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a b s t r a c t

The pandemic outbreak of severe acute respiratory syndrome caused by the Coronavirus 2 disease in
2019, also known as SARS-COV-2 and COVID-19, has claimed over 5.6 million lives till now. The highly
infectious nature of the Covid-19 virus has resulted into multiple massive upsurges in counts of new
infections termed as ‘waves.’ These waves consist of numerous rising and falling counts of Covid-19
infection cases with changing dates that confuse analysts and researchers. Due to this confusion, the
detection of emergence or drop of Covid waves is currently a subject of intensive research. Hence,
we propose an algorithmic framework to forecast the upcoming details of Covid-19 infection waves
for a region. The framework consists of a displaced double moving average (δDMA) algorithm for
forecasting the start, rise, fall, and end of a Covid-19 wave. The forecast is generated by detection of
potential dates with specific counts called ‘markers.’ This detection of markers is guided by decision
rules generated through rough set theory. We also propose a novel ‘corrected moving average’ (χSMA)
technique to forecast the upcoming count of new infections in a region. We implement our proposed
framework on a database of Covid-19 infection specifics fetched from 12 countries, namely: Argentina,
Colombia, New Zealand, Australia, Cuba, Jamaica, Belgium, Croatia, Libya, Kenya, Iran, and Myanmar.
The database consists of day-wise time series of new and total infection counts from the date of
first case till 31st January 2022 in each of the countries mentioned above. The δDMA algorithm
outperforms other baseline techniques in forecasting the rise and fall of Covid-19 waves with a forecast
precision of 94.08%. The χSMA algorithm also surpasses its counterparts in predicting the counts of
new Covid-19 infections for the next day with the least mean absolute percentage error (MAPE) of
36.65%. Our proposed framework can be deployed to forecast the upcoming trends and counts of
new Covid-19 infection cases under a minimum observation window of 7 days with high accuracy.
With no perceptible impact of countermeasures on the pandemic until now, these forecasts will prove
supportive to the administration and medical bodies in scaling and allotment of medical infrastructure
and healthcare facilities.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Will there be a next Covid wave? This question has been
aunting human civilization since December 2019, when the
oronavirus disease emerged in the Hubei central province of
hina [1]. By the end of January 2020, the World Health Orga-
ization (WHO) declared Covid-19 a Public Health Emergency of
nternational Concern (PHEIC) (Fig. 1). Since then, Covid-19 has
volved as a severe global pandemic that has instigated unprece-
ented havoc around the globe [2]. In the current state, the highly
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contagious Covid-19 virus attacks the human respiratory system
causing severe health issues and even death.

To date, the changing counts of Covid-19 infections in the
population of every country are being regularly recorded. Sev-
eral variants [3] of the Coronavirus have instigated numerous
spikes and drops in these infection counts for multiple times in
various regions of the world. At times, these spikes and drops
together compose patterns of extreme upsurges and downturns
for a noticeable period causing severe damage to lives and re-
sources. Such patterns of infection counts and their behaviors
have been termed as waves of the Covid-19 pandemic [4]. How-
ever, the spikes and drops are regularly witnessed phenomena in
the recorded infection counts during waves as well as moderate
periods. Therefore, distinguishing a temporary spike or a group of
spikes in infection counts from an upcoming wave is a challenge.

Ignorance of an approaching infection wave as a transitory spike
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Fig. 1. Timeline of Covid-19 pandemic [1].
Fig. 2. The general structure of a wave.

can lead to discrepancies like underprepared infrastructure and
lousy precautionary measures. Similarly, confusing a minor drop
in counts with a downturn of the wave may lead to inconsis-
tencies like a premature discharge of treatment and safeguards.
Eventually, such inconsistencies result in a drastic loss of lives
due to waves of new Covid-19 infections.

In this scenario, a well-defined demarcation of an upsurge or
a downfall in a Covid-19 infection wave from temporary spikes
or drops in the counts is critically essential. Hence, we propose
an approach for detecting marker points among these spikes and
drops. These markers enable us to forecast the behavior of an
upcoming or ongoing wave of new infections with an observation
window of minimum 7 days.

On a general note, the duration of a wave leads from an
expansion period to a core and ends up with a shrinkage period
(Fig. 2). The points where the expansion and shrinkage of wave
initiates can be termed as up-trigger and down-trigger, respec-
tively. Similarly, all points of rise in counts can be labeled as
spikes, while the points of fall can be depicted as drops.

In this paper, we signify these triggers, spikes, and drops under
a collective term called ‘marker.’ Detection of these markers will
play a conclusive role in estimating the rise and fall of Covid
waves in our proposed work. This estimation of each marker can
be utilized for forecasting a specific behavior of Covid-19 waves
(Table 1).

At the time of writing of this manuscript, the Omicron vari-
ant [5] of Covid-19 infection has surpassed all previous records
2

Table 1
Markers and their forecast interpretations.
Marker Notation Forecasted result

Up trigger τup Start of a new wave
Down trigger τdwn End of an ongoing wave
Spike s Rise in an existing wave
Drop d Fall of an existing wave

of infection cases triggering at least the third or fourth wave of
infections in over 200 countries worldwide. Each wave of infec-
tions is composed of numerous temporary rises and falls in the
infection counts. These rises and falls create a lack of transparency
and generate severe confusion about the upcoming state of this
pandemic. This confusion eventually worsens the situation and
leads to the next wave of infections causing further damage.
Thus, intensive research efforts are going on for cure [6,7],
detection [8], and prevention [9] of Covid-19 disease. However,
despite these efforts, any perceptible impact on this disease is
unclear. This state of affairs has also motivated researchers to
predict the upcoming state of Covid-19 in different regions of
the world. Several works have been proposed on the forecast of
infection counts [10] and duration of infection [11] within a brief
span of time.

From simple iterations of confirmed cases [12] to dedicated
computational models have been proposed for the projection
and forecast of Covid-19 disease. The Susceptible–Infectious–
Recovered–Dead (SIDR) model proposed by Fanelli et al. [13]
employs a differential evolution algorithm for simulating the
mean-field kinetics of the epidemic spread. Estimation of the ba-
sic reproduction number, case fatality, and case recovery ratios by
Anastassopoulou et al. [14] is a further calibrated elaboration of
such a model. Another instance of similar computational models
is the SARIIqSq model presented by Sarkar, Khajanchi & Nieto [15].
SARIIqSq partitions the count of confirmed cases into susceptible
(S), asymptomatic (A), recovered (R), infected (I), isolated infected
(Iq), and quarantined susceptible (Sq) compartments to generate
forecasts. A major section of the works on the Covid-19 fore-
cast employs ARIMA modeling for [11,16] predicting upcoming
counts in the future. Here, the researchers utilize the predictive
performance of ARIMA models for projecting the specifics of

Coronavirus infection in a region for a given span.
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Fig. 3. Type and percentage of research literature referenced in this work.
However, as stated earlier, a wave of Covid-19 infections in-
olves multiple sudden bursts of numbers. The inefficiency in
andling these sudden data bursts is a significant limitation of
RIMA models [17]. ARIMA models generate linear patterns
y corrective incremental adjustments over the autoregressive
haracteristics of the time series data. Such linear patterns gener-
lly fail to predict time series data that include multiple turning
oints [11]. Also, the dynamics of geography, climate, demog-
aphy, and culture lay a serious impact on the behavior of a
isease in a region. Likewise, the financial condition of the popu-
ation, medical infrastructure, and especially the testing facilities
lay a decisive role in the epidemiological impression of the
irus spread. Any mechanism that predicts on the basis of these
luctuating factors will be vulnerable to inconsistencies.

Furthermore, the proposed works stated in this section project
he infection cases as a cumulative function of the factors dis-
ussed above. Only a few of them emphasize the temporal changes
n the infection counts for an upcoming period. This fact also
imits their efficiency in predicting the behavior of a wave of
nfection cases.

Therefore, we propose a framework of algorithms to forecast
he behavior of a wave by detecting specific counts of new in-
ections in a Covid-19 time series. We also propose to forecast
he upcoming count of new Covid infections for the next day in
region.

.1. Paper’s contributions

The contributions of the proposed work can be summarized as
ollows:

Wave behavior forecast: We propose an algorithmic procedure
o forecast the rise and fall of a potential wave of new infections
y detecting the markers present in the timeline of Covid-19
nfection cases in a provided region with an average forecast
recision of 94.08%.
The procedure comprises a displaced double moving average

δDMA) technique and a decimal base shift function (β). The
isplaced double moving average (δDMA) generates the trend
nderlying a Covid-19 infection wave. By utilizing this trend, the
ecimal base shift (β) detects changes in infection counts that can
e identified as potential markers of rise and fall in a wave of new
nfections. The determination of markers is guided by decision
ules derived from the implementation of the rough set theory
rocess on the Covid-19 time series data. These markers are
ater interpreted to forecast the upcoming behavior of a Covid-19
ave.
3

Infection count forecast: We further propose a novel algorithm
for forecasting the upcoming counts of new infection cases in a
time series data. The proposed algorithm is a variant of the single
moving average method corrected by the addition of error gaps
between the actual and projected values. Hence, we have named
it as ‘corrected single moving average (χSMA)’ technique.

A framework of the algorithms proposed above has been
implemented on time series data of new Covid-19 infections
recorded in 12 different countries. We employ the walk-forward
approach [18] for the execution of this framework on the time
series data. This implies that the results of the proposed models
get updated at every next input of new infection counts. The
proposed work can be employed for the estimation of upcoming
specifics of Covid-19 infections in a geographical region with an
observation window period of 7 to 14 days.

1.2. Literature referenced

We have exhaustively referenced a sizable volume of literature
from an extensive range of research works. Among these works,
the ones based on the Covid-19 pandemic have been published
from January 2020 to February 2022. The literature predomi-
nantly comprises reports, databases, lecture notes, websites, and
books. But the chief constituent of this literature entails research
articles from conferences and journals belonging to domains of
computing, statistics, and medical expertise. The kinds and vol-
ume percentages of the different constituents of this literature
have been summarized into a visualization presented in Fig. 3.
The literature is entirely available in the public domain, and
therefore no conflicts of interest have been discovered.

