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Molecular biology of BPIFB1 and its advances in disease
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Abstract: Bactericidal/permeability-increasing (BPI)-fold-containing family B member 1 (BPIFB1) , also 
known as long-palate lung and nasal epithelium clone 1 (LPLUNC1), belongs to the BPI-fold-containing 
family, is a newly discovered natural immune protection molecule, which, having the function of bactericidal 
and osmotic enhancement protein domain, can respond to the external physical and chemical stimuli. 
The gene of BPIFB1 is located at chromosome 20q11.21-20q11.22, and contains 16 exons and 15 introns, 
encoding 484 amino acids. The 5' terminal of the BPIFB1 protein has a signal peptide sequence composed 
of 19 amino acids. BPIFB1 is abnormally expressed in nasopharyngeal carcinoma (NPC), gastric cancer, and 
other cancer tissues, regulate chronic infections and inflammation, indicating that it may play an important 
role in the development of tumors. Meanwhile, BPIFB1 has well-recognized roles in sensing and responding 
to Gram-negative bacteria due to its structural similarity with BPI protein and lipopolysaccharide (LPS)-
binding protein, both of which are innate immune molecules with recognized roles in sensing and responding 
to Gram-negative bacteria, so it can regulate cystic fibrosis (CF), chronic obstructive pulmonary disease 
(COPD), asthma, and other respiratory diseases. In this article, we will discuss the progress of BPIFB1 in a 
variety of diseases and fully understand its function.
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Bactericidal/permeability-increasing (BPI)-fold-containing 
family B member 1 (BPIFB1), also known as long-palate 
lung and nasal epithelium clone 1 (LPLUNC1), belongs 
to the BPI-fold-containing family (1). These proteins have 
largely been considered to be specifically expressed in the 
respiratory tract (2,3). However, recent studies have found 
that abnormal expression of BPIFB1 is associated with a 
variety of diseases, such as severe pulmonary disease caused 
by cystic fibrosis (CF), infection with vibrio cholerae, non-
obese diabetes, and tumors. Therefore, to promote the 
development of treatment, this study reviewed the role of 
BPIFB1 in different diseases and related therapeutic targets.

Molecular biology of BPIFB1

In 1999, Weston was first to discover BPIF expression 
in rat embryonic nasal mucosa epithelium and adult rat 
bronchial and pulmonary mucosa (4). Later, another team 
cloned the gene in human respiratory and nasopharyngeal 
epithelial tissue (5). Homology analysis showed that the 
BPIF was highly conserved in human, pig, mouse, rat, 
ox, and other higher organisms, with 99% homology. It 
was found that the gene family was located at 20q11, and 
encoded 8 functional proteins (6,7). The classification 
of the human BPI family is shown in Figure 1. Notably, 
members of this family all contain domains structurally 
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similar to lipopolysaccharide (LPS)-binding protein and 
BPI (8). Crystal diffraction analysis showed that the BPI 
domain was a hydrophobic barrel-shaped structure, which 
could specifically bind to LPS of the cell wall in Gram-
negative microflora and perform antibacterial function 
(9,10). Thus, this family constitutes the “epithelial frontier,” 
owing to its host defense and innate immune properties. 
However, it has been observed that BPIF does not have an 
obvious bacteriostatic or bactericidal effect in vitro. The 
most likely explanation is that BPI/LBP is combined with 
LPS in the cell wall of Gram-negative bacteria to exert its 
biological effect, while BPIF protein is a selective inhibitor 
of oropharyngeal, respiratory, and other intracellular 
pathogens (11). BPIF protein can also serve as a marker 
for airway inflammatory response after being chemically 
stimulated. According to the number of functional domains, 
BPIF can be divided into BPIFA (protein containing a single 
domain) and BPIFB (protein containing two domains) (7). 
Among family members, the size and interval of introns 
are highly conserved, suggesting that they co-evolved 
during some past genetic events. BPIF, although highly 
glycosylated, is expressed differently in different species 
or at different locations within the same species. Through 
electronic hybridization, high-throughput tissue chip, or 
multi-tissue cDNA microarray detection, tissue specific 
expression of BPIF has been demonstrated. It is expressed 
centrally in the nasopharynx, mouth, nasal cavity, respiratory 
tract, and digestive tract (12,13). Previous studies have 
shown that BPIFA1, BPI, and other genes among the family 
members are associated with nasopharyngeal carcinoma 
(NPC), non-small cell lung cancer, and other diseases.

