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Abstract
Objectives: Our aim was to validate the online Brain Health Assessment (BHA) for detection of amnestic mild cognitive 
impairment (aMCI) compared to gold-standard neuropsychological assessment. We compared the diagnostic accuracy of 
the BHA to the Montreal Cognitive Assessment (MoCA).
Methods: Using a cross-sectional design, community-dwelling older adults completed a neuropsychological assessment, were 
diagnosed as normal cognition (NC) or aMCI, and completed the BHA and MoCA. Both logistic regression (LR) and penalized 
logistic regression (PLR) analyses determined BHA and demographic variables predicting aMCI; MoCA variables were similarly 
modeled. Diagnostic accuracy was compared using area under the receiver operating characteristic curve (ROC AUC) analyses.
Results: Ninety-one participants met inclusion criteria (51 aMCI, 40 NC). PLR modeling for the BHA indicated Face–
Name Association, Spatial Working Memory, and age-predicted aMCI (ROC AUC = 0.76; 95% confidence interval [CI]: 
0.66–0.86). Optimal cut-points resulted in 21% classified as aMCI (positive), 23% negative, and 56% inconclusive. For the 
MoCA, digits, abstraction, delayed recall, orientation, and age predicted aMCI (ROC AUC = 0.71; 95% CI: 0.61–0.82). 
Optimal cut-points resulted in 22% classified positive, 8% negative, and 70% inconclusive (LR results presented within). 
The BHA model classified fewer participants into the inconclusive category and more as negative for aMCI, compared to 
the MoCA model (Stuart–Maxwell p = .004).
Discussion: The self-administered BHA provides similar detection of aMCI as a clinician-administered screener (MoCA), 
with fewer participants classified inconclusively. The BHA has the potential to save practitioners time and decrease unnec-
essary referrals for a comprehensive assessment to determine the presence of aMCI.
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Early detection of Alzheimer’s disease (AD) is important in the 
facilitation of timely clinical intervention and in moving toward 
the development of efficacious treatments. The prodromal 

stage of AD has been identified as an ideal time point for 
the implementation of potentially disease-modifying inter-
ventions (Freitas et  al., 2013). Development and refinement 
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of innovative tools to more accurately identify prodromal 
AD is an important step toward facilitating intervention and 
furthering research to identify disease-modifying treatments.

Amnestic mild cognitive impairment (aMCI) is defined 
as a recent onset memory impairment (with or without 
impairment in other cognitive domains) not of sufficient 
severity to interfere with instrumental activities of daily 
living (Albert et al., 2011). aMCI is representative of the 
cognitive phenotype of prodromal AD (Chertkow et  al., 
2013; Dubois & Albert, 2004). Tools currently most used 
in assessment for aMCI include the Montreal Cognitive 
Assessment (MoCA; Nasreddine et  al., 2005) and Mini-
Mental State Examination (Folstein et al., 1975). Both of 
these brief screening measures require administration and 
interpretation by trained health care professionals and pro-
vide useful cognitive data to clinicians and researchers. 
Measures that can be self-administered yet similarly inform 
a clinician’s in-person assessments may mitigate cost and 
time burdens associated with in-office cognitive screening.

Currently, there are few cognitive assessments readily 
available to the public for self-administration. The Self-
Administered Gerocognitive Exam (SAGE; Scharre et  al., 
2010) can be self-administered at home, but requires 
scoring and interpretation by a health care professional. 
Three other measures offer online self-administration 
with algorithmic scoring/interpretation. The Brain Health 
Assessment (BHA; Troyer et al., 2014; www.cogniciti.com), 
Cognitive Function Test (CFT; Trustram Eve & de Jager, 
2014; www.cft.foodforthebrain.org), and eSAGE (now 
BrainTest; Scharre et  al. 2017; www.braintest.com) were 
specifically designed as online, self-administered, cognitive 
assessment tools that provide end-users with advice for cog-
nitive health, including whether they should seek further 
assessment by a health care professional. BrainTest is val-
idated against the SAGE in adults aged 50 and older, CFT 
is designed for users aged 50–70, while the BHA provides 
statistically normed results for those aged 20–94. Of these 
measures validated for use in older adults, only the BHA 
can be used across the adult life span. The BHA is, thus, 
in a unique position to provide self-administered clinical 
screening for cognitive impairment. To increase the clinical 
utility of the BHA, we aimed to determine its sensitivity to 
early cognitive changes associated with aMCI specifically.

