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Abstract: During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due
to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer,
catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized
through different physical and chemical methods. However, these conventional methods have
various drawbacks, such as high energy consumption, high cost and the involvement of toxic
chemical substances. Microbial flora has provided an alternative platform for the biological synthesis
of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various
microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular
and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their
advantages along with their challenges. Moreover, due to several advantages over chemically
synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics,
can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries
in the near future.

Keywords: metal nanoparticles; microbial flora; biosynthesis; microbial enzymes; action mechanism

1. Background and Role of Microbial Enzymes in Metal Nanoparticle (MtNP) Biosynthesis

Nanotechnology has accomplished enormous development during the last decades due to the
synthesis and varied applications of metal nanoparticles (MtNPs) in different areas, such as biology,
food, agriculture, engineering, electronics, cosmetics, medicine, and in food and biomedical devices.
MtNPs have reached a momentous position due to their specific physicochemical characteristics and
significant biotechnological applications [1,2]. According to a market report, the worldwide production
of MtNPs is currently valued at 13.7 billon US dollars, which is expected to reach 50 billon US dollars
by 2026. The wide-ranging use of MtNPs has significantly contributed to robust development in the
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macroeconomic industry and the demand for MtNPs will continue to be high in three regions of the
world: North America, Western Europe and the Asia-Pacific region [3].

During the last decade, many researchers have synthesized MtNPs by orthodox physical and
chemical methods. The disadvantages of the physical method include expensive synthesis and little
yield. Similarly, the chemical methods are unsafe due to the involvement of hazardous chemical
substances that are attached to the surface of MtNPs, which possess detrimental side effects in
biomedical applications. Keeping in view the aforementioned concerns, research has shifted towards
the synthesis of MtNPs using biological constituents which are economical, biocompatible, non-toxic
and eco-friendly [4–7]. The biological synthesis of MtNPs is mostly carried out by utilizing different
types of plants and microorganisms. The phytogenic process of MtNP synthesis is economical and
relatively simple. However, this process generates polydispersed nanoparticles, due to its diverse
photochemistry [8,9]. In contrast, the microorganisms are considered as prospective bio-factories for
the green synthesis of MtNPs, something that has gained vast consideration in recent times, as they are
indispensable and of technological importance. This is due to the broad range of microorganisms that
react in a different way with the metal ions for MtNP synthesis. Microbial MtNPs of different sizes and
shapes have been reported in various species of bacteria, fungi and yeasts due to their enhanced growth
rate, easy cultivation and their capability to grow under established conditions of temperature, pH and
pressure [10,11]. The biosynthesis of MtNPs and their alloys (gold, silver, gold-silver alloy, selenium,
tellurium, platinum, palladium, silica, titania, zirconia, quantum dots, magnetite and uraninite) has
been reported in different microorganisms, including bacteria, actinomycetes, fungi, yeasts and viruses.

Different microorganisms have the ability to synthesize inorganic materials via both intracellular
and extracellular methods. In the intracellular approach, the microbial cell is comprised of an amazing
ion transport system. Due to electrostatic interaction, the bacterial cell wall which is negatively charged
attracts the positively charged metal ions. Additionally, the bacterial cell wall contains enzymes that
reduce the metal ions to their respective nanoparticles. Whereas in extracellular method, the microbial
cell secretes reductases used in the bioreduction of metal ions into the corresponding MtNPs [12].
The following sections of this article will provide an overview on the green synthesis of MtNPs by
using potential microbial flora, including bacteria, cyanobacteria, microalgae, actinomycetes, yeasts,
fungi, viruses and diatoms. Furthermore, the intracellular and extracellular mechanisms that are
adopted by the microorganism and the microbial enzymes for MtNP synthesis will be elaborated upon,
along with the contemporary challenges and future prospects. Table 1 highlights the recent literature
about the microbe assisted synthesis of MtNPs and their applications.