The gene of BPIFB1 is located at chromosome 
20q11.21–20q11.22, and contains 16 exons and 15 introns, 

encoding 484 amino acids. The 5' terminal of the BPIFB1 
protein has a signal peptide sequence composed of 19 amino 
acids (14). BPIFB1 protein is most highly expressed in 
the trachea, followed by the lung, and weakly expressed in 
salivary glands, the duodenum, and the stomach. Although 
the biology of this secreted protein is poorly understood, 
multiple array-based studies have suggested that some are 
differentially expressed in a variety of diseases (Figure 2).

Biological effects of BPIFB1 in tumors

Inflammation is a defensive response of the body to 
pathogenic infection and various tissue damage. In this 
process, by affecting the interaction of various cells 
and factors in the microenvironment, it regulates the 
balance of physiological and pathological signal networks. 
Epidemiological studies have shown that patients with 
chronic inflammation are susceptible to a variety of tumors 
(15-17). The estimated 15–20% of tumor is due to chronic 
infections and inflammation caused by factors such as the 
environment (18). Recent studies have found that BPIFB1 
appears abnormal in multiple types of tumor tissue, 
suggesting that it may play a role in the development of 
tumors.

NPC

NPC is a cancer arising from the nasopharynx epithelium 
and has a very unique pattern of geographical distribution. 
Human nasopharyngeal carcinoma mucosa maintains a 
warm humid environment which is suitable for all kinds 
of microbial growth. Unlike other head and neck cancers, 
the occurrence and development of NPC is believed 
to be mainly due to Epstein-Barr (EB) virus, which is 
considered to be an important factor of tumorigenesis and 
is closely related to the occurrence of NPC. Long-term 
exposure to various chemicals and external stimulation 

Figure 1 Classification of the BPIF family in humans. 

Figure 2 Biological function of BIPFB1.
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also lead to damage of the nasopharyngeal mucosa 
inflammatory response, which stimulate proliferation of 
nasopharyngeal epithelia, eventually evolving into NPC. 
BPIFB1 is highly expressed in normal adult and fetal 
nasopharyngeal epithelial tissue, and is especially abundant 
in nasopharyngeal and respiratory secretions, lavage fluid, 
sputum, and media of bronchial epithelial cells (19). As a 
newly cloned gene, BPIFB1 was found down-expressed in 
NPC biopsies which indicates that it may play an important 
role in the tumorigenesis of NPC (20). It has the function of 
host defense, along with bactericidal and anti-inflammatory 
effects through the protein domain. Meanwhile, research 
has proven that BPIFB1 can also kill bacteria and inhibit 
tumor cell growth and metastasis. BPIFB1 protein can 
inhibit the tumorigenicity of respiratory epithelia and the 
proliferation rate of the EB virus, accelerate the apoptosis 
of B cells, and hinder the occurrence and development of 
NPC. BPIFB1 can significantly alter the distribution of the 
NPC cells cycle in the following manner: cells significantly 
increase in the G1 phase and decrease in the S, G2, and M 
phase. This indicates that BPIFB1 controls the occurrence 
and development of NPC by inhibiting the G1–S phase of 
cell cycle of NPC cells. Further studies have shown that 
BPIFB1 can regulate the expression of IL-6, cyclinD1, 
and BLC-2 by inhibiting STAT3 activation (21). Further 
research shows that BPIFB1 can inhibit the proliferation 
of nasal tumor cells and promote the apoptosis of nasal 
tumor cells through signal transduction pathways such as 
mitogen-activated protein kinase (MAPK) and mi r-141-
PTEN-AKT (22). Moreover, recently studies show that 
BPIFB1 markedly inhibited NPC cell migration, invasion, 
and lung-metastatic abilities. And it is also involved in 
the modulation of radiosensitivity in NPC. In particular, 
BPIFB1 negatively regulates its interactor vitronectin 
(VTN), thereby inhibiting VTN-induced proliferation, 
anti-apoptotic effects, G2/M phase arrest, DSB repair, and 
the activation of the ATM-Chk2 and ATR-Chk1 pathways 
after irradiation; this ultimately improved NPC cell 
radiosensitivity (1,23).

