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Rejuvenation: an integrated approach to
regenerative medicine
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Abstract

The word “rejuvenate” found in the Merriam-Webster dictionary is (1) to make young or youthful again: give new
vigor to, and (2) to restore to an original or new state. Regenerative medicine is the process of creating living,
functional tissues to repair or replace tissue or organ function lost due to age, disease, damage, or congenital
defects. To accomplish this, approaches including transplantation, tissue engineering, cell therapy, and gene
therapy are brought into action. These all use exogenously prepared materials to forcefully mend the failed
organ. The adaptation of the materials in the host and their integration into the organ are all uncertain. It is a
common sense that tissue injury in the younger is easily repaired and the acute injury is healed better and faster. Why
does the elder have a diminished capacity of self-repairing, or why does chronic injury cause the loss of the self-repairing
capacity? There must be some critical elements that are involved in the repair process, but are suppressed in the elder or
under the chronic injury condition. Rejuvenation of the self-repair mechanism would be an ideal solution for functional
recovery of the failed organ. To achieve this, it would involve renewal of the injury signaling, reestablishment of
the communication and transportation system, recruitment of the materials for repairing, regeneration of the
failed organ, and rehabilitation of the renewed organ. It thus would require a comprehensive understanding of
developmental biology and a development of new approaches to activate the critical players to rejuvenate the
self-repair mechanism in the elder or under chronic injury condition. Efforts focusing on rejuvenation would expect an
alternative, if not a better, accomplishment in the regenerative medicine.
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Introduction
Regenerative medicine is an integrated process to re-
cover the organ function lost due to age, disease, dam-
age, or congenital defects [1-7]. The existing approaches
for this process include transplantation, tissue engineer-
ing, cell therapy, and gene therapy [5,8-10]. Experimen-
tal studies and clinical trials all produce evidence showing
the efficacy of these approaches in repairing or replacing
the failed organ [5,6,8,10-12]. However, these approaches
have a common problem, i.e., the exogenously prepared
materials are forcefully applied to the unwilling, failed
organ. Thus, extensive efforts have been devoted to the
adaptation of the exogenous materials in the host and the
functional integration of the materials into the failed organ
under repairing. In clinical practice, these involve the life-

long immunosuppression of the organ transplantation pa-
tients, the creation of the supporting environment for
engineered tissues in the mended organ, the unsolved is-
sues of cell survival and differentiation of the cell-based
therapy, and the selection and development of vectors for
gene therapy.
The biological system is equipped with a self-repair

mechanism [13,14]. Though some organs (e.g. skeletal
muscle and liver) trigger better repair than others (e.g. heart
and nerve system) when injured, it is undeniable that self-
repair mechanism exists in all the tissues of the body,
which is a common observation in experimental studies
and clinical practice [13-15]. In the younger and under
acute injury condition, this repair is a self-motivated and
self-directed programmatic process [16,17]. However, this
process is suppressed in the elder and under chronic injury
condition [17-21]. The critical questions are: what cause
the suppression? What are the lost critical elements leading
to the suppression? Can this suppression be relieved?
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It is reasonable to believe that there are answers to
these questions. Efforts to find these answers have been
made, however, comprehensive understanding remains
elusive. Nevertheless, there are clues that are noticeable
in current undertaking of systems biology and regenera-
tive medicine research. Recruitment of bone marrow
cells to the remote injured site is often documented in
experimental studies and clinical observations [22,23].
This indicates that there are signaling systems initiated
from the injured site for communicating the injury with
the remote repairing mechanism, although these systems
have not been recognized. These tissue injury signaling
systems would have injury location and potency specifi-
city; helping the repair mechanism recognize the site of
the injured organ. They would also share a common
pathway for mobilizing the common repair mechanism
such as the mobilization of bone marrow cells. The
communication between the site of injury and the mobi-
lized repairing materials requires an ensured transporta-
tion, vascular and/or lymph system. A damage to any of
these signaling, communication, and transportation sys-
tems would result in suppression of the self-repair of the
injured organ.
Rejuvenation of the self-repair mechanism in the elder