1.3. Paper’s outline

The structure of the paper is as follows:
The literature background constituting the essential concepts

and terminologies has been presented in Section 2.
Section 3 covers the problem statement, notations, data de-

scription, and formulated techniques under the proposed work.
Implementation of proposed techniques along with a case

study of the first wave of Covid-19 pandemic in Australia is
elaborated in Section 4.

Performance measures as well the analysis of results has been
conferred over in Section 5.

Section 6 discusses various dimensions and assessments of the
proposed approach.

The paper concludes with a summary of the proposed work
and directions of possible future research.
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. Background

Before moving forward, we now discuss the prospective tech-
ical approaches that will serve as conceptual blocks for the
esign and development of the proposed forecast models. The
rchitecture of these models is composed of moving average ap-
roach. A double moving average (DMA) variant of this approach
ombined with rough set-based decision rules is used for the
etection of markers in a Covid wave. Likewise, a single mov-
ng average variant has been employed to forecast the infection
ounts for the next day. Thus, in this section, we discuss the
pecifics of rough sets and moving averages that comprise the
rchitecture of the proposed forecast models.

.1. Rough sets

Rough set theory can be viewed as a soft computing ap-
roach of uncertainty mathematics for mining structural patterns
ithin incomplete, imprecise, and inexact information [19,20].
he concept of rough sets was introduced by Zdzislaw I. Pawlak
n his landmark paper in the year 1982 [21]. A rough set is a
eneralization of classical set theory researched on the logical
haracteristics of information systems. They have been success-
ully applied in problem domains such as pattern mining, feature
xtraction, feature selection, and decision rule generation. Here
e discuss a few definitions regarding the rough set theory
elevant to our proposed approach.

efinition 1 (Information Systems). The rough set theory suggests
the storage of input data in tabular designs called information
systems. Each tuple of this information system represents a fact
or an object which may be inconsistent with each other. Math-
ematically, any information system is expressed as a pair (U , C)
here:
(universe) = a non-empty finite set of all objects from the

roblem domain
(attribute) = a non-empty finite set of conditional attributes

uch that U → Vc holds for every attribute c ∈ C. Here Vc should
e considered the value set of attribute ‘c ’.

efinition 2 (Indiscernibility). Indiscernibility can be stated as
he similarity of a set of attribute values for 2 or more given
bjects. As presented above, the information system table may
onsist of multiple objects (records) stored with similar feature
alues. Reducing the number of objects in this table can improve
he efficiency of a proposed computational model. This reduction
an be implemented by storing only the representative objects
f every set with common features. Such representative objects
re termed as indiscernible objects. Here, indiscernibility can be
tated as an equivalence relation for the identification of these
epresentative or identical objects.

Mathematically, for a set of attributes P ⊂ Q, an indiscernibil-
ty relation IND(P) can be presented as:

ND(P) = {(x, y)∈U2
|∀p∈P, p(x) = p(y)}

his implies that the 2 objects x and y will be indiscernible by the
et P of attributes in set Q, if p(x) = p(y) for every attribute p ∈

P.
The sets of attributes that are indiscernible are also termed as

elementary sets.

Definition 3 (Formal Approximations). We have discussed earlier
that the rough set theory expands over the classical set theory.
Therefore, the indiscernibility relation generates the following
assumptions about an object ‘x’ in a set X belonging to the
universe U (problem domain):
4

Assumption 1. Object x is in set X;

Assumption 2. Object x is not in set X;

Assumption 3. Object x is possibly in set X;

These assumptions are defined on a crisp set (conventional
set) by the following approximations:

Definition 3.1 (Lower Approximation (A)). A lower approximation
can be specified as the set of domain objects that belong with
certainty to the subset of interest. In simpler terms, it is the set
of objects that positively belong to the target set. This implies that
for a relation R, the lower approximation set (A) of a given set X
will be the set of all objects that can be linked to X with certainty
regarding R given as:

AX = {X/[X]A⊆X}

Definition 3.2 (Upper Approximation (Ā)). The set of objects that
possibly belong to the target set X can be considered as the upper
approximation set. It is the set of objects that may belong to the
subset of interest. For a relation R, the upper approximation set
(Ā) will be the set of objects which may be possibly linked to X
given as:

ĀX = {X/[X]A ∪ X ̸=∅}

Definition 3.3 (Boundary Region (Ab)). The boundary region (Ab)
set describes the objects of a set X which can neither be classified
under X nor as -X with respect to a relation R. In other words,
the boundary region covers the elements which may or may not
belong to the target set X given as:

AbX = ĀX − AX

In case the boundary region of set X is empty (AbX = Ø), then
the set will be considered as a classical or ‘crisp’ set with well-
defined elements. This condition implies that all the objects are
unquestionably covered under set X. Otherwise, with a non-
empty boundary region (AbX ̸= Ø), the set X will be treated as
a ‘rough set’.

Definition 4 (Core & Reducts). Subsets of minimal attributes that
can sufficiently characterize the complete knowledge of an in-
formation system are known as reducts. Attributes under reduct
sets ([A]Red) form equivalence class structures similar to those
generated by the original set (X) of attributes. This condition is
stated as:

[A]Red = [A]x

Similarly, the set of attributes common to all the reducts is
termed as core ([A]Cor ). Mathematically, core attributes are given
as:

[A]Cor = ∩[A]Red

The attributes present in the core set are central to all the reducts
and cannot be removed from the information system without
causing inconsistency in the structure of the equivalence class.
The deduction of reduct and core sets provides a minimal subset
consisting of attributes or features capable of providing informa-
tion similar to that provided by the original dataset.

Definition 5 (Decision Rules). For a rough set, the minimal set of
logical inferences or rules capable of characterizing the provided
information system is termed as the set of decision rules. Under a

given set of conditional features or independent variables P = {P1,
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2, P3, . . . Pn} and a decision feature D, where D /∈ P, the decision
rules can be presented as:

R : (Pa = xi) ∧ (Pb = xj) ∧ . . . ∧ (Pc = . . .xk)→(D = xm)

where {x1, x2, x3, . . . , xn} are the feature values belonging to the
domains of their respective features.

Such decision rules are expressed in the format of IF cond[R]
HEN dec[R]. Here, the feature values compose the conditional
art of the rule (cond[R]) presented on the left-hand side, while
he decision part (dec[R]) forms the right-hand side of the rule. A
ecision matrix corresponding to each individual value (x) of the
ecision feature (D) is formed for the extraction of such rules. The
ecision matrix enlists all feature-value pairs that differ between
bjects included (D = x) and excluded (D ̸= x) by the rule. The
umber of items present in the problem domain (U ) that match
he condition (cond[R]) is called the support for the rule. The
ules meeting a threshold value of support are validated as final
ecision rules.
It should be noted that soft computing methods such as neural

etworks [22], fuzzy and rough sets [23] are generally used for
ecision-making preferences [24] in a data-intensive environ-
ent [25]. Here, the fuzzy sets and their generalizations [24,26]

nitiate processing by identifying a membership function a-priori
nd proceed to fit the data. However, the rough sets start fitting
he data straightway into the preferences laid in the form of rules.
ence, we prefer rough sets better suited for this data-dependent
cenario of the Covid-19 forecast, as any prior knowledge about
he process is not required. The procedures of rough set theory
hat we have discussed above will be utilized for guiding the
orecast generation process over the marker values present in the
ovid-19 time series data. We will be employing moving average
rocedures for the detection of these markers and the patterns
merging from them. Thus, now we will elaborate on moving
verages in the next section.

.2. Moving average

A time series can be defined as an ordered set of quantitative
bservations of a phenomenon recorded at successive regular pe-
iods [27]. Such time-series data can be mined for useful patterns
uitable for various applications. A forecast of upcoming values
n a time series is an application of similar nature. Because of the
ide utility of forecasts [28] in domains from stock markets [29]
o electrical machines [30], several methods for the analysis of
ime series data have been proposed to date [31–34]. One such
et of methods for forecasting future values in a time series is
he moving average method [35,36]. Now we will discuss some
ariants of the moving average technique to be utilized in our
roposed approach (Fig. 4.) for analysis of the time series data of
ew Covid infections in different regions of the world.

efinition 6 (Simple Moving Average). A Simple Moving Average
(SMA) is the most commonly used variant of the moving average
technique. It can be specified as the unweighted mean of previous
k data points in a time series of n data entries. This implies that
there are no weight factor values applied to any of the data points.
In a series d1, d2, . . . , dn of n data points, the mean of previous p
points will be computed as SMAp given in Eq. (1) as follows:

SMAp =
1
p

n∑
i=n−p+1

di

=
1
p

(
dn−p+1 + dn−p+2 + · · · + dn  ∑n

) (1)
i=n−p+1 di b

5

In this equation, p denotes the count of data points or sub-
group size [37] used in computation, while dn represents the
value of data point at period n. During each computation of
values for succeeding data points, the new values will get added
into the mean and the oldest ones will be dropped behind. This
successive dropping and addition of values can be viewed as a
moving transition of the SMA function through the time series
(Fig. 4.). Hence, the technique is named as moving average. This
successive computation of every next SMA for p points can be
mathematically expressed in Eq. (2) as follows:

SMAp,next =
1
p

n+1∑
i=n−p+2

di

=
1
p

(
dn−p+2 + dn−p+3 + · · · + dn + dn+1  ∑n+1

i=n−p+2 di

+ dn−p+1 − dn−p+1  
=0

)

=
1
p

(
dn−p+1 + dn−p+2 + · · · + dn

)
  

=SMAp,prev

−
dn−p+1

p
+

dn+1

p

= SMAp,prev +
1
p

(
dn+1 − dn−p+1

)
(2)

In Eq. (2), we consider the sampling window of p points from
n−p+2 to n+1 for calculating the next SMA of p points (SMAp,next ).
In this manner, the oldest value of dn−p+1 is dropped and a new
data point of value dn+1 is added to the sum with the previous
SMA (SMAp,prev).