2. Biosynthesis of MtNPs by Microorganisms

Synthesizing uniform, ultrafine, well-dispersed functional nanoparticles under normal conditions
through a controlled manner remains a great challenge [13,14]. This has caused a major surge in looking
for alternative means of synthesizing nanoparticles that are devoid of such disadvantages. In recent
years, biological resources have been frequently explored for the biosynthesis of metal or metal-based
nanoparticles. These biological resources usually provide a versatile, economical and eco-friendly
method to fabricate metal nanoparticles [14,15] that exhibit interesting physical, chemical and biological
properties. Furthermore, other advantages such as the ease of production and scaling, well defined
morphologies and enhanced biocompatibility (relative to the physiochemical based nanoparticles) have
attracted many scientists to use such resources as nanofactories [16,17]. The bio-based methods for the
synthesis of metal nanoparticles are based on the systematic use of plant extracts and microorganisms,
like bacteria, yeasts, and fungi [18–22]. In biological synthesis, no capping or stabilizing agents are
added as the biomolecules can perform this function themselves [23–25]. The properties of these
nanoparticles (such as shape, size, etc.), are governed by these biomolecules [13]. These biomolecules
also functionalize the nanoparticles, making it more effective relative to nanoparticles synthesized
through nonbiological means [17].
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The use of plants for biosynthesis has been discussed in detail previously by our own group as
well as other scientists across the world [19,20,26,27]. The phytogenic and microgenic biosynthesis
of nanoparticles both have their own sets of advantages and disadvantages. Phytogenic synthesis
is time economical and relatively simple but usually leads to polydispersed nanoparticles, due to
the involvement of diverse phytochemicals like phenols, flavonoids, terpenoids, etc. [8,9]. Moreover,
seasonal variations can alter the phytochemical profile of the extracts used for biosynthesis [28]. On the
contrary, microbial synthesis is devoid of such disadvantages, however, it requires the maintainance of
a sterilized environment and culture conditions, making it relatively complex [29]. Herein, we have
discussed the potential of using the microbial world as nanofactories for the biosynthesis of metal
nanoparticles or metal based composite materials, both from functional and mechanistic perspectives.
Microorganisms hold an exciting amount of potential for the biosynthesis of nanoparticles as the
synthesis is eco-friendly and is devoid of the use of hazardous chemicals. Microorganisms are cost
effective and do not have high energy requirements. In addition, they can accumulate and detoxify
heavy metals through reductase enzymes, which reduce metal salts to their corresponding metal
nanoparticle with less polydispersity and a narrow size range [16].

3. Bacterial and Cyanobacterial Biosynthesis of MtNPs

Bacterial cells have been readily employed as nanofactories for the synthesis of various metal
nanoparticles. Both the extracellular and intracellular approaches have been demonstrated.
Extracellular biosynthesis occurs outside the bacterial cell after applying diverse techniques, such
as (a) using of the bacterial biomass, (b) using the supernatant of bacterial cultures and (c) using
cell free extracts. Extracellular synthesis is preferred over intracellular synthesis because it is
devoid of of complex downstream processing [28]. These nanoparticles have been used in a wide
array of applications, however mostly for biomedical uses. Recently, silver nanoparticles (AgNPs)
that were synthesized using Bacillus brevis showed excellent antimicrobial activities against the
multidrug resistant strains of Staphylococcus aureus and Salmonella typhi [30]. Pseudomonas stutzeri
is another bacterial strain which was found capable of accumulating AgNPs using an intracellular
mechanism [31]. The Bacillus sp. was also found to synthesize silver nanoparticles in the intracellular
periplasmic space [32]. In one study, two different isolated strains of Pseudomonas aeruginosa were
used for the biosynthesis of gold nanoparticles (AuNPs), generating different sizes of AuNPs [33].
Spherical (10–50 nm) and triangular plate (50–400 nm) AuNPs were produced using Rhodopseudomonas
capsulate [34]. Serratia ureilytica mediated the as-synthesized ZnO nanoflowers that were used
on cotton fabrics to provide antimicrobial effects against S. aureus and E. coli [35]. Lactobacillus
plantarum was also reported for the biosynthesis of ZnO nanoparticles [36]. Aeromonas hydrophila is a
gram-negative bacterial strain that is used for the biosynthesis and antimicrobial applications of ZnO
nanoparticles [37]. Recently, triangular CuO nanoparticles were produced using Halomonas elongate,
and their antimicrobial activity was confirmed against E. coli and S. aureus [38]. In another recent report,
super paramagnetic iron oxide nanoparticles (29 nm) were produced using Bacillus cereus and they
were reported for their anti-cancer effects against the MCF-7 and 3T3 cell lines in a dose-dependent
manner [39]. Furthermore, bimetallic Ag-Au nanostructures have also been demonstrated using
bacterial strains [40]