The goal of this study was to validate the BHA for the 
detection of aMCI. Specifically, in a sample of community-
dwelling older adults, we aimed to determine whether the 
BHA can differentiate between those with normal cog-
nition (NC) and aMCI diagnosed using a gold-standard 
clinical neuropsychological assessment. Our primary 
objectives were to (a) determine diagnostic accuracy, 
including sensitivity, specificity, area under the receiver op-
erating characteristic curve (ROC AUC), and aMCI proba-
bility categories; and (b) identify a subset of BHA variables 
and demographic characteristics that provide the best 
prediction of diagnostic group. To provide a comparison 
with traditional paper-and-pencil, professionally adminis-
tered screening methods, we also examined the diagnostic 

accuracy of the MoCA. In addition, to provide evidence for 
convergent validity of the BHA, we examined correlations 
between individual BHA tasks and standard clinical tasks 
measuring similar constructs.

Method

Participants

Community-dwelling adults aged 60 or older were recruited 
via clinical referral from the Sam and Ida Ross Memory 
Clinic and via direct recruitment from the Participant 
Database at Baycrest Health Sciences Centre, Toronto, ON, 
between December 2017 and December 2018. To be eligible, 
participants had to have adequate visual acuity, hearing, 
English language proficiency, and reading ability for com-
pletion of cognitive testing. Exclusion criteria included the 
presence of observable clinical features of neurodegenera-
tive diseases aside from AD (i.e., aside from aMCI), history 
of brain tumor, clinical stroke, seizures, traumatic brain in-
jury with loss of consciousness longer than 30 min, more 
than two lacunar infarcts on brain imaging, current cancer 
(in treatment or palliative), untreated sleep apnea, other 
neurological or psychiatric disorders that may affect cog-
nitive testing (e.g., moderate to severe depressive or anxiety 
symptoms), substance abuse history (in the past 6 months), 
and inability to use a computer. We aimed to recruit 50 in-
dividuals with NC and 50 meeting criteria for aMCI (with 
single or multiple domain impairments).

Study Design

The study was designed according to the Standards for 
Reporting Diagnostic Accuracy statement (Bossuyt et  al., 
2015). Using a cross-sectional design, all referrals for neu-
ropsychological assessment from the Memory Clinic during 
the study period were considered for inclusion and re-
viewed by a study neuropsychologist (K. Stokes). Referrals 
with a differential diagnosis of NC versus MCI were sent 
to another study neuropsychologist (T. S. E. Paterson) for 
assessment. Once seen for clinical neuropsychological as-
sessment, if a patient-matched inclusion/exclusion criteria, 
they were approached for study participation. As the time 
required to complete additional study measures was not 
extensive, those referred for clinical assessments were not 
compensated unless an additional visit to Baycrest was re-
quired. Individuals from the participant database were con-
tacted based on age criteria and prescreened for eligibility 
via telephone interview. Those included were administered 
the same core neuropsychological tests as those referred 
clinically. Given the total time required for database par-
ticipants to complete neuropsychological and additional 
study measures (~4–5 h), these individuals were compen-
sated $100 for their participation. In total, 91 individuals 
were referred from the Memory Clinic, and 210 individ-
uals from the participant database were contacted. Of these 
301 potential participants, 124 interested individuals met 
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inclusion criteria and chose to participate. All participants 
underwent an informed consent discussion and signed a 
consent form. The study protocol was approved by the 
Research Ethics Board at Baycrest (#REB# 09-02).

Test Methods

Index test description
The BHA is a self-administered, online assessment of 
memory and executive attention that is freely available to 
the public (www.cogniciti.com) and takes approximately 
20–30 min to complete (Troyer et al., 2014). The BHA in-
cludes a demographic and health questionnaire and four 
tasks: Spatial Working Memory, where individuals match 
pairs of shapes across three trials; Stroop Interference, a 
counting variation of the original Stroop task (Stroop, 
1935); Face–Name Association, an associative recognition 
memory task; and Letter–Number Alternation, a varia-
tion on the well-known Trail Making Test part B (TMT-B; 
Army Individual Test Battery, 1944). A detailed descrip-
tion of individual tasks and corresponding variables is 
provided elsewhere (Troyer et  al., 2014). Participants 
completed the BHA individually, on a laptop with mouse, 
in a quiet room. They were instructed to follow on-screen 
instructions for the tasks and were unsupervised during 
administration.