Definition 7 (Double Moving Average). In addition to the definition
specified above, SMA is also defined as the single moving average.
This definition means that the averaging has been performed only
once by the SMA function over a set of observed data points in a
time series. But in the double moving average (DMA) technique,
the moving average values are computed twice [37]. Here, the
first average is computed on the original data points of the time
series d1, d2, . . . , dn of n data points. The next moving average
is computed on the resultant values of single moving averages
sma1, sma2, . . . , smam of next m data points achieved in the
previous step [38]. Hence, the double moving average, also known
as dual moving average (DMA), can be considered as the moving
average of SMA values. Computation of DMA from p number of
precomputed SMA points has been presented in Eq. (3):

DMAp =
1
p

m∑
i=m−p+1

smai

=
1
p

(
smam−p+1 + smam−p+2 + · · · + smam  ∑m

i=m−p+1 smai

) (3)

As this form of moving average is computed from a precom-
uted result in 2 stages, the noise and fluctuations of original
ata are also more flattened or smoothed in it compared to SMA.
his smoothed data, free from noise and fluctuations, is generally
seful for the projection of underlying trends in a time series.

efinition 8 (Displaced Moving Average). It is the periodically
isplaced variant of the traditional moving average in either a
ackward or forward direction in a time series chart. No addi-
ional computation is required for the displaced moving average
eyond the calculation of its classical variants discussed above.
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Fig. 4. Conceptual distinction of single (SMA), double (DMA) and displaced
(δMA) moving averages.

However, the average is simply shifted back or ahead of the data
points by a specific window of periodic intervals.

A common usage of displaced moving averages is found in
tock trading strategies [29] for better determination of market
rends compared to usual moving averages [39]. The forward
hift of moving average is termed as positive displacement and is
resented by a rightwards movement of the values. Similarly, a
egative displacement signifies a backward shift and is shown as
leftward transition of moving average values in the time series
hart.
In the proposed work, we will be using a double moving aver-

ge of 14 data points negatively displaced by an interval window
f 14 units for projecting the current trend of the Covid-19 wave
f new infections in a region.

. Proposed work

In this section, we present our proposed approach with a de-
ailed elaboration of components and process flow. We will first
laborate on the data utilized and later move towards the main
ork. But we initialize this section with the problem statement
nd the notations used.

.1. Problem statement

Since its emergence, the count of new Covid infections has
hown numerous spikes as well as drops in every region of the
lobe. These spikes and drops in the count have always created
onfusion about the future of this pandemic. This confusion has
ed to inconsistencies like underprepared infrastructure and lousy
recautionary measures. Eventually, such inconsistencies have
esulted into drastic waves of new Covid-19 infections. In this
cenario, a well-defined demarcation of an uprise or downfall in
Covid-19 infection wave from temporary spikes or drops in the
ount is critically anticipated. Hence, we propose an approach
or detecting marker points among these spikes and drops. These
arkers can enable us to forecast the behavior of an upcoming
r ongoing wave of new infections with an observation window
f minimum 7 days. Besides these markers, we also propose to
roject the upcoming count of new Covid infections for the next
ay with an average precision of more than 94% in a region.

.2. Notations

As described earlier, our proposed model forecasts the rise and
all of a wave of Covid infections by detecting marker dates in
he time series of infection counts. The model is composed of the
ollowing terms and notations:
6

Ci Actual infection count on day i
v[C i] Range of new infection cases
nt Trend observation window (number of

terms in one moving average for trend)
nc Count observation window (number of

terms in one moving average for count)
w Observation window (minimum number of

days for which the count of new infections
must increase)

δ Displacement gap
M Marker
τup Up-trigger
τdwn Down-trigger
s Spike
d Drop
β Decimal base shift
χSMA Corrected single moving average
δDMA Displaced double moving average

.3. Data description

The data utilized for the work proposed in this paper are
btained from the open-access resource of the ‘Our World in
ata’ (OWID) repository [40]. OWID assembles and compiles the
ata from sources like the World Health Organization (WHO),
lobal Burden of Disease, World Bank, Johns Hopkins University,
uropean Centre for Disease Prevention and Control (ECDC), and
lavatnik School of Government.
The data include and regularly update the date-wise con-

irmed counts of total infections, new infections, deaths, and
accinations for 207 countries. To ensure geographic uniformity
f data, our work employs the details of total and daily confirmed
ovid-19 cases from 12 different countries, namely Argentina,
olombia, New Zealand, Australia, Cuba, Jamaica, Belgium, Croa-
ia, Libya, Kenya, Iran and Myanmar. These details have been
ompiled into a time series database. The time series initiates
rom the date of a confirmed detection of the first case of Covid-
9 infection in a region up to January 31, 2022. For example,
he first confirmed case of Covid-19 infection in Argentina was
etected on March 03, 2020, while the first infection in New
ealand was confirmed on February 28, and so forth. Hence,
he respective time series of each country initializes on its own
orresponding initializing date and extends to January 31, 2022.
Now, commencing with displaced DMA (δDMA), we discuss

the components of our proposed forecast models.

3.4. Displaced DMA (δDMA)

For the time series data like a Covid wave, composed of several
rises and falls in numbers, the determination of a trend can be
challenging. To overcome this hardship, we employ displaced
double moving average (δDMA), which forms the prime compo-
nent of the proposed approach. We will be using it for tracking
the trend of the Covid-19 infection wave by smoothing the time
series data. δDMA is a combination of double moving average
(DMA) and displaced moving average (δMA) techniques. We im-
plement this displaced double moving average (δDMA) function
by a procedure ForecastTrend.

3.4.1. Derivation of DMA
To achieve the target DMA values, the computation of single

moving averages (SMA) is essential. So, we first compute the
SMA(14) of new infection counts throughout the time series for a
trend observation window of 14 days as follows (Eq. (3)):

SMAi(nt ) =
1
nt

j+nt∑
Ci (4)
i=j+1
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here:
SMAi(nt ) = single moving average of next ith period
Ci = actual infection count on day i
nt = trend observation window or the number of terms in one

moving average for trend
Similar to SMA(14), now we can derive the DMA(14) of infec-

tion counts over the precomputed SMA(14) values for the trend
observation window of 14 periods given as:

DMAk(nt ) =
1
nt

i+nt∑
k=i+1

SMAk (5)

where:
DMAk(nt ) = double moving average of next kth period
SMAk = single moving average value on day k
nt = trend observation window or the number of terms in one

moving average for trend
Here, we can note the different counter variables i, j, and k

or SMA and DMA, respectively. These variables are included to
nsure the distinct range of periods for single and double moving
verage values in every iteration.

.4.2. Displacement of DMA
The DMA(14) discussed above will generate a ‘smoothed out’

rend of new infection counts. However, these computed values
f DMA will also appear ‘forward shifted’ in the time series chart
y a gap equivalent to the subgroup size or observation window.
his forward shift infers that each generated value of DMA(14)
ill appear 14 periods ahead of the corresponding actual count

n the time series chart. Thus, we need to drag the computed
verages backward with the same duration (δ) of 14 periods to
atch the trend generated by DMA(14) values with the current
ount of new infections in the region. Therefore, we implement
ackward displacement (δ) of DMA values by placing them δ

umber of points prior to their original positions given in Eq. (6)
s follows:

DMAi(nt ) = DMAk(nt ) (6)

his procedure provides us an output trend vector (T[Di]) com-
rising the difference of δDMA(14) values computed over a trend
bservation window of (nt ) and displaced backward by a duration
δ) to match the current infection count (Eq. (6)).

[Di] = δDMAi(nt+1) − δDMAi(nt ) (7)

Throughout this section, we have denoted the number of
erms or subgroup size [41] at each stage of the moving average
s a trend observation window (nt ).
We have selected 14 days as the value of this window (nt ) for

he DMA. Similarly, the displacement gap (δ) for a backward shift
f the DMA values is also 14 days. The reason behind considering
his duration for nt and δ parameters is that the maximum pro-
osed incubation period for Covid-19 infections is 14 days [42].
ecause of this incubation period, the medically advised isolation
r quarantine period for Covid-19 patients is also 14 days [43].
ithin this range of time, any significant change in the state
f the infected population will be visible. This change will be
rojected in the form of a peak, decline, or sustaining of numbers.
Hence, the procedure ForecastTrend generates the long-term

rend (T[Di]) of the infection counts by implementing the dis-
laced double moving average (δDMA) for a trend observation
indow of 14 days. A positive increment in this trend will project
rise in the Covid-19 wave, while a decrement will depict a fall.
ow we present the algorithm (Algorithm 1) for implementing
he ForecastTrend procedure.
7

.5. Decimal base shift

Detection of a marker date against a trend is our next target
n the proposed approach. The marker must be robust enough
o satisfy a conditional limit upon the count of newly infected
opulation for a predefined timespan. Here, we will be utilizing
he shift in decimal base (β) of infection counts as the proposed
arker. By the term decimal base, we infer the number of digits
resent in a value. So, any difference or shift in the decimal
ase of new infection counts with a rising or dropping δDMA
ill be considered as a marker which includes up-trigger (τup),
own-trigger (τdwn), spike (s), and drop (d). To compute this shift,
e first need to retrieve the decimal base from the value of
urrent infection count and then compute its difference from its
redecessor value on the previous day. This section discusses the
mplementation of this shift (β) in the decimal base of infection
ounts as the BaseShift procedure.

.5.1. Length of infection counts
As the infection counts are integer values represented in dec-

mal form, so for retrieving their decimal base, we compute their
ogarithm in base 10. The value of an integer i composed of n
igits lies between 10(n−1) and 10n. This implies that log10(n) will
all between (n – 1) and n inclusive of both. Further, an addition
f 1 to this value will provide the number (xi) of digits as follows:

i = (Log10(Ci) + 1)

he achieved value (xi) will be in decimal format with a fractional
omponent attached to its integer part. Therefore, we will now
pply the floor function to cut down the fractional part, retrieving
he actual length (n) as a result. Mathematically, this function is
xpressed as:

en(xi) = ⌊xi⌋

.5.2. Shift in count length
After retrieving the length of the current infection count

Len(xi)), we now need to detect any change in its decimal base
rom its previous values. Thus, this change or shift of base is
omputed as the difference of the current count length (Len(xi))
nd its adjacent predecessor (Len(xi−1)) given as:

ase(βi) = Len(xi) − Len(xi−1)

his approach has been presented in algorithmic format in Algo-
ithm 2.