or under the chronic injury condition would provide an
alternative approach to regenerative medicine. This ap-
proach, in contrast to the exogenously prepared repair
materials, focuses on mobilization of the self-directed
and active rather than passive repair of the injured
organ. In this context, the rejuvenation would involve
identification and renewal of the tissue injury signaling
molecules or pathways. The signaling molecules require
a well-connected network, which is different from the
intracellular signaling transduction system and demands
well-maintained vascular and/or lymph transportation
systems. The recruitment of the repair mechanism such
as bone marrow cells, and the regeneration of the failed
organ are fundamental processes responsible for the
effective self-repair. The repair of the structural injury
only becomes meaningful if the recovery of the physio-
logical function occurs. Therefore, rehabilitation of the
renewed organ is required for the eventual regeneration.
In this commentary, we will consolidate evidence that

shows the possibility of rejuvenation of the self-repair
mechanism in the elder or under the chronic injury con-
dition, and discuss the elements that are required for the
rejuvenation. If rejuvenation of the self-repair or self-
renewal mechanism can be developed, an alternative, if
not a better, achievement of the regenerative medicine
would be expected.

Renewal of the tissue injury signaling
The tissue injury signaling system should exist in the
mammalian system, which would be an active and

rescue-requiring signaling system generated from the
site of the injured organ and transduced to communi-
cate with the remote repair mechanism. This signaling
system is different from that operates in the cell, which
is a passive response to the trigger outside of the cell
and is generated from the cell membrane, transducing
to the inside of the cell. The tissue injury signaling sys-
tem would ensure the rescue to take place when an in-
jury occurs in any organ in the body. A good example
of this system would be the immune response to an in-
jury to an organ. In this case, the signaling molecules
would include chemokines and cytokines instantly re-
leased from the injured site. It appears that the nature
and the severity of the injury dictate the composition
and the quantity of the signaling molecules, so that the
immune system shows from minor to severe responses.
Ischemic tissue injury occurs in any organ in the body

either acutely or chronically. Acute ischemic injury often
causes reversible tissue damage and recoverable func-
tional alteration [24-26]. Prolonged and severe ischemic
injury results in organ structural deformation and func-
tional loss. Hypoxia-inducible factor (HIF) is responsive
to the ischemic injury, and accumulates in the hypoxic
cells, leading to up-regulation of multiple genes involved
in the response to the injury. Among the genes regulated
by HIF are those involved in the vasculogenesis, such as
vascular endothelial growth factor (VEGF), placental
growth factor (PLGF), angiopoietin 1 (ANGPT1) and 2
(ANGPT2), and Fms-like tyrosine kinase-1 (Flt-1). Other
products involved in the mobilization of bone marrow
stem cells such as stromal cell-derived factor-1 (SDF-1)
and monocyte chemoattractant protein 1 (MCP-1) are
also regulated by HIF. These gene products are pro-
duced at the injured site and released to the environ-
ment; either functioning locally or traveling to the
remote sites such as bone marrow. These molecules that
are generated in response to tissue injury and are travel-
ing to the remote sites for action would be the compos-
ition of the tissue injury signaling system.
It was observed in both experimental studies and clin-

ical investigations that under a long term ischemic con-
dition, these molecules mentioned above are suppressed
although severe ischemic condition persists [27-30].
Why does this happen? A series of studies have found at
least one answer [31-33]. Under severe ischemic condi-
tion, copper ions are depleted in the affected cells [31].
Copper is required for the transcriptional activation of
HIF transcription factor [32]. Therefore, even under the
condition of HIF protein levels are elevated [34,35], the
up-regulation of the HIF-controlled genes does not
occur [31,32], so that vasculogenesis and the recruitment
of bone marrow cells to the injured tissue would not
take place. Supplementation with the critical element for
HIF transcriptional activity, copper, showed an effective
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rescue for the HIF activity, the tissue injury communica-
tion system, and the repair mechanism [33].
In this ischemic injury example, it appears that hypoxia

triggers the response of the injury tissue in the mode of
HIF accumulation, which in turn requires cofactors to
form a transcriptional complex leading to up-regulation of
genes involved in the communication with the remote re-
pair mechanism for the recruitment of repair materials
and process. This is a complex process involving multiple
factors, thus a missing of any of the critical factors such as
copper in its transcriptional activation will lead to the ces-
sation of the communication. In this context, supplemen-
tation with the lost factor such as copper as an example
helped renew the tissue injury signaling system [31-33].