Numerous researchers have used cyanobacteria for the biosynthesis of nanoparticles [41].
In one study, eight cyanobacterial strains were screened to investigate their potential for the
biosynthesis of AgNPs. The results indicated that seven cyanobacterial strains were capable of
producing AgNPs under light, however, only three were capable of producing AgNPs in the
dark [42]. The ammonia-sensing potential of the cyanobacterial synthesized silver nanoparticles
was also reported [43]. Highly monodispersed AgNPs (5–6.5 nm) were reported through the marine
cyanobacterium Phormidium fragile [44]. The Nostoc species was also used for the biosynthesis of
AgNPs, which indicated significant cytotoxic activity against MCF-7 anti-cancer cell lines, as well as
good antimicrobial activities [45]. The intracellular synthesis of AuNPs was performed using Lyngbya
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majuscule, which was isolated from the Arabian Gulf. The authors also revealed the interesting role of
the use of AuNPs in combination with Lyngbya majuscule as an anti-myocardial infraction agent [46].

4. Mycosynthesis of Nanoparticles

Myco-nanotechnological approaches have been successfully applied for the biosynthesis of
different metal nanoparticles. Likewise, in bacteria/cyanobacteria, the biosynthesis can be intracellular
or extracellular. In intracellular synthesis, metal salts are converted into a less toxic form in the mycelia,
which can be used by the fungi [47]. Extracellular biosynthesis includes the use of fungal extracts [48].
Fungi are relatively more resourceful then bacteria in the biosynthesis of nanoparticles due to the
presence of a number of bioactive metabolites, high accumulation and enhanced production [16,49,50].
Recently, different filamentous fungi were reported to be proficient in the biosynthesis of AuNPs. This
study employed different methods for the biosynthesis of AuNPs. The authors proposed that the fungal
compounds and fungal media components potentially played a role in stabilizing the nanoparticles [47].
In another research article, three different strains of fungi (namely Aureobasidium pullulans, Fusarium
oxysporum and the Fusarium sp.) were used to biosynthesize AuNPs. The authors indicated that the
biosynthesis occurred in fungi vacuoles and that reducing sugars were involved to tailor spherical
AuNPs. They also established the role of specific fungal proteins in the capping of the AuNPs [51].
A recent study indicated that Rhizopus stolonifera extracts mediated the synthesis of monodispersed
AgNPs (9.4 nm), while condition optimization resulted in 2.86 nm AgNPs [52]. The extracellular
synthesis of AgNPs using Candida glabrata indicated good antimicrobial potential [53]. Aspergillus niger
mediated ZnO nanoparticles indicated excellent antibacterial potential, while they were also able
to degrade the Bismarck brown dye by up to 90% [54]. Recently, cobalt oxide nanoparticles were
produced using Aspergillus nidulans [55]. The nanoparticles were characterized via x-ray diffraction
analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy
(FTIR) and energy dispersive x-ray analysis (EDX) techniques, which revealed their spherical shape
and average size of 20.29 nm. Interestingly, biogenic cobalt oxide nanoparticles have the potential to
be applied in energy storage, lithium-ion batteries and in gas sensing, as well as in medicine.

5. Algae as Biosynthesis Factories

The use of algae is also increasingly popular for the biosynthesis of nanoparticles.
Sargassum muticum was used for the biosynthesis of ZnO nanoparticles and was reported to decrease
angiogenesis along with apoptotic effects in HepG2 cells [56]. AgNPs that were biosynthesized
using Gelidium amansii indicated excellent antimicrobial properties by forming a diverse biofilm
to combat bacterial strains [14]. Sargassum crassifolium, a macroalgae and sea weed, has been
used in the biosynthesis of AuNPs. Furthermore, the authors observed a blue shift in the UV
absorption after increasing the concentration of S. crassifolium, which was attributed to a decreased
size due to increased nucleation centers in the reductant [57]. Cystoseira trinodis was used for
the biosynthesis of CuO nanoparticles (7 nm) and was reported to have enhanced antibacterial
activities and possess significant potential as an antioxidant, degrading the methylene blue [58].
Aluminum oxide nanoparticles (~20 nm) were produced using Sargassum ilicifolium [59]. Different
algae strains were reported for the biosynthesis of gold nanoparticles, namely Turbinaria conoides [60],
Sargassum tenerrimum [61], Acanthophora spicifera [62], Laminaria japonica [63], etc. These have been
used for the biosynthesis of AuNPs. Novel core (Au)-shell (Ag) nanoparticle synthesis has also been
reported using Spirulina platensis [64].
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Table 1. Studies from 2016 to date, indicating different microorganisms for nanoparticle biosynthesis.