Now we elaborate our approach with an example. For the
egion of Australia, 75 new infections were witnessed on March
7, 2020. However, a count of 116 was observed on the next day,
hat is, on March 18, 2020. Now the logarithm of base 10 for 75
esults into 1.87506. An addition of 1 to this number will provide
.87506. In this number, the integer component is equivalent
o the number of digits in 75, i.e., 2. However, the fractional
omponent is no longer required and is hence truncated by the
loor function. The final result will be 2.

Similarly, the value of logarithm of base 10 for 116 with an
ddition of 1 will be 3.06445, which, post truncation, will provide
n integer value of 3. We will further compute the difference
etween the current and previous lengths to detect the change
n count lengths. Here, a positive shift in base of 1 unit from 2 to
is visible between these 2 dates, which can possibly represent
n up-trigger (τup) or a spike (s). Similarly, a negative shift can
epict a down-trigger (τdwn) or a drop (d).

.6. Corrected SMA (χSMA)

Forecasting the upcoming count of new infections in a region
ith high precision is a critical issue. This issue remains decisive
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in medical preparations and infrastructure buildup to combat the
pandemic. To address this issue, the next goal of our proposed
approach is to devise a novel variant of the moving average
technique for generating the upcoming infection count for the
next day with minimum error. We know that, generally, a gap
always exists between the forecasted and actual values for every
forecasting technique. This gap, termed as ‘error,’ forms the basis
of various performance metrics for a forecast model like mean
bias error (MBE), mean average error (MAE), mean square error
(MSE), root mean square error (RMSE), and more.

We propose to utilize this gap to improve the efficiency of the
oving average. Thus, we add the average of the errors attained
t a stage of moving average to the value of the next stage. This
ddition can be considered as a form of ‘correction’ of moving
verage, hence named the ‘corrected moving average (χMA)’
ethod. This proposed correction aims to update the mean of a
et of values with the average of the set of corresponding errors.
ere, the average function evenly distributes any fluctuation in
rrors of the set, similar to as it does for the set of original values.
8

In this section, we will implement this approach on the sin-
le moving average (SMA) as the ForecastCount procedure (Al-
orithm 3), formulating the corrected single moving average
χSMA) for forecasting upcoming infection counts. The proposed
pproach accepts the vector of new infection counts (v[C]) and
he value of count observation window (nc) is set to 7 days for
rocessing. Here, nc denotes the number of values at a single
tage of SMA similar to the trend observation window (nt ) of the

δDMAmodel discussed in Section 3.4. However, the value of count
observation window (nc = 7) is accepted as half of the trend
observation window (nt = 14) to match the minimum incubation
period for Covid-19 [42]. Here, nc can be considered as the lower
timeline limit of the incubation period to spot any changes in the
state of the infected population. The proposed approach proceeds
as follows:

3.6.1. SMA computation
In the first step of this method (Eq. (8)), we compute the

SMA using the classical moving average technique by accepting
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Fig. 5. Flowchart of decision rule generation process by use of rough sets.

7 values (nc = 7) at every stage. This computation proceeds for
the whole range or vector of new infection cases (v[C i]). From this
step, we will achieve the forecasted values of infections.

SMAi(nc) =
1
nc

j+nc∑
i=j+1

Ci (8)

3.6.2. Error determination
As discussed above, an error is expected to exist between the

forecasted and actual values of infection counts. Thus, at this step,
we compute the error (ek) between count (Ck) and the single
moving average value (SMAk) for day k as:

ek = Ck − SMAk(nc) (9)

3.6.3. Average error
Now we compute the average of errors (Ei) retrieved for the

nc number of stages at stage i as:

Ei(nc) =
1
nc

j+nc∑
i=j+1

ei (10)

.6.4. SMA correction
This step performs the main component of the proposed ap-

roach by adding up the error (Ek) attained at stage k to the
oving average of stage k+1 (SMAk+1) to generate a revised SMA

Rev.SMAk+1) for the next day.

ev.SMAk+1(nc) = SMAk+1(nc) + Ek (11)

3.6.5. Absolute revised SMA
Finally, we compute the modulus of the revised moving aver-

age (Rev.SMAk+1) to achieve the corrected single moving average
(χSMAk+1) as the forecasted number of cases.

χSMA (n ) = |Rev.SMA (n )| (12)
k+1 c k+1 c

9

It should be noted that the addition of average error (Ek) to the
next stage of SMA can also generate a negative value. However,
the number of projected new infections cannot be negative in any
case. Thus, this step is crucial for neutralizing any negative value
of χSMA.

3.7. Decision rules generation

As discussed in Section 2.1 above, the detection of markers
depicting any rise or fall in the trend of Covid-19 infections needs
a guiding or filtering mechanism. This filter is provided by the
decision rules generated from the provided Covid-19 database
through the use of rough set theory. In this section, we will dis-
cuss the process of generation of these rules (Fig. 5). As discussed
earlier, the rough set decision rules for any process are composed
of conditional features P = {P1, P2, P3, . . . Pn} and a decision
eature D in the following format:

: (Pa = xi) ∧ (Pb = xj) ∧ . . . ∧ (Pc = . . . xk)→(D = xm)

hus, the generation of decision rules is a process that requires
he selection of appropriate variables from the information sys-
em. To set up the information system table from the provided
ovid-19 database, we select the date and count of new infections
Ci) for every country under consideration.

. Preprocessing
We now execute the ForecastTrend procedure to execute

DMA(14) over the new infections (Ci) and generate the trend
T[Di]). The trend will help in estimating the direction of the
ovid-19 wave. Here, a positive value of T[D] will project a rise
n wave while the negative ones will present a fall. We also
xecute the BaseShift procedure to derive the decimal base shift
β) variable. Execution of these procedures can be considered
nder the preprocessing stage. This preprocessing sets the trend
T[D]) and base shift (β) as conditional features, while the marker
M) can be stated as the decision variable.

. Data partitioning
We now partition our database into a 70:30 ratio of training

nd testing datasets for the 12 countries. As the count of infection
ates differs for each country, the numbers of records in their
raining and testing datasets also differ.

. Model generation
Now we compute the indiscernibility of attributes from the

nformation system composed of the training dataset. We further
alculate the set approximations to discard the conflicting records
f the boundary region. The approximations lead us to discover
he core and reduct attributes by estimating their dispensability.
y utilizing the core and reduct attributes, we will mine the
ecision rules.

. Validation
For a minimum observation window of 7 days, the decision

ules are further validated against the records of the testing
ataset with an accuracy of 96.4%. For trend value (T[D]), base
hift (β), and observation window (w), the rules for marker (M)
re as follows:

f ((b≥1) && (T [D] ≥ 0) && (w ≥ 7)) → (M = τup) (13)

if ((M = τup) && (b ≥ 1) && (T [D] ≥ 0)) → (M = s) (14)

f ((M = s) && (b ≥ 1) && (T [D] ≥ 0)) →(M = s) (15)

f ((b ≤ − 1) && (T [D] ≤ 0) && (w ≥ 7)) → (M = τdwn) (16)

f ((M = τdwn) && (b≤ − 1) && (T [D] ≤ 0)) → (M = d) (17)

f ((M = d) && (b ≤ − 1) && (T [D] ≤ 0)) → (M = d) (18)
f ((b = 0) && ((T [Dw] ≥ 0)) OR (T [Dw] ≤ 0)) → (M = NULL)
(19)
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5. Decision filter
This rule base is implemented as a decision filter for the

etection of markers by the ForecastMarker procedure. The rules
an be summarized in the following manner. For the first positive
ase change (β) observed over a positive trend (T[D]) after an
bservation window of at least 7 days, an up-trigger (τup) will be
arked. But all upcoming similar positive base changes observed
fter a τup will be recorded as spikes (s). Similarly, the negative

base shifts (β) observed over negative trends (T[D]) after at least
7 days will be considered as down-trigger (τdwn) or drops (d). No
marker will be considered if the decimal base does not change
for a positive or negative trend. However, this condition does not
imply the absence of a rising or deprecating infection wave.

4. Methodology

As discussed earlier, this approach is composed of moving
average components and is directed by rules of rough set theory.
So, in this section, we will discuss the methodology of imple-
menting these components as an integrated assembly (Fig. 6.).
This assembly is also presented in the algorithmic format in
Algorithm 4. It receives the range of new infection cases (v[C i]),
count observation window (nc), trend observation window (nt ),
and displacement window (δ) as input.

4.1. System implementation

In the first step, the projected value of the new infection
count for the upcoming day is forecasted by calling the Forecast-
Count procedure. This procedure executes χSMA function for a
ount observation window (nc) of 7 days and generates an esti-
ate of new infections for the next day. Further, a combination
f δDMA and base shift is used for detecting spikes (s), drops
d), up-triggers (τup), and down-triggers (τdwn) by the procedure
orecastWave.
This procedure first determines a positive or negative trend of

he Covid-19 infection wave by calling the ForecastTrend sub-
rocedure. Here, ForecastTrend returns a vector of T[D] values
s the trend for a provided range of infection counts. Further,
he BaseShift sub-procedure detects changes in the decimal base
10
f the infection counts. After determining the trend and base
hift, the ForecastMarker procedure executes the decision rules
iscovered by the rough set theory over the available Covid-19
atabase. For a provided observation window (w = 7), it classifies

the −1, 0, and 1 values of BaseShift into markers as spikes (s),
drops (d), up-triggers (τup), and down-triggers (τdwn).

