger thanwould be expected by chance (P< 0.01).We say
that a TF shows acceptable convergence if it meets both those cri-
teria. This designation does not guarantee that all or most of the
TF’s bound and responsive genes are responsive because they are
bound. The 80–20 criterion is a lower bound on the expected
FDR, not an upper bound. Furthermore, it does not guarantee a
unique relationship between the bound and responsive sets of an
acceptable TF—the bound set of one TF can show acceptable con-
vergence when compared to the responsive set of a different TF.
Acceptable simply means that there is no obvious red flag to pre-
vent us from supposing that a good number of the TF’s bound
and responsive genes are direct functional targets. When combin-
ing ChIP data with steady-state perturbation-response data, the
number of TFs showing acceptable convergence was no more
than 15% of TFs assayed in both yeast and human data. For the re-
maining TFs, there is a clear red flag.

We identified four techniques that could substantially in-
crease the number of TFs showing acceptable convergence.

1. Measuring the transcriptional response a short time after induc-
ing overexpression of a TF by using a method such as ZEV.

2. Using dual threshold optimization to set significance thresh-
olds for binding and response data in a way thatmakes their in-
tersection as significant as possible.

3. Processing all the perturbation-response data together through
a network inference algorithm that does not use binding data,
either directly or indirectly.

4. Measuring TF binding location by using transposon calling
cards or (in yeast) ChIP-exo, rather than standard ChIP.

We combined all these methods to produce a high-quality
yeast TF network, using the best binding data available for each
TF. Currently, ∼25% of the TFs in the network have binding data
from calling cards or ChIP-exo; we expect the network to improve
as these data are produced for more TFs. For mammalian cells, call-
ing cards (Wang et al. 2012), dual threshold optimization, and net-
work inference have all been shown towork to some degree. For TF
activity perturbation, highly specific genome-targeting systems
have been developed and tested with a variety of activation and
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repression domains (Waryah et al. 2018) and linked to small-mol-
ecule inducers (Oakes et al. 2016; Kundert et al. 2019). However,
the prospects for obtaining ZEV-like perturbation and calling cards
binding data on large numbers of mammalian TFs remain
uncertain.

Other new technologies for measuring TF binding locations
have shown great promise (Policastro and Zentner 2018) but
have not yet yielded a sufficiently large, systematic data set, with
matched perturbation-response data, for comparison to ChIP
and calling cards. One such technology is DamID, in which a
DNA-methyltransferase is tethered to a DNA-binding protein
and changes in DNA methylation relative to a control are assayed
to determine binding location (van Steensel and Henikoff 2000;
Hass et al. 2015; Tosti et al. 2018). Another is CUT&RUN, in which
an endonuclease tethered to an antibody against a TF enters per-
meabilized nuclei and releases the DNA bound by the TF, which
diffuses out of the cell and is recovered for sequencing (Skene
and Henikoff 2017; Skene et al. 2018; Hainer and Fazzio 2019;
Meers et al. 2019). A promising approach for measuring perturba-
tion-response inmammalian cells is to transfect cells with a library
of constructs encoding guide-RNAs that target a variety of TFs and
then use single-cell RNA-seq to identify the TF perturbed andmea-
sure the response. Variants of this general approach include
Perturb-seq (Adamson et al. 2016; Dixit et al. 2016; Replogle
et al. 2018), CROP-seq (Datlinger et al. 2017), and CRISP-seq
(Jaitin et al. 2016). As these technologies mature, they will likely
be used to produce large, systematic data sets that can be analyzed
using the methods described here.

Evenwhenwe apply the best combination of analytic and ex-
perimentalmethods, a large fraction of the geneswhose regulatory
DNA is significantly bound by a TF does not respond to a perturba-
tion of that TF. Such nonresponsiveness could be caused by several
mechanisms.

• Insufficient occupancy—rank response plots (Fig. 5A–C) indi-
cate that the most strongly bound sites are much more likely
to be functional than sites that are bound less strongly, even
when the weaker sites are statistically significant.

• Saturation—if a gene is already expressed at its maximum possi-
ble level and an activator of that gene is induced, no response
will be seen. However, if other TFs were removed, lowering the
expression level of the gene, it would respond to the induction.
The same situation arises when a repressor of an unexpressed
gene is induced or an activator of it is depleted.

• Inactivity—the TF may bind DNA even when the TF is in an in-
active or partially active state. However, ZEV induction of Gal4
activates galactose genes even in the absence of galactose and
presence of glucose, showing that overexpression can elicit a re-
sponse in conditions where a TF is normally inactive.