Reestablishment of the communication and
transportation system
The tissue injury signaling transduction should require
the integrity of the signaling molecules and the trans-
duction pathways, as the same as the intracellular signal-
ing system does in the cell. However, an additional
requirement is observed in the tissue injury signaling
system; transportation system for the remote communi-
cation. In case of tissue injury, it is inevitable that the
vascular system in the injured tissue is damaged [36].
This damage is often observed in ischemic tissues in the
form of infarction; involving cell death and scar tissue
formation [37]. This obviously involves degeneration and
deformation of the vascular tissue.
Reestablishment of the tissue injury signaling commu-

nication thus involves the repair of the damaged vascular
system. Not only that the failed transportation system
causes problems (e.g. myocardial infarction), it is also
easy to understand that the blockage of the circulation
system due to the vascular damage is the major obscure
of the tissue injury signaling communication. In the
intracellular signaling transduction, a missing element in
one pathway may lead to the opening and operation of
an alternate shuttle pathway. The changes in response to
a common trigger but governed by different pathways
vary from one condition to another in the cell, but take
place one way or the other. However, in the case of tis-
sue injury, the blockage of the circulation system leads
to cessation of the remote communication even when all
of the essential elements for the communication remain
in place. Under this condition, a puzzling situation is
often observed that the rescue signaling molecules and
the repair mechanism remain intact, but the rescue ac-
tion fails to take place.
The involvement of the integrity of the circulation sys-

tem in the communication between the injured site and
the remote repair mechanism is a common sense, but is
often ignored in the reasoning for tissue response to in-
jury. For instance, in the analysis of myocardial ischemic

injury, it was found that VEGF levels were not lower than
normal and SDF-1 remained unchanged, but the repair
did not take place; inhibition of angiogenesis and myocar-
dial infarction occurred [38-40]. It has been identified that
localized progenitor cells or differentiated cells are acti-
vated in response to tissue injury and participate in the re-
pair activity [41-44], and the bone marrow cells were
shown to be less heroic than expected [45-47]. However,
the contribution that bone marrow cells to the repair of
tissue injury should not be neglected [6,11,48-50].
The transportation system not only ensures the remote

communication between the injured site and the repair
mechanism [48], but also serves as the essential conduit
for the delivery of the repairing materials to the injured
site. In the study of myocardial ischemic injury, it was
found that intravenous injection of bone marrow stem
cells improved the recovery of acute ischemic infarction,
but the same treatment had no effect on the chronic is-
chemic infarction [51-54]. In the latter case, the homing
of labeled stem cells was not identified in the infarcted
area, otherwise, it took place in the acute infarction [51].
Although the analysis of vascular damage and circulation
blockage was not done in the studies cited above, there
is no doubt that the infarction involves the vascular in-
jury. Therefore, it is most likely that the circulation
blockage would make a significant contribution to the ir-
responsibility of the infarcted area to the cell therapy.
Reestablishment of the transportation system and the

communication pathways for tissue injury signaling trans-
duction obviously plays an important role in the rescue of
injured organ. It is easy to understand the importance of
the transportation system in the tissue repair, but it is
often ignored in the study of tissue repair. A comprehen-
sive understanding of the role of circulation integrity in
the tissue injury signaling transduction would make a sig-
nificant contribution to the rejuvenation of the self-repair
mechanism.