Here, after passing the duration of the observation window
of 7 days in a positive trend (T[D]) of infections, the very first
point of any significant increase in count marked by the decimal
base shift is termed as the first up-trigger (τup) depicted by an
upward orange arrow (Fig. 7). The upcoming points of increase
following τup can be regarded as spikes (s) shown by upward red
arrows. Here, τup indicates the start of a Covid-19 wave while the
spikes (s) forecast a further rise in an ongoing wave. In Fig. 7, the
rise in wave forecasted by up-trigger and spike on February 29
and March 08, respectively attain the peak infection count of 497
cases on March 28. Similarly, with a negative T[D], the first point
of decrease in infections marked by a decimal shift is termed
as a down-trigger (τdwn) displayed by a light green downward
arrow. Also, further declines in counts are projected by drop (d)
markers exhibited by downward dark green arrows. The fall of
wave projected by the down trigger on April 07 leads to a further
drop on April 22 to mere 07 cases. An up-trigger can be followed
by multiple spikes displaying the increase in infection counts
throughout the expansion period of an upward wave (Fig. 2).
Similarly, several drops can follow a down-trigger representing
the de-escalation of the wave. It must be noted that the direction
of infection trend (T[D]) must favor the sign of BaseShift to be
considered a marker. It implies that only a positive base shift
observed after a positively increasing trend of minimum 7 days
will be considered an up-trigger (τup) or a spike (s). A similar
combination of a negative base with a negative trend will be
stated as a down-trigger (τdwn) or a drop (d). However, a negative
base shift parallel to a positive trend or vice-versa will not be
considered the same as above.

4.2. Case study: First wave of Covid-19 infections in Australia

For further elaboration of our methodology, here we will dis-
cuss its implementation with the case study of the first Covid-19
wave in Australia [44].
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Fig. 6. Architecture of the proposed approach.
Fig. 7. Interpretation of the first Covid-19 wave in Australia.
In Fig. 7, we presented the details of various marker points
onsisting of up and down triggers, spikes, and drops in the
irst Covid-19 wave scenario in Australia. This scenario is further
laborated in the time series graph presented in Fig. 8. The graph
epicts a series of different dates with changing new infection
ounts (Ci). Besides the new infection counts (Ci) presented by the
blue line, 4 other lines are also present in the graph. These lines
illustrate the trends computed from Ci through different moving
average techniques. The orange and yellow lines present the
trends of new infections retrieved by the DMA(7) and DMA(14)
models. It must be noted that both of these lines are shifted ahead
of Ci, which indicates the gaps between the real counts and the
trends forecasted by these models. Similarly, the gray and violet
lines running along with the infection count present the trends
computed by δDMA(7) and δDMA(14) techniques. The trends are
displaced backward by a displacement window of 7 and 14 days.
11
These displacements place the respective trends to match the
actual counts, making them more relevant and valuable.

Now we elaborate the generation of markers against the trend
of δDMA(14) as presented in Fig. 9.

The first visible count of 04 infections was detected in Aus-
tralia on January 26, 2020, with a decimal base range of 01.
The δDMA(14) function of our proposed approach retrieved the
positive trend (T[D]) of value 0.0357 for the upcoming wave
that started from February 17, 2020. Parallel to this positive
trend, after crossing the count observation window of 7 days,
the BaseShift procedure detected an up-trigger (τup) of 10 new
infections on February 29 against a trend value of 0.5765. This up-
trigger confirmed the start of the first Covid-19 wave in Australia.
The next shift in decimal base with 13 new cases was spotted
on March 08 as the forecast of the first spike of the upcoming
wave. It was succeeded by another shift to the next decimal base
range of 2 and recorded as another spike with an increase of
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counts from 75 to 116 on March 18, 2020. Similarly, the start of a
negative trend in this Covid wave was depicted by the δDMA(14)
unction on March 30 for 377 new cases with a reducing trend
 w

12
(T[D]) of −3.7092. After passing the observation window of 7
ays, the earliest negative shift from a decimal base of 3 to 2
as recorded as the first down-trigger (τ ) on April 7 with 98
dwn
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Fig. 8. Timeline graph of first wave of new Covid-19 infection cases in Australia.
Fig. 9. Flowchart of marker detection from δDMA(14) trend of a Covid-19 wave.
nfections against a trend value of −16.4031. This down-trigger
as followed by a drop (d) of 7 more new infections on April 22,
onfirming the fall of the first Covid wave.
Regarding the forecast of the upcoming count of cases for the

ext day (Fig. 10), with respect to the actual 1701 witnessed
n December 01, 2021, the χSMA(7) function projected an ap-

proximate count of 1410 upcoming infections. Compared to the
13
results of the baseline techniques of SMA(7) as 1362 with an
error percentage of 19.926%, and DMA(7) as 1364 with an error
percentage of 19.85%, the χSMA(7) forecasted with the lowest
error of 17.139%. In terms of average mean bias error also, the
χSMA(7) performed the best with the lowest average error of
0.0389 compared to the average error of 7.785 of SMA(7) and
16.147 of DMA(7) baseline techniques.
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. Experimental results

In this section, we will confer on the experimental details
nd results of the proposed approaches. But we will initiate this
ection with the performance measures that will be used to
valuate the efficiency of these approaches.

.1. Performance measures

In our proposed work, the δDMA(14)-base shift approach fore-
asts the behavior of the Covid-19 wave while the χSMA(7) tech-
ique is focused on forecasting upcoming infection counts. Thus,
e will be considering 2 distinct classes of performance indica-
ors for evaluating the performances of the 2 proposed models.
e commence this section with an elaboration of bias-based

ndicators.
Bias indicators: The mean bias error (MBE) and normalized

ean bias error (NMBE) are the bias-based indicators to be used
or the performance evaluation of the δDMA(14)-base shift model.
hese indicators are based on the average error present in the
alues. This implies that strong chances persist of cancellation of
ositive and negative errors. This property of MBE is considered
major limitation that restricts its usage. However, we will be
tilizing it here to measure the performance of the δDMA models.
14
.1.1. Mean bias error (MBE)
The difference between the actual (xi) and the forecasted (yi)

alue is termed as mean bias error (MBE). With n number of
alues or points, MBE can be mathematically stated as (Eq. (20)):

BE =
1
n

n∑
i=1

(xi − yi) (20)

.1.2. Normalized mean bias error (NMBE)
It is a normalization of the MBE indicator, which makes the

esults of MBE comparable by scaling them. NMBE computes the
lobal difference between actual and projected values by quan-
ifying the MBE through its division by the average of projected
alues (Eq. (21)).

MBE =
1
n

n∑
i=1

(
xi − yi

n
) × 100 (21)

Metrics like mean absolute error (MAE) and mean square error
(MSE) defer the sign of errors to record the positive as well as
negative errors also as positive quantities. This deferment of sign
or direction, in turn, practically increases the final positive error
manifolds and abandons the negative displacements altogether,
losing the direction of the trend underlying the data.
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Contrarily, MBE treats each error with its original positive or
negative sign. Due to this property, strong chances of cancellation
among positive and negative errors persist. This property of MBE
is considered a major limitation that restricts its usage. However,
in the case of the DMA models, our purpose is to project the trend
visible in the time series data rather than forecasting the quanti-
ties with exactness. As MBE and NMBE are interrelated, we will be
using both for the performance measurement of our DMA models.

We now proceed towards the description of precision-based
performance indicators.

Precision indicators: Indicators based on precision specify the
spread of the gap between the actual and forecasted values.
But instead of positive or negative directions, these indicators
measure only the magnitude of errors present in data. Here,
the performance of the proposed SMA model will be evaluated
by four different parameters [45], namely mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE),
and mean absolute percentage error (MAPE).

5.1.3. Mean absolute error (MAE)
The MAE measures the average magnitude of the errors in

a set of forecasts without considering their positive or negative
directions. This implies that the MAE is the average of the ab-
solute values of the differences between forecast and the actual
observation (Eq. (22)). The MAE can also be considered as a linear
score which infers that all the distinct differences are equally
weighted in the average.

MAE =
1
n

n∑
i=1

|(xi − yi)| (22)

.1.4. Mean square error (MSE)
The average of squared differences between actual and fore-

asted values is computed by mean square error. In terms of
egression, MSE states the proximity of a regression line to a set of
rror points. This proximity is calculated as the distances of error
oints relative to the regression line and squaring them removes
ny negative signs. Mathematically, MSE is stated as (Eq. (23)):

SE =
1
n

n∑
i=1

(xi − yi)2 (23)

.1.5. Root mean squared error (RMSE)
RMSE can be considered as a quadratic score that measures the

verage magnitude of the error. Technically, it is defined as the
quare root of the squared difference among the forecasted (xi)
nd observed (yi) values of a quantity (Eq. (24)). Here, the squar-
ng of errors before computation of their average allocates higher
eights to large errors, thus projecting them distinctively. RMSE
an be used in combination with MAE to detect the variations in
rrors among a set of forecasted values.

MSE =

√ n∑
i=1

(xi − yi)
n

2

(24)

.1.6. Mean absolute percentage error (MAPE)
The mean absolute percentage error (MAPE) can be stated

s the average of the absolute percentage errors of forecasts.
ere, the percentage errors are totaled without considering their
ositive or negative signs.

APE =
1
n

n∑
i=1

|
xi − yi

n
| × 100 (25)

In the next section, we will conduct an empirical analysis of
he results of our proposed approaches over the Covid-19 time
eries database of 12 countries.
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5.2. Empirical analysis

As discussed earlier, in this paper, we have analyzed the pan-
demic time series of 12 countries from their initial dates to
January 31, 2022. Thus, in this section, we will inspect the results
of the proposed work.