The four BHA tasks are based on existing clinical 
and experimental tasks shown to be sensitive to subtle 
changes associated with age-related cognitive disorders. 
Implementation of these online measures was optimized for 
comprehension and feasibility for older adults, including 
practice trials to ensure proper task completion. Previous 
analysis of the BHA tasks found adequate internal consist-
ency, construct validity, test–retest reliability, and alternate 
version reliability (Troyer et al., 2014). As administered to 
the public, performance on the BHA is standardized based 
on age-normative data. For the purposes of the current 
study, however, nonnormative raw data from each task 
were examined via statistical modeling (described below) 
to determine the most advantageous combination of avail-
able variables in predicting aMCI. As such, no a priori 
cutoff value of the BHA was imposed for the identification 
of individuals with aMCI.

Comparator test description—traditional 
screening measure
The MoCA is a paper-and-pencil screening measure 
for cognitive impairment (Nasreddine et  al., 2005). 
This measure includes items assessing orientation, 
visuoconstruction, executive function, language, atten-
tion and working memory, and immediate and delayed 
recall. The MoCA must be administered by a trained pro-
fessional and can be completed in approximately 10 min. 
It has a total possible score of 30 (representing the sum 
of cognitive domain subscores), with higher total scores 
indicating better performance.

Reference standard test description
All participants underwent a semistructured clinical in-
terview as part of the neuropsychological assessment, and 
where available, collateral information was collected from a 
significant other concerning functional status (available for 
47 of 91 participants). Neuropsychological assessments (in-
cluding interview) lasted approximately 3–4 h and included 
standardized cognitive tasks examining intellectual ability, 
attention, processing speed, language, visuospatial abil-
ities, memory, and executive function (see Supplementary 
Table S1 for test list; Army Individual Teat Battery, 1944; 
Benton & Hamsher, 1976; Delis et al, 2001; Kaplan et al., 
2001; Kroenke et al., 2001; Lawton & Brody, 1969; Leach 
et al, 2000; Spitzer et al., 2006; Wechsler, 1987; Wechsler, 
1997; Wechsler, 1999). Assessments were administered by 
a trained research assistant or neuropsychology practicum 
student. The order of administration of cognitive tests was 
kept generally consistent between participants. Across all 
participants, administration of neuropsychological tests 
and the BHA and MoCA was counterbalanced to control 
for any possible practice effects or transfer of skill between 
similar tasks.

The clinical neuropsychologist conducting the reference 
(neuropsychological) assessments (T. S. E. Paterson) did not 
participate in the study diagnosis. Participant data were pro-
vided to three other study neuropsychologists (K. Stokes, 
B. Levine, A. K. Troyer) blind to participants’ performance 
on the BHA and MoCA, who provided a consensus diag-
nosis based on the neuropsychological assessment data and 
history gathered during the clinical interview. Participants 
were diagnosed with aMCI based on previously published 
criteria (Albert et  al., 2011), with objective memory im-
pairment defined as deficits relative to that expected given 
a participant’s age, educational attainment, and intellectual 
status, on at least two of four memory tests. Those meeting 
criteria for nonamnestic MCI (Csukly et  al., 2016) were 
excluded.

Analyses

Outliers
Unprocessed BHA and MoCA data were examined for out-
liers. For BHA Letter–Number Alternation, two data points 
were determined to be anomalous. In one case, the final re-
sponse time in a trial was significantly longer than expected 
and was replaced with that participant’s median response 
time. In the other case, multiple consecutive repetitions of 
an error were made, and the number of errors was trun-
cated by removing subsequent error counts made on the 
same item.

Logistic models using summary scores
Logistic regression (LR) was used to estimate the accuracy 
of aMCI classification in two separate models: using the 
standardized BHA normative score (described in Troyer 
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et al., 2014) and the total MoCA score. ROC AUCs and 
their 95% confidence intervals (95% CIs) were calculated 
using model-based predicted values. Models were fit using 
SAS 9.4 and SAS/STAT 14.2 Proc Logistic software (SAS 
Institute Inc., 2012).