Serial Number Microorganisms Nanoparticle Size/Shape Application Reference

Bacteria

1 Actinobacter Ag 13.2 nm/Spherical Antibacterial [65]

2 Acinetobacter Au 19 nm/Spherical-triangular-polyhedral - [66]

3 Klebsiella pneumonia Au 10–15 nm/Spherical Antibacterial [67]

4 Sinomonas mesophila Ag 4–50 nm/Spherical Antibacterial [68]

5 Pseudomonas fluorescens Au 5–50 nm/Spherical Antibacterial [69]

6 Bacillus endophyticus Ag 5.1 nm/Spherical Antimicrobial [70]

7 Bacillus brevis Ag 41–68 nm/Spherical Antibacterial [30]

8 Streptomycesgriseoplanus Ag 19.5–20.9 nm/Spherical Antifungal [71]

9 Nocardiopsis flavascens Ag 5 and 50/Spherical Cytotoxicity [72]

10 Caldicellulosiruptor changbaiensis Au <20 nm/Spherical Antibacterial, Antibiofilm [73]

11 Shewanella loihica Cu 10–16 nm/Spherical Antibacterial [74]

12 Shewanella loihica Pt 1–10 nm/Spherical Dye degradation [75]

13 Shewanella loihica Pd 1–12 nm/Spherical Dye degradation [75]

14 Shewanella loihica Au 2–15 nm/Spherical Dye degradation [75]

15 Micrococcus yunnanensis Au 53.8 nm/Spherical Antibacterial, Anticancer [76]

16 Mycobacterium sp. Au 5–55 nm/Spherical Anticancer [77]

17 Halomonas salina Au 30–100 nm/Spherical - [78]

Fungi

18 Aspergillus niger ZnO 53–69 nm/Spherical Antibacterial Dye degradation [54]

19 Trametes trogii Ag 5–65 nm/Spherical- Ellipsoidal - [79]

20 Trichoderma longibrachiatum Ag 10 nm/Spherical Antifungal against phyto-pathogenic fungi [80]

21 Trichoderma harzianum Au 32–44 nm/Spherical Antibacterial, Dye degradation [81]

22 Fusarium oxysporum Ag 21.3–37 nm/Spherical Antimicrobial [82]

23 Pleurotus ostreatus Au 10–30 nm/Spherical Antimicrobial, Anticancer [83]

24 Aspergillus terreus Ag 16–57 nm/Spherical Antibacterial [84]

25 Ganoderma sessiliforme Ag ~45 nm/Spherical Antibacterial, Antioxidant, Anticancer [85]
26 Phenerochaete chrysosporium Ag 34–90 nm/Spherical-Oval Antibacterial [86]

27 Penicillium polonicum Ag 10–15 nm/Spherical Antibacterial [87]

28 Candida glabrata Ag 2–15 nm/Spherical Antibacterial [53]
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Table 1. Cont.