We constructed the χSMA(7) model based on the single mov-
ing average (SMA) technique. The SMA(7) model forecasts the
upcoming count of new Covid infections by computing the av-
erage of the infection counts for the previous 7 days. Its ac-
curacy was improved by adding the average of residual errors
derived as differences between actual and forecasted counts for
an observation window of 7 days. This improvement fitted the
χSMA(7) model to the actual infection count with an average
mean absolute deviation (MAD) of 787.61 compared to 859.66 for
classical SMA(7) and 1081.369 as MAD for SMA(14). As the MAD
of χSMA(7) model is reduced significantly against the baseline
models, consequently, the mean square error (MSE) and root
mean square error (RMSE) are also reduced in a similar propor-
tion. The minimum mean absolute percentage error (MAPE) of
value 12.63 has been recorded for Iran by χSMA(7) compared
to 14.43 by SMA(7) and 19.33 for SMA(14) models, respectively.
Likewise, the second minimumMAPE of value 16.10 was recorded
by χSMA(7) for Colombia against a MAPE of 17.48 by SMA(7)
and 23.05 for SMA(14) models. In Table 2, we have compared the
forecast errors as MAD, MSE, RMSE, and MAPE values generated
by the 3 techniques over the time series data of new Covid-19
infections recorded in 12 countries.

We have further analyzed the count forecast performance of
the proposed χSMA(7) model against other baseline techniques.
It should be noted that this projection can change with any
upcoming count of new infections. Similar to the average forecast
performance presented in Table 2, χSMA(7) also outperforms its
baseline counterparts in terms of daily count forecasts (Table 3).
Here, χSMA(7) resulted in a minimum average forecast error of
61% compared to 99.81% of SMA(7) and 137.49% of SMA(14). The
best forecast of daily infection count (47.93) recorded for January
31, 2022, was projected by χSMA(7) for Kenya with an error
of only 4.21% against the actual count of 46 infections. In this
case, χSMA(7) presents significant improvements against errors
of 243.47% by SMA(7) and 474.68% by SMA(14)models. In terms of
a worst-case scenario of Croatia, the errors of 479.95% by SMA(7)
and 484.68% by SMA(14) are still inferior to a lower error of
460.46% projected by χSMA(7).

Now we evaluate the performance of the second proposed
model of δDMA(14) that projects the trend of Covid-19 infection
waves. We will use mean bias error (MBE) to estimate the gap
between the projected trend and the actual time series. Here,
the trendline projected by the δDMA(14) model fits nearest to
the wave of infection counts (Table 4). This is depicted by the
minimum MBE of 34.75 compared to MBE of 205.67 by DMA(7)
and 439.68 by DMA(14) model. As a consequent indicator of MBE,
the NMBE of δDMA(14) also attains a minimum value of −3.356
against the 29.74 (DMA(7)) and 66.95 (DMA(14)) values. However,
a negative NMBE represents that the trend of the proposed model
is smaller than the original trend line.

It must be noted that the length of the displacement window
among these models differs by a duration of 7 days. DMA(7)
starts after 14 days, while δDMA(7) initiates after 7 days of its
parent SMA computation. This implies that δDMA(7) has been
shifted upward or backward in time series by a displacement of
7 units to match the wave of actual numbers. Similarly, DMA(14)
starts without any backward displacement after 28 days. On
starting with a displacement window of 14 units, this DMA(14) is
portrayed as the δDMA(14). The accuracy of this displacement is
crucial to match the projections against the actual counts.
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Table 2
Comparison of average forecast errors of χSMA(7), SMA(7) and SMA(14).
COUNT χSMA(7) SMA(7) SMA(14)

MAD MSE RMSE MAPE MAD MSE RMSE MAPE MAD MSE RMSE MAPE

Argentina 2630.207 36280918.6 6023.364 26.822 2923.695 51639878.73 7186.089 27.831 3542.809 90277202.18 9501.431 31.923
Colombia 1115.276 3535904.72 1880.4 16.101 1278.581 4750336.665 2179.526 17.481 1815.097 9327479.961 3054.092 23.059
New Zealand 7.763 242.763 15.580 52.886 8.016 256.757 16.023 47.894 9.863 371.085 19.263 54.054
Australia 1028.707 30953185.7 5563.558 38.786 1135.249 38333129.71 6191.375 42.693 1635.512 71543610.97 8458.345 55.774
Cuba 158.293 143672.781 379.041 29.089 195.420 189905.285 435.781 31.876 301.575 399625.924 632.159 40.823
Jamaica 57.252 13396.590 115.743 48.149 58.377 14744.85052 121.428 47.994 71.753 23214.111 152.361 54.938
Belgium 2455.838 54780112.8 7401.358 32.395 2489.568 53461698.4 7311.750 35.924 2734.681 57821300.81 7604.0318 44.334
Croatia 448.492 883089.751 939.728 71.769 473.069 888331.954 942.513 75.480 526.712 1032634.766 1016.186 85.496
Libya 229.245 208876.011 457.029 23.358 229.950 205674.495 453.513 21.547 248.930 237257.647 487.091 23.520
Kenya 149.255 71222.956 266.876 48.648 158.799 78814.079 280.738 51.013 190.701 120544.741 347.195 59.800
Iran 1055.076 4128910.12 2031.972 12.630 1230.285 5209738.468 2282.485 14.433 1702.150 8718068.397 2952.637 19.333
Myanmar 115.942 59437.671 243.798 39.250 135.022 84260.919 290.277 36.824 196.640 174582.349 417.830 45.320

787.612 10921580.9 2109.871 36.657 859.669 12904730.86 2307.625 37.583 1081.369 19972991.08 2886.885 44.865
Table 3
Comparison of daily forecast errors of χSMA(7), SMA(7) and SMA(14) recorded on January 31, 2022.
ERROR COUNT

on
31–01–2022

χSMA(7) SMA(7) SMA(14)

For Count For-Error % For-Error For Count For-Error % For-Error For Count For-Error % For-Error

Argentina 43472 40202.979 3269.020 7.519 67521.142 24049.142 55.320 88594.214 45122.214 103.796
Colombia 15284 13115.142 2168.857 14.190 18828.285 3544.285 23.189 23441.5 8157.5 53.372
New Zealand 204 144.122 59.877 29.351 113 91 44.607 92.071 111.928 54.866
Australia 36719 51888.326 15169.326 41.311 54019.714 17300.714 47.116 58659.642 21940.643 59.752
Cuba 2119 2692 731.591 34.525 2937 915 43.180 3105.571 1038.928 49.029
Jamaica 410 437.326 27.326 6.665 648.142 238.142 58.083 848.857 438.857 107.038
Belgium 99314 52759.040 46554.959 46.876 51240.857 48073.142 48.405 46085.285 53228.714 53.596
Croatia 1445 8098.775 6653.775 460.468 8380.285 6935.286 479.950 8449.071 7004.071 484.710
Libya 4429 3819.346 609.653 13.765 2830.286 1598.715 36.096 1994.142 2434.857 54.975
Kenya 46 47.938 1.938 4.214 158 112 243.478 264.357 218.357 474.689
Iran 28995 19559.571 9435.428 32.541 13384.142 15610.857 53.839 8796.142 20198.857 69.663
Myanmar 278 197.755 80.244 40.577 169 109 64.497 150.714 127.285 84.454

61.00074 99.813887 137.4955
Table 4
Comparison of trend projection performance by DMA(7), DMA(14) and δDMA(14).
TREND DMA (7) DMA(14) δDMA(14)

MBE NMBE MBE NMBE MBE NMBE

Argentina 772.1430356 19.54561898 1896.15562 33.58767343 139.3565127 −0.861120052
Colombia 229.2168405 15.30654897 527.1117111 26.60781529 51.56612062 −0.643813643
New Zealand 1.42425318 47.41597051 1.769185485 71.09265313 0.035457674 −7.441309463
Australia 590.8276047 31.89637674 1383.89143 113.5424323 225.6506074 −6.501396027
Cuba 34.05127664 20.29351115 67.87499615 36.76918559 4.690984086 −2.555473299
Jamaica 7.452019746 22.03676335 19.70685548 40.25481513 3.092397652 −2.574716535
Belgium 540.4560967 84.31176625 952.7358309 259.4170419 −6.12845481 −4.276487513
Croatia 90.8856495 36.17748388 175.7354829 70.3852792 1.903376815 −4.753484139
Libya 34.3157281 28.42878751 47.0839368 52.09404609 −1.42451174 −3.288684683
Kenya 1.851074749 17.10181175 7.27152568 37.23975243 2.179380665 −2.403374823
Iran 163.2725468 10.07760268 193.2607404 13.71961639 −4.03123045 −0.838485678
Myanmar 2.151119058 24.39752169 3.576310154 48.72693533 0.226001512 −4.1398242

205.6706038 29.74914696 439.6811354 66.95310385 34.75972018 −3.356514171
6. Discussions

This section will discuss various aspects and challenges met in
his manuscript and their plausible answers in terms of compo-
ent techniques, functional specifics, and results.

.1. Comparative analysis

Continuing from the results of the previous section, here we
resent a comparison of the various approaches on Covid-19 fore-
ast (Table 5). We also compare our proposed approach against
hese approaches. We can broadly categorize the works discussed
n this manuscript into ARIMA-based and Compartment-based
16
approaches. As the name suggests, the ARIMA technique com-
prises the major algorithmic component of the ARIMA-based
approaches [10,11]. On the other hand, every compartment-
based approach partitions the population of the region under
consideration into compartments like susceptible (S), infected (I),
recovered (R), and dead (D) populations for the generation of
models [13–15], hence the name.

Another category under which Covid-19 forecast applications
can be placed, is the category of model-based approaches. These
approaches comprise logical or mathematical models for structur-
ing the forecast on the basis of population counts [12]. We place
our proposed approach under this category. The forecasts on the
rise and fall of the waves of infection counts form the primary



S.R. Srivastava, Y.K. Meena and G. Singh Applied Soft Computing 131 (2022) 109750

1
d
a
o

c
a
h

Table 5
Comparative summary of selective works on Covid-19 forecast.
Reference Year Data Constituent technique Proposed work Advantages Limitations

ARIMA-based approaches

[10] 2020 Italy,
Spain,
Turkey

Auto Regressive Integrated
Moving Average (ARIMA),
autocorrelation function
(ACF), partial
autocorrelation (PACF)

Predicting the number of
cases and deaths from
time series data.

Month-wise forecast of
infection and death
counts.

1. Complex selection of p,q,r
parameter values for
appropriate ARIMA model.
2. Counts saturate after a
threshold time.

[11] 2020 India,
Brazil,
Spain,
Russia,
United
States

Auto Regressive Integrated
Moving Average (ARIMA),
Hannan and Rissanen
algorithms.