• Compensation—the regulatory network as a whole may com-
pensate for the change in TF activity in a way that dampens
the effect of the initial perturbation. Measuring responses
shortly after the perturbation should reduce the prevalence of
such compensation, but some mechanisms can compensate
quickly. A simple example would be two essentially equivalent
TFs that can bind to the same sites, so that the effects of perturb-
ing one TF are buffered by the other. This was shown to be a con-
tributing factor in a comparison of theHarbisonChIP data to the
TFKO data from Hu et al. (2007) (Gitter et al. 2009).

• Override—some regions of a genomemay be shut down in away
that overrides the effects of TFs, even when the TFs can bind to
the cis-regulatory DNA. For example, the transcribed region of a

gene might be in inaccessible, tightly compacted DNA even
though the cis-regulatory region remains somewhat accessible
to TFs.

• Synergistic regulation—some TFs that are bound to cis-regulato-
ry DNAmay be active only where there is a binding site for a co-
factor nearby.

Regardless of the mechanism that renders a bound gene non-
responsive, it remains the case that many binding sites are non-
functional under the conditions tested, in the sense that the
transcription rate of the associated gene is unaffected by the pres-
ence or absence of the TF. Currently, we do not know how much
each of the factors listed above contributes to explaining why so
manygenes that areboundbyaTFdonot respond toaperturbation
of that TF. For now, technical limitations of the available data sets
maybea significant contributing factor.Once thosehavebeenmit-
igatedbynewermethods like transposoncalling cards,wewill be in
a strong position to investigate the biological factors that explain
thenonresponsivenessof geneswhose cis-regulatoryDNA is bound
by a TF. Determining the prevalence of each factor will bring the
landscape of transcriptional regulation into much clearer focus.

Methods

Rationale and details can be found in the Online Supplement.

Data preparation

Yeast gene and TF definitions

For all yeast analyses, we considered the 5887 genes labeled “ORF
verified” or “uncharacterized” in the Saccharomyces Genome
Database. The list of 183 TFs is in Supplemental File S9.

Yeast binding location data sets

We downloaded the P-values for the Harbison et al. (2004) data
from http://younglab.wi.mit.edu/regulatory_code/GWLD.html.
Following the authors’ recommendation, targets with P≤0.001
were considered significantly bound. We downloaded the occu-
pancy-level profiles for Venters et al. (2011) from their
Supplemental Table S4a. The log2 fold change of experimental sig-
nal over background signal within each promoter was used as the
binding signal strength. The “25&37C merged MockIP controls”
file was obtained from the authors. ChIP-exo data for 26 TFs
were compiled from several studies (Rhee and Pugh 2011;
Bergenholm et al. 2018; Rossi et al. 2018a,b; Holland et al.
2019). We obtained data directly from the authors of Holland
et al. (2019) and Bergenholm et al. (2018) and focused on the glu-
cose-limited chemostat data as that gave the best agreement with
both TFKO and ZEV15 response data (Supplemental Fig. S5). We
combined calling cards data from Wang et al. (2011) and Shively
et al. (2019) on Cbf1, Cst6, Gal4, Gcr1, Gcr2, Rgm1, and Tye7
with new data on Eds1, Gcn4, Ino4, Leu3, Lys14, Rgt1, Sfp1, and
Zap1 (Supplemental File S10).

Yeast perturbation-response data

The TFKO data (Kemmeren et al. 2014) are from http://deleteome
.holstegelab.nl/data/downloads/deleteome_all_mutants_controls
.txt. The ZEV induction system is described inHackett et al. (2020).
We used the column log2_shrunken_timecourses from the file
“Raw & processed gene expression data” at https://idea.research
.calicolabs.com/data. Genes with nonzero entries were considered
responsive.
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Human ChIP data

All ENCODE data were downloaded from https://www.encode
project.org on 1/21/19. We used the “conservative” ChIP-seq
peaks called by the ENCODE pipeline (Irreproducible Discovery
Rate≤2%). The HEK293 data file (Schmitges et al. 2016) was
downloaded from NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) series GSE76494 (file GSE76494_
combined_summits .motif_hits.per_protein.hg19.tar.gz). We de-
fined the regulatory region of a gene as a core promoter (TSS±
500 bp) combined with the gene’s “double elite” enhancers from
GeneHancer V4.8 (Fishilevich et al. 2017), which we obtained
from the authors. To quantify each TF-target binding interaction,
we summed the log10 Q-values of significant peaks (ENCODE) or
the scores of all summits (HEK293) within the target’s regulatory
regions.