Logistic models using variable selection
BHA and MoCA were modeled separately. Given rich data 
provided by the four BHA tasks (i.e., item response times, 
accuracy, and error rates), there were 127 BHA potential 
covariates for modeling the accuracy of aMCI classifica-
tion, including 54 Spatial Working Memory variables, 49 
Stroop variables, eight Face–Name Association variables, 
seven Letter–Number Alternation variables, and nine dem-
ographic and self-report variables (i.e., age, gender, edu-
cation, mood, memory concerns). Because the number of 
potential covariates was large and there were strong cor-
relations among many variables, a generalized linear model 
using penalized maximum likelihood (Friedman et al., 2010; 
Tibshirani et al., 2011) was used to aid variable selection. 
To avoid overfitting, a binomial model with a LASSO (least 
absolute shrinkage and selection operator) type penalty was 
selected (α = 1) and the elastic-net penalty λ, which controls 
the overall strength of the penalty, was chosen by minimizing 
model misclassification error (MCE) via jackknife cross-
validation. All variables were standardized to mean 0 and 
standard deviation 1 prior to analysis. Age was forced into the 
model, leaving 126 other potential covariates. This penalized 
logistic regression (PLR) model was developed using the R 
package Glmnet (Hastie et al., 2021), and model coefficients 
were transferred to SAS software for further analysis. The 
regularization of the parameter estimates in the PLR model 
introduces some bias (shrinkage) in parameter estimates but 
also reduces variance estimates for predicted values.

The same methods were used to develop a MoCA 
model, using 12 test variables (summarizing visuospatial/
executive function, attention, language, memory, and ori-
entation) and three demographic variables (age, education, 
and gender). Age was forced into the model leaving 14 
other potential covariates.

ROC AUC comparisons for correlated LR and PLR 
models were compared nonparametrically and partially for 
selected ranges of sensitivity.

Odds ratios (ORs) and CIs are noted for predictor vari-
ables in LR analyses. CIs are not provided for PLR analyses. 
As noted by Engebretsen and Bohlin (2019), statistical in-
ference is not considered “directly possible using the elastic 
net, as no standard errors for the estimated parameters (i.e., 
slope coefficients) are computed directly.” It is also impor-
tant to note that PLR may shrink ORs during the variable 
selection process, and as such, ORs for PLR analyses may 
not be directly comparable to those for LR analyses.

Diagnostic cut-points
A single cut-point was determined using model-based pre-
dicted probabilities of aMCI and varying the potential 

cut-point. After calculating sensitivity and specificity at 
each potential cut-point, the cut-point (p0) with the largest 
Youden’s J statistic (based on the formula sensitivity + spec-
ificity – 100%; Youden, 1950) was selected to classify each 
participant as low probability of aMCI (i.e., NC) or high 
probability of aMCI. The 95% CIs were calculated for sen-
sitivity and specificity at p0. Because the sample has a fixed 
prevalence of aMCI, the selected cut-point p0 was further 
assessed graphically by varying the prevalence of aMCI in 
the population and calculating probability (“P”) of having 
aMCI (disorder; “D”) given the classification as aMCI (test 
positive; “T+”; P(D|T+)), and probability of having aMCI 
given classification as NC (test negative; “T−”; P(D|T−)).

Two cut-points were calculated using methods described 
in Swartz et  al. (2016, p = .810). A  sensitivity cut-point 
(p1) was determined by the negative predictive value (NPV, 
P(not D|T−), or 1 − P(D|T−)) and the negative likelihood 
ratio (−LR, (1  − sensitivity)/specificity). A  specificity cut-
point (p2) was determined by the positive predictive value 
(PPV, P(D|T+)) and positive likelihood ratio (+LR, sensi-
tivity/(1  − specificity)). Three probability categories were 
identified by varying potential pairs of cut-points: (a) low 
probability of aMCI (negative index test) was defined as 
the model-based predicted value of aMCI less than p1; (b) 
high probability of aMCI (positive index test) was defined 
as predicted value of aMCI greater than or equal to p2; and 
(c) indeterminate probability of aMCI (inconclusive index 
test) with predicted values between p1 and p2. The propor-
tion of the sample in each category was calculated for each 
model. To assess the uncertainty of the proportion in each 
category for the chosen cut-points, 1,000 bootstrap sam-
ples were generated for each model, stratifying by aMCI 
status to maintain study sample proportions. Comparison 
of the proportion in each category across correlated models 
was done using the Stuart–Maxwell test (Maxwell, 1970).