Recruitment of the materials for repairing
What are the materials for the use of tissue repair? Some
efforts have focused on bone marrow stem cells in an at-
tempt to treat multiple organ failures and to promote re-
generation. On average, bone marrow constitutes 4% of
the total body mass of humans; the hematopoietic com-
partment of bone marrow produces approximately 500
billion blood cells per day, which use the bone marrow
vasculature as a conduit to the body's systemic circula-
tion [55]. Bone marrow is also a key component of the
lymphatic system, producing lymphocytes that support
the body's immune system [56]. Besides these routine
activities of bone marrow, the recruitment of bone mar-
row stem cells in response to tissue injury was one of
the major topics of current undertaking of regenerative
medicine [49,50].
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Progenitor cells have been considered as a major source
of tissue repair or regeneration in response to tissue injury
[57,58]. A progenitor cell, like a stem cell, has a tendency
to differentiate into a specific type of cell, but is already
more specific than a stem cell and is pushed to differenti-
ate into its "target" cell. The most important difference be-
tween stem cells and progenitor cells is that stem cells can
replicate indefinitely, whereas progenitor cells can divide
only a limited number of times.
Most progenitor cells are described as oligopotent

[59,60]. Therefore, they may be compared to adult stem
cells. But progenitor cells are said to be in a further stage
of cell differentiation. They are in the “center” between
stem cells and fully differentiated cells. The kind of po-
tency they have depends on the type of their "parent"
stem cells and also on their niche. Some progenitor cells
were found to move through the body and migrate to-
wards the tissue where they are needed. In this context,
many properties of adult stem cells are shared by pro-
genitor cells [61]. However, the adult stem cells are quite
different from embryonic stem cells that are true stem
cells; they are pluripotent and show unlimited capacity
for self-renewal. In contrast, it has not been comprehen-
sively demonstrated for the adult stem cells of their cap-
acities for unlimited self-renewal and plasticity [62].
Progenitor cells are found in adult organisms and they

act as a repair system for the body. They replenish special-
ized cells, but also maintain the blood, skin and intestinal
tissues [63-66]. These cells often remain dormant or pos-
sess little activity in the tissue in which they reside; exhi-
biting slow growth [65,67]. The main role of these cells is
to replace cells lost by normal attrition [55]. In case of tis-
sue injury, progenitor cells can be activated [67-69].
Growth factors and cytokines are two substances that
trigger the progenitor cells to be mobilized toward the
damaged tissue [27]. At the same time, they start to
differentiate into the target cells. Not all progenitor
cells are mobile and are situated near the tissue of their
target differentiation. When the cytokines, growth factors
and other cell division enhancing stimulators take on the
progenitor cells, a higher rate of cell division is introduced,
leading to the recovery of the tissue.
Mobilization of bone marrow stem cells has been

shown to improve tissue repair after injury [49,50]. Stem
cells released from the bone marrow can migrate into
the injured tissue, supporting the process of tissue repair
[23,70]. Efforts have been devoted to the enhancement
of bone marrow stem cell mobilization because it has
been shown that the number of circulating stem cells is
a critical factor for the participation of bone marrow
stem cells in tissue repair [71,72]. In a number of studies
addressing various health conditions, higher numbers of
circulating stem cells have been associated with greater
health. Cytokines, growth factors, and chemokines released

from injured tissues are all indicated in the mobilization of
bone marrow stem cells [28]. These factors should be con-
sidered as the components of tissue injury signaling trans-
duction. They possess dual roles; communicating the
injured site with the remote storage of repair materials
such as bone marrow stem cells and mobilizing the repair
materials for mending action.
The recruitment of repair materials thus involves the

mobilization of progenitor cells residing in peripheral
tissues and bone marrow stem cells. These materials
may be recruited in response to the same set of re-
cruiters or factors sent from the injured site. The extent
of the tissue injury and the amount of recruiting factors
released to the circulating system may determine the
constitution of different repair materials in action.