Human perturbation-response data

ENCODE: Differentially expressed genes in each strain were as-
sessed with DESeq2 (V1.10.1) (Love et al. 2014). HEK293 RNA-
seq data were downloaded from NCBI GEO Series GSE76495 (file
GSE76495_OE .vsd_normalized.log2.txt.gz). Since there were no
control replicates, we used the expression levels in each profile,
normalized to the medians of the respective batches, as the re-
sponse strength (Schmitges et al. 2016).

TF network mapping

All software was run with default parameters. NetProphet 2.0
(Kang et al. 2018) was downloaded from https://github.com/
yiming-kang/NetProphet_2.0; GENIE3 (Huynh-Thu et al. 2010)
(v1.16.5, Python implementation) from http://www.montefiore
.ulg.ac.be/~huynh-thu/software.html; Inferelator (Greenfield
et al. 2013) from https://github.com/ChristophH/Inferelator; and
MERLIN (Roy et al. 2013) from https://github.com/marbach/
gpdream. No prior network was used with Inferelator because
our intention is to infer networks without any influence from
binding data.

Dual threshold optimization

DTO algorithm

DTO can be used to compare any two ranked lists of genes. A series
of threshold pairs, one for each list, are tried and genes above the
threshold are considered “positives” in the corresponding list.
The series of thresholds for each ranked list, T1, T2, …, was gener-
ated by using the recurrence: T1 = 1; Tn = Floor(Tn−1∗1.01 + 1).
This produces a finer spacing among higher ranks. For each pair of
thresholds (one for each ranked list), a hypergeometric P-value for
overlap of the positive gene sets is computed. DTO returns the
threshold combination that minimizes this nominal P-value. A
null distribution for testing the significance of the overlap chosen
by DTO was generated from the nominal P-values chosen in 1000
runs of DTO on 1000 randomized rankings.

Application of DTO to yeast data

The universe was defined as the set of all genes assayed in both of
the two data sets being compared. Genes were ranked according to
P-values for data sets that had them, or log fold change (ZEV data,
column log2_cleaned_ratio from the file “Raw & processed gene
expression data” at https://idea.research.calicolabs.com/data) or
score (NetProphet 2.0, GENIE3, Inferelator, and MERLIN).

Application of DTO to human data

For all perturbation data sets, the universe for hypergeometric
probabilities was the set of all genes detected in the data set. For
each perturbed TF in ENCODE data, the “RSEM expected counts”
in the perturbation samples were compared to those from the con-
trol set using DESeq2 (V1.10.1). The genes were ranked by the dif-
ferential expression P-values. DTO was limited to choosing bound
or responsive genes with P≤0.1. When applied to network infer-
ence scores, it was limited to the top 500,000 edge scores. For
HEK293 data, genes are ranked by the absolute value of the log
fold change relative to control samples, as no replicates or P-values
were available for most TFs. For both raw perturbation data and
network inference scores, the score of the TF-target relationship
was required to be among the top 300,000 scores.

Rank-response plots

A gene was considered responsive in the TFKO data if it had an ad-
justed P<0.05 and in the ZEV15 data if it had an absolute
shrunken log fold change >0. For each TF, let n be the smaller of
the numbers of responsive genes in the TFKO and ZEV15 data.
We labeled the top n most strongly responsive genes in the
TFKO and ZEV15 data as responsive for purposes of Fig. 5A–C.
This equalized the number of ZEV15-responsive and TFKO-respon-
sive genes for each TF. We then sorted genes by the strength of
their binding signal for the TF and considered the top 1, 2, 3, 4,
etc. most strongly bound genes. For each such group, we plotted
the fraction of genes that were responsive.

GO enrichment analysis

Gene Ontology biological process terms were obtained from R
Bioconductor library org.Sc.sgd.db (V3.5.0) and terms annotated
to less than three or >300 genes were eliminated. If multiple terms
were enriched by the same set of targets, only the most specific
term was retained. Term enrichment for the targets of each TF
was analyzed using the hypergeometric test (GOstats V2.44.0).
In Fig. 4D, enrichment was calculated separately for each network.
Themost significant term is shown, regardless of the network from
which it was obtained.

Data access

All raw and processed sequencing data generated for this study us-
ing transposon calling cards have been submitted to NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE144657. Software implementing dual
threshold optimization and instructions is available at GitHub
(https://github.com/BrentLab/Dual_Threshold_Optimization) and
as Supplemental Code.
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