Serial Number Microorganisms Nanoparticle Size/Shape Application Reference

Fungi

29 Macrophomina phaseolina Ag/AgCl 5–30 nm/Spherical Antibacterial [88]

30 Aspergillus nidulans CoO 20.29 nm/Spinel - [55]

31 Rhodotorula glutinis Ag 15.45 nm/Spherical Antifungal, Dye degradation, Cytotoxicity [89]

32 Rhodotorula mucilaginosa Ag 13.70 nm/Spherical Antifungal, Dye degradation, Cytotoxicity [89]

33 Cladosporium sp. Ag 24 nm/Spherical Antioxidant, Antidiabetic, Anti-Alzheimer [90]

34 Cladosporium cladosporioides Au 60 nm/Round Antioxidant, Antibacterial [91]

35 Nemania sp. Ag 33.52 nm/Spherical Antibacterial [92]

36 Penicillium chrysogenum Pt 5–40 nm/Spherical Cytotoxicity [93]

37 Aspergillus sp. Au 2.5–6.7 nm/Spherical Nitrophenol reduction [94]

38 Rhizopus stolonifer Ag 2.86 nm/Spherical - [52]

Algae/Cyanobacteria

39 Sargassum wightii ZrO2 18 nm/Spherical Antibacterial [95]

40 Neochloris oleoabundans Ag 40 nm/Spherical Antibacterial [96]

41 Cystoseira baccata Au 8.4 nm/Spherical Anticancer [97]

42 Stephanopyxis turris Au 10–30 nm/Spherical - [98]

43 Galaxaura elongate Au 3.85–77 nm/Spherical-rods-triangular Antibacterial [99]

44 Chlorella vulgaris Pd 5–20 nm nm/Spherical - [100]

45 Enteromorpha compressa Ag 4–24 nm/Spherical Antimicrobial, Anticancer [101]

46 Nostoc linckia Ag 5–60 nm/Spherical Antibacterial [102]

47 Nostoc sp Ag 51–100 nm/Spherical Spherical [45]

48 Leptolyngbya Ag 5–50 nm/Spherical Antibacterial, Anticancer [103]

49 Spyridia fusiformis Ag 5–50 nm/Spherical Antibacterial [104]

50 Chlorella pyrenoidosa CdSe QD 4–5 nm Imatinib sensing [105]

52 Sargassum ilicifolium Al2O3 20 nm/Spherical - [59]

53 Padina pavonia Ag 49.58–86.37
nm/spherical-triangular-rectangle-polyhedral-hexagonal - [106]

53 Spirulina platensis Pd 10–20 nm/Spherical Adsorbent [107]

54 Chlorella pyrenoidosa TiO2 50 nm/Spherical Dye degradation [108]
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6. Mechanisms of MtNP Synthesis by Microorganisms

The synthesis of nanosized substances using microbial cells is an emerging trend in the field
of nanotechnology. Microbes including bacteria, fungi, viruses, actinomycetes and yeasts act as
potential biofactories for the reduction of silver, gold, gold-silver alloy, cadmium, selenium, magnetite,
silica, platinum, titania, palladium and other metals to their subsequent nanoparticles for biological
applications [109]. Microbes synthesize these nanoparticles either extracellularly or intracellularly
using various bio-reduction processes (Table 2).

7. Extracellular Enzymes

Extracellular microbial enzymes are known to play a significant role as reducing agents in the
production of MtNPs [110] (Figure 1). Studies suggest that cofactors such as nicotinamide adenine
dinucleotide (NADH) and reduced form of Nicotinamide adenine dinucleotide phosphate (NADPH)
dependent enzymes both play vital roles as reducing agents via the transfer of the electron from
NADH by NADH-reliant enzymes, which act electron carriers [111]. The extracellular synthesis of
AuNPs by the bacterium Rhodopseudomonas capsulata is mediated via the secretion of NADH and
NADH-reliant enzymes. The bioreduction of gold is initiated via electron transfer from NADH by
NADH-reliant reductase enzymes present in R. capsulata. Consequently, gold ions accept electrons and
get reduced (Au3+ to Au0), leading to the formation of gold nanoparticles [34]. Several other factors,
including the concentration of the predecessor, the pH, the temperature and the duration of reaction
are limiting factors in controlling the size of MtNPs. Beside these enzymes, several compounds,
including naphthoquinones, anthraquinones and hydroquinones are involved in the production of
MtNPs [19]. Microbes utilize various mechanisms for the synthesis of NPs, including changes in
solubility, biosorption, metal complexation, extracellular precipitation, toxicity via oxidation-reduction,
the absence of specific transporters and efflux pumps [19,112].
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Several fungi produce extracellular enzymes like acetyl xylan esterase, cellobiohydrolase D,
glucosidase and β-glucosidase, which are known to play a significant role in the biosynthesis of
MtNPs [15]. One mechanism involved in the extracellular synthesis of AgNPs is the use of nitrate
reductase which is secreted by fungi, which helps in the bioreduction and synthesis of MtNPs. Several
studies reported the involvement of nitrate reductase in the extracellular synthesis of MtNPs [113,114].
Studies involving the use of commercially available nitrate reductase disks revealed that these
NADH-reliant reductase enzymes were involved in the reduction of Ag+ ions to Ag(0) and the
subsequent formation of silver nanoparticles [115,116]. Fusarium oxysporum was used as source of
reducing agents for the synthesis of gold and silver NPs. Results showed that extracellular reductases
produced by the fungi caused the reduction of Au3+ and Ag1+ to Au–Ag alloy NPs. Moreover,
nitrate-reliant reductases and shuttle quinone obtained from various species of this fungi were utilized
in the extracellular synthesis of NPs [117]. However, some species like Fusarium moniliforme failed
to generate AgNPs, even upon the release of the reductase, indicating the Ag1+ reduction via the
involvement of conjugated oxidation-reduction reactions of electron carriers involving NADP-reliant
nitrate reductase [116]. Furthermore, nitrate reductase from F. oxysporum was used in an in vitro study
in oxygen free conditions in the presence of a cofactor (NADPH), a stabilizer protein (phytochelatin)
and an electron carrier (4-hydroxyquinoline) in order to synthesize AgNPs. This fungi exhibited good
extracellular production of AgNPs and can be considered an excellent candidate for the extracellular
synthesis of other MtNPs [113,118]. Yet in other studies, F. oxysporum was used for the extracellular
synthesis of semiconductor CdS nanoparticles, where extremely luminescent CdSe nanoparticles
were synthesized using the reductase enzyme of the fungi [114,119]. Enzymes from other fungal
stains, including Fusarium semitectum and Fusarium solani, were used for the extracellular production of
AgNPs. The results of the study revealed that specific proteins might be responsible for the reduction of
Ag+, thus forming AgNPs [120,121]. Cladosporium cladosporioides and Coriolus versicolor were effectively
used for the extracellular synthesis of AgNPs that involved fungal proteins, organic acids and
polysaccharides which effect the growth and shape of the nanocrystals [122]. Subsequent to incubation
of Aspergillus niger in a AgNO3 solution, the extracellular production of AgNPs was stabilized by
fungal proteins [123]. Likewise, Aspergillus fumigatus extracellularly produced AgNPs in exceptionally
less time (10 min), as compared to other physical and chemical techniques [124]. Thus, A. fumigatus
is an ideal candidate for industrial scale production of a variety of NPs. Penicillium fellutanum was
also observed to reduce Ag1+ ions in a very short amount of time (10 min). Further studies revealed
that a protein of nitrate reductase was responsible for the reduction of Ag1+ ions [125]. Penicillium
brevicompactum was reported to cause the reduction of Ag1+ ions via the liberation of NADH-reliant
enzyme nitrate reductases [126].