Regeneration of the failed organ
Regeneration of the failed organ would be different from
repair of the injured organ in many aspects. The repair
of injured organs or wounds is one of the most complex
biological processes that occur in human life. After an
injury, multiple biological pathways immediately become
activated and are synchronized to respond. This process
involves both local responses and the recruitment of re-
mote repair mechanisms. This repair process leads to
different results between human adults and early stage
of life. In human adults, a non-functioning mass of fi-
brotic tissue known as a scar is often observed at the
completion of the repair process. By contrast, early in
gestation, injured fetal tissues can be completely recreated
without fibrosis, which is the process of regeneration.
Regeneration means the regrowth of a damaged or

missing organ part from the remaining tissue. Some or-
gans retain high ability to regenerate throughout adult
life, such as the liver. If part of the liver is lost by disease
or injury, the liver grows back to its original size, though
not necessarily to its original shape. However, many
other organs are much less capable of regenerating in
the adult life. A goal of regenerative medicine is to find
and reactivate the missing elements or the suppressed
process of regeneration in adult tissues, which exist early
in gestation or remain in some organs in the adult life.
Regenerative strategies include the rearrangement of

pre-existing tissue, the use of progenitor cells and adult
stem cells, and the dedifferentiation and/or transdiffer-
entiation of cells. Dedifferentiation of cells means that
they lose their tissue-specific characteristics as tissue
remodels during the regeneration process. Transdiffer-
entiation of cells is when they lose their tissue-specific
characteristics during the regeneration process, and
then re-differentiate to a different kind of cells. Mul-
tiple regulatory mechanisms operate in the regener-
ation process and distinguishingly function in one
tissue type or the other. All these strategies result in

Kang and Zheng Regenerative Medicine Research 2013, 1:7 Page 4 of 8
http://www.regenmedres.com/content/1/1/7



the re-establishment of appropriate tissue polarity, struc-
ture, and form [13,14,41,42,73].
In a study understanding the process of kidney dam-

age and regeneration, a molecular regenerative pathway
was identified [74]. This pathway involves macrophages
that respond to tissue injury by producing Wnt7b. The
Wnt7b is important to the formation of kidney tissues
during embryonic organ development. In the regener-
ation of injured kidneys, macrophages, by migrating to
the injured kidney and producing Wnt7b, re-establish an
early molecular program operating in the organ develop-
ment that becomes beneficial to tissue regeneration.
Wnt7b belongs to Wnt family of proteins, which regu-
late cell growth, proliferation and differentiation [75,76].
Wnt proteins are also linked to the regulation of stem
cells in bone marrow and skin [76-78].
Either residing around the injured site or being remote

at the bone marrow, stem cells are necessary for the re-
generation of the failed organ. Therefore, efforts have
been made to use stem cells as therapeutic agents to
promote tissue regeneration [6,44,48,79]. In this context,
multiple types of stem cells have been introduced to the
injured organs by direct injection or blood infusion
[6,44,80]. The success of this approach is limited. In
acute tissue injury, direct injection of stem cells to the
injured organ demonstrates some promotion effect on
regeneration [6,48]. In chronic tissue injury, the same
approach fails to demonstrate the beneficial effect [81].
There are multiple reasons for this distinction, but the
lost sensitivity to tissue injury, as discussed above, and
suppressed capability of tissue regeneration would be re-
sponsible for the refractory response under chronic tis-
sue injury condition.
Cell death is a major drawback in cell injection directly

to the injured organ for tissue regeneration. As discussed
above, tissue regeneration would be a complex and inte-
grated process. The autonomous regeneration process in
response to tissue injury would require the trigger of the
process or the tissue injury signaling transduction, the
preparation of regenerative environment, and mobilization
of the regenerative material supplies. In the process of the
injection of stem cells directly to the injured organ, it
would be forcing the unwilling tissue to receive the regen-
erative materials and to passively respond to the regenera-
tive action. Since the environment is not prepared for
such an action, this forced regenerative process would fail
to demonstrate the effectiveness.
The integration of the injected cells in the mended

organ is another important concern of the forced regen-
erative process. Only when the exogenously added cells
become integrated structurally and functionally with the
existing tissue would regeneration take place. In the
forced regenerative process, the unprepared environ-
ment of the mended tissue would refuse this integration.

The regeneration of the failed organ would not only
require the regeneration materials to reproduce the lost
part, but also demand regeneration-friendly environment
to adapt and integrate the material in the existing tissue.
Forced regenerative process would only cause passive re-
sponse of the mended tissue to the regeneration mate-
rials, and rejuvenation of the regeneration-demanding
milieu would greatly help resume the autonomous re-
generative process.