Predicting the number of
cases and deaths from
time series data.

Count-wise and month-
wise forecast of infection
cases.

1. Complex selection of p,q,r
parameter values for
appropriate ARIMA model.
2. Counts saturate after a
threshold time.

Model-based approaches

[12] 2020 United
States,
Slovenia,
Iran,
Germany

Simple iteration of
infection counts for a
specified number of days

Determination of the
average growth rate of
infection from daily
values of confirmed cases.

Simple implementation 1. Based on infection growth
rate.
2. Provision for only first
insights of the pandemic
3. Accuracy is not assured

Compartment-based approaches

[13] 2020 China,
Italy,
France

Differential evolution
algorithm implemented
on mean-field kinetics of
the epidemic spread.

Modeling of susceptible
(S), infected (I), recovered
(R), dead (D) population
counts.

1. Model captures gross
features of the outbreak.
2. Simple implementation

1. Assumes that counter
measures must cause a quick
and effective reduction in
infection rate.
2. Counts saturate after a
threshold time.

[14] 2020 China Linear regression
modeling

Estimations of the basic
reproduction number (R0)
and the per day infection
mortality and recovery
rates on the basis of SIDR
model.

Flexible and elaborate
implementation

Assumption of the count of
infected and recovered
populations to be 20 and 40
times respectively, relative to
the actual counts, leading to
possible gaps in results.

[15] 2020 India Nonlinear differential
equation modeling

Modeling of susceptible
(S), asymptomatic (A),
recovered (R), infected (I),
isolated infected (Iq), and
quarantined susceptible (Sq)
population counts.

1. Model captures
multiple features of the
outbreak.
2. Simple implementation

1. Dependent on a predefined
set of parameters.
2. Lacks sensitivity to change
in infection counts.
component of our approach, which is not addressed by any other
work. These forecasts on the behavior of infection waves form
the major distinction of our proposed work from the approaches
discussed here. Apart from simple implementation, the execution
of our approach is also independent of any dynamic parameter,
such as infection or recovery rates. Hence, in broad terms, it
can be employed for modeling any epidemic over any specified
geographic profile and population. Further, we have implemented
our approach on an extensive range of population counts from
12 different countries. Also, the discussed approaches forecast
on the upcoming waves up to the accuracy of months for a
provided region. Contrarily, our proposed model is capable of
forecasting the behavior of an infection wave with a sensitivity
of 7 days. Similarly, it also forecasts the upcoming counts of new
infections under a minimum observation window of 7 days with
high accuracy.

6.2. Results per country

As described earlier, including the case study of the first Covid-
9 wave in Australia, we have analyzed the Covid-19 infection
ata of 12 countries. Hence, here we will confer upon the results
chieved by implementing the proposed approach over the data
f these countries.
The prime observation of these countries is that the infection

ounts due to the Omicron variant of Coronavirus have surpassed
ll the previous numbers. The wave caused by Omicron variant
as led to the suppression of preceding waves in the time series
17
graphs of these countries. Now we will elaborate on the indi-
vidual observations for each country along with their time series
graphs in this section.

In South America, Argentina depicts a perceptible rise and fall
of 3 waves (Fig. 11). However, due to the local spikes and drops,
the fall of the first wave was not marked evidently, and the sec-
ond wave initiated from it on March 26, 2021, with 12,936 new
infections. Here, considering that the major number of infection
cases was imported, decisions like closing borders, establishing
quarantine, and canceling flights helped Argentina to sustain
better during the first wave [46].

On the other hand, Colombia is among the worst-hit South
American nations by Coronavirus. Here, the markers of our pro-
posed approach have detected the explicit behavior of each wave.
Surprisingly, the third wave, marked from April to September
2021, was undeniably as devastating as the fourth wave (Fig. 12.).
Improper timing of pandemic responses like vaccination and in-
stituting unpredictably long lockdowns have been plausible rea-
sons for the distressing state of the pandemic in Colombia [47].
Nevertheless, similar to Argentina, the second wave initiated from
the minor drop of the first wave on October 29, 2020, with 11,187
new infections.

In the region of Oceania, New Zealand managed to control the
pandemic successfully after the first wave marked from March
to May 2020. In addition to measures like adequate testing,
timely procurement of medical supplies, closure of schools, seal-
ing of borders, and social distancing made a positive impact.
Here, a 4-level risk assessment system helped the New Zealand

administration significantly to respond to the pandemic in a
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Fig. 11. Timeline graph of new Covid-19 infection cases in Argentina.
Fig. 12. Timeline graph of new Covid-19 infection cases in Colombia.
trong and efficient manner [48]. The system facilitated suitable
ategorization of the risk due to the pandemic and aided the im-
lementation of clear and well-specified public health measures
t each level. Therefore, the peaks witnessed in January 2021 after
he first wave were still much lower than the first wave. Though,
he wave caused by the Omicron variant with a spike on October
8, 2021, due to 129 cases, surpassed previous efforts (Fig. 13).
Australia exemplifies one of the stark instances of the suppres-

ion of previous waves due to the rise in counts caused by the
micron variant. As visible in Fig. 14, the peaks of the first and
econd waves observed in March and June of 2020 had merely
8 and 27 new counts, respectively. Similarly, the peak in March
18
2021 witnessed the highest count of 12 cases. Synonymous with
New Zealand, in Australia also, geographic isolation, relatively
higher testing rates, and early implementation of social distanc-
ing measures were among the potential factors of successful
response [49]. Yet, later these figures transmuted to a flat line
against the trigger of 11,797 infections recorded for the fourth
wave in December 2021.

In Cuba, Covid-19 infection arrived with 3 Italian tourists in
March 2020. With prompt sealing of borders, mandating face
masks, and isolation of the infected population, Cuba responded
to the pandemic successfully till November [50]. But, later, a
nominal up-trigger of 104 cases observed on December 05, 2020,
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Fig. 13. Timeline graph of new Covid-19 infection cases in New Zealand.
Fig. 14. Timeline graph of new Covid-19 infection cases in Australia.
rupted into a devastating wave from June to December 2021
Fig. 15). Here, the shift of decimal base was recorded as an up-
rigger of 1008 cases on March 30 and a spike of 1047 cases on
pril 09, 2021.
Before the first minor spike of 10 cases on 22 April, Jamaican

uthorities advised wearing masks only for persons over 65 years
nd individuals with symptoms or respiratory vulnerabilities [51].
ue to such misjudged policies, similar to Colombia, Jamaica also
19
observed clear phases of Covid-19 waves, with each wave sur-
passing the records of the previous ones. The markers of our ap-
proach effectively depicted the triggers, spikes, and drops of each
wave. Here also, the Omicron variant caused an unprecedented
spike of 1128 infections in January 2022 (Fig. 16).

In Belgium, after responding successfully to the first peak, the
start of educational year in academic institutions and the return
of summer tourists from across the borders initiated the peak
of October 2020 [52]. However, alike Australia, Belgium presents
another case of suppressed previous waves by the latest wave in
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Fig. 15. Timeline graph of new Covid-19 infection cases in Cuba.
Fig. 16. Timeline graph of new Covid-19 infection cases in Jamaica.
anuary 2021 (Fig. 17). Against a trivial spike of 1298 infections in
arch 2020, the trigger of 27,941 cases recorded in January 2021

esulted in an unprecedented Covid infection wave.
One of the most evident utilization of the trend generated

y the δDMA(14) model can be seen in the time-series graph
f Croatia. Similar to New Zealand, the Croatian administration
lso employed a crisis management system for assessment and
ecision-making during the pandemic [53]. Here, extreme fluc-
uations are visible throughout each Covid-19 wave. These fluctu-
tions indicate the rise of counts on one day and a sudden drastic
20
drop within the next few days (Fig. 18.). The trends generated
from these fluctuations have been analyzed appropriately by
the δDMA(14) model. The last and the highest wave in Croatia
was recorded with an up-trigger of 4139 cases on December 28,
2021.

Due to increased transmission vulnerability, political instabil-
ity, and an inferior infrastructure for food and medical facilities,
Libya has been placed among high-risk zones of the Covid pan-
demic [54]. Consequently, a significant observation in Libya was
multiple drops to zero infection cases in many waves. A plausible
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Fig. 17. Timeline graph of new Covid-19 infection cases in Belgium.
Fig. 18. Timeline graph of new Covid-19 infection cases in Croatia.
eason for this absence of numbers may be the lack of informa-
ion or the deficiency of medical testing facilities in the region.
owever, our δDMA(14) model could still map a well-matched
rend against these fluctuating counts. Until the writing of this
anuscript, the latest and highest wave of infections was in its

nitial rising phase in Libya (Fig. 19).
Kenya can be viewed as a case with the most evidently visible

ovid-19 infection waves. Similar to Jamaica, every wave in Kenya
hows a clear rise and fall of counts to visible limits in time series.
21
Each wave has been marked with triggers, spikes, and drops by
our approach (Fig. 20). Here, the third and fourth waves recorded
a similar extent of damage, while the fourth wave depicted the
highest count of 741 new infections on January 09, 2022. How-
ever, in addition to the nationwide educational media campaigns
for promoting the usage of masks and handwashing, the Kenyan
government also provided financial support to the local infor-
mal business sector for establishing sanitization mechanisms and
handwashing stations through recycled and raw materials [55].
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Fig. 19. Timeline graph of new Covid-19 infection cases in Libya.
Fig. 20. Timeline graph of new Covid-19 infection cases in Kenya.
In terms of Asian countries, the Covid timeline of Iran displays
a sharp rise of the first wave with an up-trigger of 1075 cases on
March 12, 2020. A spike of 1028 infections confirmed the forecast
for this wave on March 22 (Fig. 21). If this spike could have been
handled, the first wave might have been averted. A steady drop
in this wave was also recorded in April 2020. However, if this
level of counts could have been maintained or lowered by pre-
cautionary measures, then the next up-trigger of 2705 cases on
September 15, 2020, possibly could not have resulted in the next
wave of infections. Here, despite early reports of the outbreak,
22
the government’s sluggish response due to ideology and cynicism
was a major factor behind this state of the pandemic. However,
make-shift treatment centers and field hospitals in stadiums,
wedding halls, and parking lots across the country have been
established now to respond to the rapid spread of infection [56].