Gastric cancer

Gastric cancer is a common malignant tumor of the 
digestive system, being the second most common cancer and 
the second leading cause of cancer death. Despite a decline 
in incidence and mortality, the outlook of metastatic gastric 
cancer cases remains poor. The median survival usually 
does not exceed one year when treated with systematic 

chemotherapy in metastatic settings (24). Helicobacter 
pylori (Hp) infection is the most important factor for gastric 
cancer (25). Studies have confirmed that Hp damages the 
gastric mucosal barrier by secreting urease (26). In addition, 
Hp can produce LPS which inhibits the binding of laminin 
to receptors. The vacuolar toxin gene can also cause gastric 
mucosa erosion or ulcers. BPIFB1 plays a certain role in 
the occurrence and development of gastric cancer. BPIFB1 
is highly expressed in gastric mucosal surface epithelia and 
submucosal glands, while it is absent or down-regulated 
in gastric cancer tissues. Further studies have revealed 
a specific molecular mechanism in the pathogenesis of 
gastric cancer. BPIFB1 protein is structurally similar to 
LPS-binding protein and bactericidal/permeable protein, 
and plays an important role in innate immunity. The LBP 
domain of BPIFB1 can bind to LPS, causing a killing effect 
of Gram-negative bacteria, which plays an important role in 
resistance to helicobacter pylori infection (27). 

Other tumors

In addition, BPIFB1 has been found to be associated with 
salivary gland tumors and lung cancer. Vargas et al. detected 
BPIFA1, BPIFA2, and BPIFB1 in salivary gland tumors by 
immunohistochemistry, which were strongly expressed in 
mucus cells and mucus plugs. The mutation of the BPIFB1 
gene is also associated with the risk of lung cancer and 
the down-regulation of expression directly leads to poor 
prognosis in lung cancer patients (28,29). 

Biological effect of BPIFB1 in respiratory 
disease

The respiratory system includes the nose, pharynx, larynx, 
trachea, bronchus, lung, pleura, etc., and is in direct contact 
with the outside world. As air passes into the respiratory 
tract, pathogenic microorganisms and harmful substances 
can provoke the development of respiratory diseases. Innate 
immunity is the body’s first defense against the invasion 
of pathogenic microorganisms. BPIFB1 is considered 
to contribute to innate immunity through its structural 
similarity with BPI protein and LPS-binding protein, both 
of which are innate immune molecules with recognized 
roles in sensing and responding to Gram-negative bacteria.

CF

CF is a common and fatal autosomal inherited disease. CF 
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is caused by mutations of CF transmembrane conductance 
regulator (CFTR), leading to exocrine dysfunction 
involving the lungs, pancreas, liver, reproductive system, 
and other organs, with the most prominent lesions being 
found in the respiratory system. In lungs, thick secretions 
clog bronchi, causing repeated bronchial infections and 
airway obstruction. The activity of mucosal epithelial 
cilia is inhibited, and poor mucus drainage gradually leads 
to bronchiectasis and respiratory failure. Some studies 
demonstrated that genetic variants in the BPIFA1/BPIFB1 
region are associated with decreased gene expression and 
increased lung disease severity in cystic fibrosis (CF). 
This suggests that decreased BPIFA1 and/or BPIFB1 
expression may be detrimental to CF lung function. 
For example, proteomic analysis of nasal epithelial cells 
from CF patients has demonstrated that BPIFA1 and 
BPIFB1 are increased in the sputum (30). BPIFA1 has 
been shown to have surfactant-like functions and to be 
involved in regulating the amiloride-sensitive epidermal 
sodium channel, which is an important innate defense 
mechanism for the lungs (31,32). BPIFA1 and BPIFB1 
were also both able to reduce IL-8 production in response 
to P. aeruginosa infection and RNA-Seq data indicated 
that both molecules modulate the function of CF airway 
epithelia cells (33). 