Nanotechnology was also applied to a new group of the plant kingdom known as algae. Among
the algae, Sargassum wightii greville was reported to rapidly reduce Au3+ ions to form AuNPs 8–12 nm
in size [127]. Another filamentous algae, Chlorella vulgaris, was used in the biosynthesis of gold
nanoparticles, resulting in the formation of Au and Au+1S nanoparticles [128].
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Table 2. List of extracellular and intracellular bioreducing microbial enzymes and resulting nanoparticles.

Source of Extracellular Enzymes (Bacterial Species) Nature of Organism Metals Used Shape Size (nm) Temperature (◦C) Reference

Desulfovibrio desulfuricans G−ive Bacteria Pd Round 50 25 [129]

Pyrobaculum islandicum G−ive Rods U, Tc, Cr, Co, Mn Round NA 100 [130]

Escherichia coli G−ive Bacteria CdTe Round 2–3.2 37 [131]

Escherichia coli G−ive Bacteria Au Hexagonal, Triangle 20–30 37 [132]

Bacillus licheniformis G+ive mesophilic
bacteria Ag NA 50 37 [133]

Shewanella species Marine Bacteria Se Round 181 30 [134]

Ureibacillus thermosphaericus G+ive Bacteria Au NA 50–70 60–80 [135]

Corynebacterium glutamicum G+ive Bacteria Ag Irregular 5–50 30 [136]

Rhodopseudomonas capsulate Phototrophic Bacteria Au Round 10–20 30 [34]

Pseudomonas aeruginosa G−ive Bacteria Au NA 15–30 37 [33]

Shewanella Oneidensis Facultative Bacteria Au Round 12 30 [137]

Fungi and Algae Species

Plectonema boryanum UTEX 485 Filamentous Fungi Au Octahedral 10 nm–6 µm 25 [138]

Phaenerochaete chrysosporium Fungi Ag Pyramidal 50–200 37 [139]

Aspergillus flavus Fungi Ag Round 8.92 25 [140]

Yeast Fungi Au, Ag Polygonal 9–25 30 [131]

Fusarium oxysporum Ascomycete fungus Alloy of Au–Ag Round 8–14 25 [117]

Sargassum wightii Macro-algae Au Planar 8–12 NA [127]

Neurospora crassa Bread mold Au–Ag, Au Round 20–50 28 [50]

Verticillium sp. Fungi Ag Round 25–32 25 [141]

Aspergillus fumigatus Fungi Ag Round 5–25 25 [124]

Trichoderma viride Fungi Ag NA 2–4 10–40 [142]

Yarrowia lipolytica Fungi Au Triangles 15 30 [143]

Source of Intracellular Enzyme (Bacterial Species) Nature of Microb. Metals used Shape Size (nm) Temperature (◦C) Reference