A lockdown during the traditional new year holidays in April
helped Myanmar suppress the infection rate despite an inferior
infrastructure [57]. Still, due to poor cooperation of the local
population, Myanmar saw an up-trigger of 18 cases on August
19, 2020, which, with a spike of 148 infections on September 05,
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Fig. 21. Timeline graph of new Covid-19 infection cases in Iran.
Fig. 22. Timeline graph of new Covid-19 infection cases in Myanmar.
esulted in the first wave. The spike on May 24, 2021, evolved into
nother sharp wave (Fig. 22). However, this wave later exhibited
steady decline to the drop marker of 799 cases on October
8, 2021. Our proposed approach effectively logged the behavior
f each wave with trends and markers in the time series of
yanmar.

.3. Observation window

As discussed in Section 5.2, the length of an observation win-
ow (w) plays a significant role in the smoothing of values by a
23
moving average model. It can be stated as the exact gap by which
the projected values lead or lag the actual counts. Here, a larger
value of w depicts a broader range of data points available for the
distribution of data fluctuations by averaging. However, this large
value will also increase the gap between the actual and forecasted
values. Contrarily, a window (w) of a shorter gap will result in
more fragmented trends and skipping of markers.

Thus, due to this reason, our proposed approach required a
value of w that could project the smoothed changes in infection
counts without any critical lag of time. Therefore, we selected
a range of 7 to 14 days of the Covid-19 incubation period as
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n observation window. For forecasting the upcoming counts,
he χSMA(7) model sums up the average of the previous 7 errors
nd adds it to the corresponding result of classical SMA(7). This
ddition of errors covers the gap between projected and actual
alues to a much better extent compared to other baseline tech-
iques. Elongation of w into a χSMA(14) model will generate a
orecast 7 days later compared to χSMA(7), which may lead to
issing critical changes in a wave.
Similarly, a backward displacement of DMA values by 14 units

atches the trend projected by δDMA(14) perfectly with the
ctual wave of infection counts. This length of displacement
lso makes the analysis of current trend more reliable despite
hort-timed spikes and drops in counts. A forecast model like
DMA(7) with w reduced by 7 days will generate more fluctuating
rends compared to δDMA(14), leading to the skipping of critical
markers in a wave. Equally, any further forward displacement
higher than 14 days will place the trend far ahead in the timeline,
thus impacting its credibility. Also, a longer recessive displace-
ment will position the trend much backward compared to the
actual counts rendering it useless for a forecast.

Therefore, we can deduce that the average of errors plays the
same role in χSMA(7) that the backward displacement of 14 days
lays for δDMA(14). We can also infer that any further extension
f w will impact the forecast performance of models.

.4. Implication of markers

This paper proposes 4 types of markers, namely spikes (s),
rops (d), up-triggers (τup), and down-triggers (τdwn), for deter-
ining any significant change in the state of a Covid infection
ave. As elaborated in Sections 3 and 4, these markers work on
hifting the decimal base of infection counts. Here, a few points
bout these markers need to be elucidated.
The first question arises about the length of the observation

indow (w) for detecting a marker. The purpose of setting it to
days has been stated earlier that it is the lower limit of the

ncubation period advised by the WHO [42]. Within this time,
he first change in infection counts can be visible at the earliest,
hich can help societies, governments, and medical profession-
ls to efficiently manage and re-allocate facilities for a possible
hange in numbers.
The second concern arises about the placement of spikes af-

er up-triggers and drops after down-triggers. Here, it can be
bserved in the timeline charts of countries that after a trigger,
here may be multiple increments and decrements in the infec-
ion count. Practically, these spikes and drops are responsible for
he changing behavior of a Covid-19 infection wave. However,
s visible from the timelines of New Zealand and Myanmar, if
he first up-trigger is properly dealt with, further spikes can be
uppressed effectively for a long time.
Another question that needs attention is the logic of generat-

ng markers. As we have explained earlier, a marker is generated
t the rise or fall of the decimal base of infection counts. This
mplies that an up-trigger of 11,449 infections was generated on
pril 01, 2021, in the timeline of Colombia when the numbers
rossed the 10,000 mark. However, no further spikes were regis-
ered as the decimal base did not change further up to 100,000 or
igher numbers. In practical terms, the wave actually continued
ith multiple local rises and falls until the first down-trigger of
503 cases was visible on July 26. Generation of any marker prior
o this point might have resulted in further elongation of the
ave. Hence, we can conclude that the logic of decimal base shift

or generating markers confirms to the nature and lethality of the
andemic. However, to further ensure the behavior of a pandemic
ave, the trend values (T[D]) generated by the δDMA(14) function
ust also be considered. A sustained positive or negative change

n these trend values is a strong indicator of wave behavior.
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Table 6
Forecast precision performance of markers.
Continent Country Forecast precision (%)

North America Argentina 94.594
Colombia 93.75

Oceana New Zealand 95.83
Australia 84.375

South America Cuba 90
Jamaica 97.435

Europe Belgium 94.594
Croatia 98

Africa Libya 96.428
Kenya 95.454

Asia Iran 94.44
Myanmar 94.117

94.08475

In Table 6, we have presented the forecast performance of our
approach. It depicts the precision of the markers generated by the
δDMA(14)-base shift model. With the highest precision of 97.43%
recorded for Jamaica and the lowest of 84.37% for Australia, our
approach exhibited a fairly high average forecast performance of
94.08% for time series data of 12 countries.

6.5. Selection of MA models

We have already conferred over the forecasting limits of dedi-
cated computational models [13–15] and ARIMA models [16,17].
Here, the attempts to forecast Covid-19 infections by making
use of advanced paradigms like machine learning methods also
lead to similar outcomes. This implies that, similar to previous
approaches, techniques such as deep learning [58], XGboost [59],
support vector machines, and regression [60] are also dependent
on the generation of pre-computed forecast models. These mod-
els require massive volumes of data for computations leading to
hardware restrictions, timeline concerns, and scalability issues.
Moreover, life-critical data with abrupt surges in numbers like
Covid-19 infection counts require a flexible and speedy compu-
tational technique that can perform swiftly over any data size.
Hence, we have proposed a method capable of executing over
the time series data of Covid-19 infections in a walk-forward
approach. This implies that our proposed models constantly up-
grade with the changes in the infection counts, leading to more
sensitive and accurate forecasts about upcoming and ongoing
infection waves. We dedicate this section to justify the selection
of moving average models employed for specific forecasting tasks.

Earlier in Section 2.2, we elaborated that a moving average
is a weighted or unweighted mean of a set of data points. We
also know that several application-specific variants of moving
averages are available. However, the Covid-19 data is undeni-
ably one of the most random-natured non-stationary time series
available today. The absence of any trend or seasonality in this
data makes the implementation of an exponential [32,33] or
weighted moving average [31,34] model enormously challenging.
Hence, we are left with the option of simple unweighted moving
averages.

An unweighted moving average is an estimate of the expected
values of the upcoming data points in the series. It works on
the property that this estimation must be approximately simi-
lar to the values falling in the range of data points consumed
for generating the mean. This property enables the forecast of
upcoming values in a time series according to the constantly
changing numbers. χSMA(7) employs this property to forecast the
next-day count of new Covid-19 infections.
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The moving average of data points also generates a ‘smoothed’
version of the original values. Here, smoothing implies an even
distribution of any temporal fluctuation in values among the com-
ponent data points during the average calculation. This ‘smooth-
ing’ property of moving averages is useful for DMA models in
overcoming the spikes and drops of the Covid time series data. As
depicted in Fig. 8., the DMA(14) models level off all fluctuations in
the time series data in a manner much better than DMA(7) mod-
els. The δDMA(14) model further improves this smoothing by
dragging it backward to match the ongoing real-time trend of
infection counts.

6.6. Deployment and utilization

The framework proposed in this paper can be implemented
as an independent application or a micro add-on to an existing
one. The emphasis of this framework is on the nearest forecast
timeline of Covid impact in a region. Hence, it can be utilized by
analysts, medical authorities, and administrative bodies for esti-
mation of the upcoming state of the Covid-19 pandemic in their
region. This estimation will be vital in the timely procurement,
management, and allocation of medical infrastructure and health-
care resources like medical oxygen, hospital beds, and medicines.
It will also assist governing bodies in designing and implement-
ing time-bound precautionary measures and guidelines such as
sealing of borders, social distancing, and wearing masks for the
population under threat.

7. Conclusion & future work

In this paper, we proposed a novel algorithmic framework to
forecast the wave behavior and upcoming counts of new Covid-
19 infections in a region under a minimum observation window
of 7 days. We have implemented this framework on a time
series database of Covid-19 infections derived from 12 countries.
The framework primarily comprises a displaced double moving
average (δDMA) algorithm and a novel ’corrected moving average’
(χSMA) technique.

The framework projects the rise and fall in Covid-19 waves
by detecting potential dates with specific counts called ‘markers’
guided by decision rules mapped through rough set theory. In
combination with the positive or negative trend computed by the
δDMA(14) algorithm, these counts can be classified into triggers,
spikes, and drops of an infection wave with high accuracy.

Likewise, the corrected moving average (χSMA) algorithm
omputes the upcoming counts of new infections for the next
ay by adding the average error among the forecasted and actual
ounts to the upcoming forecasts. This addition of errors further
orrects the forecasts, thus improving their next-day forecast
recision up to 94.08%.
However, the proposed methods currently utilize predefined

nd constant window periods. We anticipate to improve the fore-
asting abilities of our framework with dynamically refreshable
isplacement and window periods of the component algorithms.
e also intend to expand its coverage by implementing it over
ovid-19 data of more countries in the future. We hope that the
ramework proposed in this manuscript proves itself supportive
o the medical organizations and administrative authorities in
llocating and managing healthcare infrastructure and medical
acilities.
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