Chronic obstructive pulmonary disease (COPD)

COPD involves the chronic emphysema of airway 
obstruction. Excessive airway mucus secretion is one of 
the important characteristics of COPD, and can promote 
the rapid decline of lung function. Under physiological 
conditions, airway mucus can provide effective protection 
for the lungs against pathogens, harmful airborne particles, 
and toxic chemicals, playing a key role in innate immune 
response (34,35). However, high concentrations of airway 
mucus lead to impaired mucociliary clearance and mucous 
adhesion, resulting in airway obstruction and bacterial 
infection. Some studies have shown that mycoplasma 
pneumoniae (MP) infection is associated with a variety of 
respiratory diseases and can participate in the development 
of COPD. In addition, excessive airway mucus adhesion 
to the airway wall through hypoxic epithelial necrosis and 
potential immune regulation mechanisms has become a key 
factor in chronic airway inflammation and lung injury (36). 
BPIFB1 exhibits limited expression in healthy airways and 
is detected in the submucosal glands of larger airways (37). 
Compared with the conflicting data from BPIFA1 findings, 

BPIFB1 seems to be consistently upregulated in several 
respiratory diseases and serves as a defensive protein (38). 
BPIFB1 mRNA expression and protein level were found to 
be significantly increased in COPD patients when compared 
to non-COPD subjects (39). Furthermore, Ghafouri et 
al. found that BPIFB1 expression was significantly higher 
in COPD patients, suggesting that it is involved in the 
inflammatory response of the respiratory tract (40). In 
COPD patients, extended epithelial remodeling with 
goblet cell metaplasia and inflammation takes place, and the 
observed increase in BPIFB1 levels in COPD patients could 
be a direct consequence of this. This idea is strengthened 
by the observation that the number of goblet cells correlates 
very strongly with the BPIFB1 protein levels. It is possible 
that BPIFB1, similarly to its family member BPIFA1, also 
plays a role in airway protection, but the way that BPIFB1 is 
able to perform this function requires additional functional 
analysis (37).

Asthma

Asthma is a chronic respiratory disease characterized 
by chronic airway inflammation and wheezing, and is 
influenced by a variety of factors. The pathogenesis 
of asthma is associated with certain genes, allergies, 
infections, and other causes. Recurrent respiratory tract 
infection is often an important factor in the development 
and progression of asthma. Studies have shown that 37% 
patients with asthma attacks have a recent history of 
respiratory infections (41). In 1994, Yano first reported 
that MP infection was associated with asthma (42). Clinical 
studies have confirmed that MP infection can increase the 
expression of BPIFB1, but in the mouse model, allergic 
airway inflammation of mycoplasma decreased BPIFB1 
protein expression, eventually leading to the long-term 
settling of a variety of bacteria in the airway (43). Since 
this discovery, a number of studies have reported that 
asthma is accompanied by acute infections of mycoplasma 
pneumonia (44-46). BPIFB1, which is primarily produced 
by airway epithelia, has been reported to exert anti-
inflammatory properties during microbial infections and 
Toll-like receptor agonist stimulation. Clinical studies have 
confirmed that BPIFB1 is significantly expressed in sputum, 
and can discriminate asthma inflammatory phenotypes (47).  
It has been reported that MP infection can increase 
BPIFB1 expression and that BPIFB1 level is higher in 
bronchoalveolar lavage (BAL) fluid of asthma patients after 
segmental allergen challenge (48). 
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Summary

Although the role of BPIFB1 in certain diseases is poorly 
understood, the function of innate immunity has been 
confirmed. The different expressions in various tissues 
of the body determine their different functions, and the 
regulation in tissues is also quite different. The efficacy of 
BPIFB1 in anti-bacterial activity, tumor inhibition, and 
respiratory disease is increasingly evident, but the specifics 
behind its regulation mechanism are not yet clear and thus 
warrant further exploration and research.
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