Shewanella algae G−ive marine bacteria Pt NA 5 25 [144]

Enterobacter species Anaerobic G−ive Bacilli Hg Round 2–5 30 [145]

Bacillus cereus G+ive Bacteria Ag Round 4–5 37 [146]

Brevibacterium casei Actinomycetales Bacteria Ag, Au Roud 10–50 37 [147]

Rhodococcus sp. Actinobacteria Au Round 8-12 NA [148]

Fungi and Algae Species

Plectonema boryanum Algae Au Cubic <10–25 25–100 [128]

Neurospora crassa Bread mold Au–Ag, Au Round 32 28 [50]

Verticillum luteoalbum Ascomycota Fungi Au NA NA 37 [149]

Candida utilis Fungus Au NA NA 25 [149]

NA: Not available; G+ive: Gram-positive; G−ive: Gram-negative.
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8. Intracellular Enzymes

In the intracellular mechanism of metal bioreduction, bacterial and fungal cells along with sugars
molecules play a significant role. Mainly, the interactions of intracellular enzymes and positively
charged groups are utilized in the gripping of metallic ions from the medium and the subsequent
reduction inside the cell [150,151]. When observed microscopically, MtNPs accumulated in the
periplasmic space, the cytoplasmic membrane and the cell wall. This was due to the diffusion of metal
ions across the membranes and enzymatic reduction resulting in MtNPs.

Among the actinomycetes, alkalo-tolerant (Rhodococcus sp.) and alkalo-thermophilic
(Thermomonospora sp.) actinomycetes were used for the intracellular synthesis of AuNPs [148,152].
The intracellular production of AuNPs with uniform dimensions was carried out by reacting the
Rhodococcus species with an aqueous solution of AuCl4− ions. Reductions of Au3+ were effectively
mediated by enzymes at the surface of the mycelia and the cytoplasmic membrane. The exposure of
a Verticillium biomass to a Ag+ ionic solution resulted in intracellular reduction and the subsequent
formation of AgNPs. Visualization via electron microscopy revealed that the AgNPs were formed
under the surface of cell wall as a result of enzymatic bioreduction, which is non-toxic to the fungi [153].
The same procedure was adopted for the synthesis of AuNPs using the fungus Verticillium as the
source of reducing enzymes. AuNPs were entrapped in the cytoplasmic membrane and the cell wall of
the fungi, indicating that Au3+ was bio-reduced by reductase enzymes that were present there [154].
Southam and Beveridge reported that AuNPs were formed and precipitated inside bacterial cells after
the incubation of the bacterial cells in a Au3+ ionic solution [155]. Pseudomonas stutzeri (AG259) when
exposed to concentrated AgNO3 solution has reduced Ag1+ ions, with the subsequent formation of
AgNPs in the bacterial periplasmic space [31]. A filamentous cyanobacterium (Plectonema boryanum)
treated with AuCl4− and Au(S2O3)2

3- solutions resulted in the formation of AuNPs at the membrane
level and gold sulfide residing intracellularly [128]. In another study, Phanerochaete chrysosporium
incubation in an ionic Au3+ solution resulted in the formation of AuNPs 10–100 nm in particle size.
The Laccase enzyme was used as an extracellular reducing agent, whereas ligninase was found
to be responsible for the intracellular reduction of Au3+ ions [156]. Other factors, including the
incubation age of the fungi, the concentration of the AuCl4− solution and the incubation temperature
demonstrated significant effects on the shape of AuNPs. The mesophilic bacterium Shewanella algae
proved to be an efficient bioreducer of AuCl4− ions to elemental gold. Au nanoparticles were found in
the bacterial periplasmic space, mediated via intracellular enzymes [157]. Brevibacterium casei treated
with aqueous solutions of Au3+ and Ag+ ions were reduced to intracellular enzymes, mediated by
spherically shaped AuNPs and AgNPs respectively [147].