Rehabilitation of the regenerating organ
The regenerated organ has to adapt the existing homeo-
stasis of the entire body in order to become functionally
vital organ. This has been a major task in the organ
transplantation in which the transplanted organ is sub-
jected to a series of adapting process to reach its life-
resuming potential [82,83]. Rehabilitation would be also
critical in the success of regenerative medicine. In today’s
clinical practice, regenerative medicine and rehabilitation
coexist as serial processes in patient treatment and care
plans. However, it is inevitable that the integration of
rehabilitation into regenerative medicine takes place to
reach the optimal end point.
The treatment of skeletal muscle has evidenced the in-

tegration of regenerative medicine and rehabilitation.
The repair of muscle injury, regardless of the cause of
injury, has been characterized to consist of degeneration,
inflammation, regeneration, and fibrosis [84,85]. Acute
and minor injuries typically heal well, but chronic and
severe muscle damage is often healed incompletely and
with scar tissue formation or fibrosis. As long as the scar
persists, complete muscle regeneration is not possible.
Regenerative medicine has brought an alternative ap-

proach toward the treatment of skeletal muscle injuries
by promoting myofiber regeneration and inhibiting the
formation of scar tissue. Transforming growth factor
(TGF)-β1 has been shown to be a responsible factor for
scar tissue formation [86,87], and therefore administra-
tion of TGF-β1 specific inhibitors has been proposed as
an anti-fibrogenic approach [88-90]. In animal models,
the presence of TGF-β1 antagonists has significantly de-
creased fibrosis while concomitantly improving myofiber
regeneration [88,89].
Myofiber regeneration is largely accomplished by muscle

stem, or satellite, cells. These cells are localized to the myo-
fiber periphery and activated in response to muscle injury
[91]. In the elders, the age-related dysfunction of these
muscle stem cells leads to an impaired healing response
following skeletal muscle injury. This takes place because
that circulating factors found in the aged microenviron-
ment drive the differentiation of muscle stem cells from a
myogenic to a fibrogenic lineage [92], resulting in the en-
hanced scar tissue formation. The profibrogenic switch is
also accompanied by a decreased proliferative capacity of
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aged muscle stem cells further compromising the regener-
ation. It is thus a logical proposal to transplant young
muscle stem cells as an approach to enhance the regenera-
tive potential of aged skeletal muscle. Unfortunately, this
was not proven to be desirable. The transplantation of even
embryonic stem cells into an aged milieu shows a rapidly
decline in their regenerative potential [93].
Rehabilitation to promote the rejuvenation of the aged

skeletal muscle niche would help the success of the
transplantation of stem cells for the treatment of skeletal
muscle injuries. A rodent study has shown that a tread-
mill running after stem cell transplantation into severely
contused muscle increases the myogenic contribution
of the donor cells [94]. Therefore, a synergistic effect
between physical therapeutics and cellular therapies
may exist. The muscle contractile activity may serve as
a powerful tool for rejuvenating the regenerative po-
tential of aged muscle. There is accumulated evidence
showing that even exercise programs initiated late in
life may enhance the ability of muscle to heal itself
after severe injury while concomitantly decelerating
tissue degeneration [95-97].
Traditional rehabilitation training programs focus on

whole body and physiological responses to mechanical
loading and/or modalities. However, regenerative medi-
cine pays more attention to molecular, cellular, and
histological aspects of tissue regenerative machineries.
The integration of the two approaches is a great chal-
lenge, but would foreseeably generate a synergetic im-
pact on tissue regeneration.

Perspectives
Rejuvenation of the self-regeneration mechanism would
be an ideal solution for functional recovery of the failed
organ. To achieve this, it would involve renewal of the
injury signaling, reestablishment of the communication
and transportation system, recruitment of the materials
for regeneration, regeneration of the failed organ, and
rehabilitation of the regenerating organ. It thus would
require a comprehensive understanding of developmen-
tal biology and development of new approaches to acti-
vate the critical players to rejuvenate the self-repair
mechanism in the elder or under chronic injury condi-
tion. Efforts focusing on rejuvenation would expect an
alternative, if not a better, accomplishment in the regen-
erative medicine.
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