9. Challenges and Limitation of MtNP Synthesis by Microorganisms: A Possible Solution

Nanotechnology is an interdisciplinary field which involves close coordination between engineers,
chemists and biologists to design and develop potential candidates for therapeutic applications.
Research on nanoparticle biosynthesis using microbes has gained significant interest, owing to its
simplicity, low cost of production and eco-friendliness. MtNPs have emerged as excellent agents
for biomedical applications due to their unique physicochemical, optical, electronic and biological
properties [158]. Expanding interest on the application of MtNPs in biology and healthcare has raised
a need for the development of cheap, easy and eco-friendly methods for MtNP preparation, such as
the bioinspired approaches [159,160]. The biosynthesis of MtNPs using microbes is well investigated
by researchers globally, where the reduction of metal ions to MtNPs occurs as part of the heavy
metal-resistance mechanism exhibited by microorganisms [161]. The primary challenge involved in
microbial inspired synthesis is the selection of the best candidates, based on the intrinsic properties
of microbes, such as growth rate, replication, biochemical activity etc. Controlling the shape, size
and monodispersity of the biosynthesized MtNPs is another important criterion for achieving the
desired therapeutic effects, which might be modulated by varying the concentration of biomolecules,
the reduction time, the temperature and other factors. Another important challenge involved in
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biosynthesis is the identification of the key components among the large pool of biomolecules obtained
from microbial resources responsible for the reduction and stabilization of MtNPs from precursor
salts. Maintaining the optimal conditions needed for the microbial growth and enzymatic activity is
critical as these act as biocatalysts, playing a major role in the preparation of MtNPs. Optimizing the
conditions, such as providing essential nutrients for growth, the size of inoculum, the temperature, the
pH and the amount of light greatly enhance the efficiency of MtNP biosynthesis using microbes [162].
Yield of the final product and rate of biosynthesis of MtNPs using microorganisms are another set
of important parameters to be considered to translate the measure of production to a large scale
industrial level. In general, the large scale production of biosynthesized nanoparticles using microbes
has several challenges in scaling up, due to medium to low yield compared to chemically synthesized
nanoparticles. In general, the yield of the biosynthesis methods are 1/3rd of the yield obtained from
the chemical synthesis methods. Also, we have to keep in mind that the laboratory scale bottom-up or
top-down approaches for the synthesis of MtNPs varies significantly from industrial manufacturing.
However, due to large availability, easy access and the high growth rate of microbes, the overall cost
of the synthesis will be reduced at a large extent. Moreover, the cost of the biosynthesis gets further
reduced as there is no requirement of organic solvents, chemical stabilizing agents, thermal heat or
any fancy technique during these synthesis methods. Hence, it can be safely mentioned that, if the
right techniques are properly utilized, the overall production cost of the NPs can be reduced by almost
1/10th compared to the chemical synthesis methods in the long run. Nevertheless, we strongly feel
that during the initial stages of the development of NPs at the lab scale, researchers must consider
and deploy appropriate methods useful for large-scale industrial manufacturing [163]. An advantage
of this method is that the MtNPs produced using the biosynthesis route are more stable without any
agglomeration, even at room temperatures for long periods of time when compared with MtNPs
produced using chemical synthetic methods [164,165]. This stability might be due to the in situ capping
of the microbial proteins or biomolecules over the MtNP surface during the biosynthesis process.
Understanding the source and mechanism of biosynthesis is essential, as sometimes the utility of toxic
microorganisms as a bioresource might impart pathogenicity to the prepared MtNPs. Above all, the
protocols designed at the laboratory scale might yield well-characterized highly stable MtNPs. Scaling
up this process to the industrial level is mandatory to fulfill the unmet medical challenges, which
mainly depend upon optimizing the growth rate of the microbes, inoculation of the seed into the
biomass, harvesting cells and effective MtNP preparation through reduction, as well as recovery of the
final product with good yield [12,166,167]. Taken together, there are several important challenges and
technical aspects that must be addressed to successfully translate this bioinspired method of MtNP
synthesis for large scale industrial production.

10. Conclusions and Future Prospects

For the time being, it can be safely concluded that there is a bright future for the microbial synthesis
of metal nanoparticles and their wide variety of applications in biomedical nanotechnology when
compared with chemically assisted NPs, due to their low cost and eco-friendliness. The huge pool of
bioresources (microbes and microbial enzymes), if appropriately exploited, could help biosynthesized
NPs to turn out to be a potential game changer in the imminent future. However, several challenges
must be dealt with before industrial scale production and wide use, which will take a little more time
(5–10 years). Nevertheless, there is immense potential for microbial assisted metal nanoparticles as
they are low in toxicity and cost and high in degradability and are useful in numerous therapeutic
applications. It is also encouraging that several groups are concentrating on decoding the detailed
mechanistic aspects of microbial biosynthesis, which will ultimately lead to better understanding
and wiser applicability. Even though the mechanisms behind these nanoparticles’ uptake, diffusion,
long term toxicity and excretion remain uncertain, the potential biological applications make them a
potential candidate to extensively substitute chemically synthesized NPs in the coming years.
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