Convergent validity
To examine the convergent validity of BHA tasks with 
traditional neuropsychological measures of similar con-
structs, we computed Pearson correlations (r  = 0.10 rep-
resents a small, r = 0.30 a medium, and r = 0.50 a large 
effect; Cohen, 1992) between BHA tasks and standard 
cognitive tests thought a priori to measure similar con-
structs (Furr, 2017). Specifically, correlations were com-
puted between (a) BHA Spatial Working Memory number 
of clicks and Kaplan–Baycrest Neurocognitive Assessment 
(KBNA; Leach et al., 2000) Spatial Location total score; (b) 
BHA Stroop Interference median response time and Delis–
Kaplan Executive Function System (Delis et  al., 2001) 
Color–Word Interference Trial 3 completion time; (c) BHA 
Face–Name Association accuracy and each of KBNA Word 
List Recognition score and Wechsler Adult Intelligence 
Scale, Third Edition (Wechsler, 1997) Digit Symbol Coding 
Incidental Recall Paired Recall score; and (d) BHA Letter–
Number Alternation completion time and TMT-B (Army 
Individual Test Battery, 1944) completion time.
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Results

Participants

One hundred and twenty-four participants were enrolled in 
the study. Of those, 97 were included after accounting for 
mood and medical exclusions. Sixteen were excluded from 
the sample because they met the criteria for nonamnestic 
MCI. Six participants also did not complete the index test 
and so were not included in analyses (see Figure 1 for par-
ticipant flow). Data from 91 participants (51 aMCI; 40 
NC) who completed all aspects of the study were included 
in analyses. Baseline demographic and clinical characteris-
tics of participants in each diagnostic group are outlined 
in Table 1. No demographic or summary cognitive score 
differences were seen between memory clinic versus par-
ticipant database recruits. Our sample included individ-
uals with common comorbidities of aMCI and dementia, 
including hypertension, hypercholesteremia, heart disease, 
history of transient ischemic attack, type 2 diabetes, history 
of treated cancer, and self-reported anxiety, depression, 
attention-deficit hyperactivity disorder, and history of al-
cohol or substance use.

In relation to our primary aim, a sample size of 91 with 
56% aMCI would have a 95% CI width of 24% if the sen-
sitivity is 80% and a width of 29% if the specificity is 75% 
(two-sided, exact CIs; PASS, 2020). This sample size has 
82% power to detect a difference of 0.17 in the ROC AUC 

with a null hypothesis that the AUC is 0.5 (two-sided z-test, 
α = 0.05; PASS, 2020). Additionally, for examination of indi-
vidual predictors in our LR models, a sample size of 91 has 
81% power to detect an OR of 2.0 or 0.5 (or detect a change 
of 56%–72% in the probability of aMCI) for a change in 1 
standard deviation of a continuous predictor variable X (a 
small to medium effect size, two-sided, α = 0.05, r-squared 
with other predictors is 0.25, tests for the OR in LR with one 
normal X and other Xs [Wald Test], PASS 2020).

BHA Models

The mean normative score was 0.14 (SD = 0.71) for the 
NC group and −0.61 (SD  =  1.01) for the aMCI group. 
The BHA LR model indicated that higher mean norma-
tive scores were associated with a lower probability of 
aMCI (p = .006; OR [per 1 standard deviation change in 
score] = 0.35; 95% CI: 0.19–0.64). The model-based ROC 
AUC was 0.75 (95% CI: 0.65–0.85).

Two variables were selected in addition to age for the 
BHA PLR model when MCE was minimized at λ = 0.126 
(MCE = 32%). All other covariates had penalized param-
eter estimates equal to 0. Greater Face–Name Association 
task accuracy was associated with a lower probability of 
aMCI (OR = 0.71). More errors across all three trials of 
the Spatial Working Memory task (OR = 1.04) and older 
age (OR = 1.05) were associated with a higher probability 
of aMCI. The model-based ROC AUC was 0.76 (95% 
CI: 0.66–0.86; Figure 2). The BHA PLR model has a sim-
ilar ROC AUC compared to the BHA LR model (differ-
ence = 0.01, 95% CI −0.07 to 0.09, p = .78).

This model classified 60% of the sample as having NC 
(low probability of aMCI) and 40% aMCI (high proba-
bility), given the chosen single cut-point with sensitivity of 
57%, specificity of 83%, PPV of 81%, and NPV of 60%. 
See Table 2 for cross-tabulation of index and comparator 
tests by reference standard; additional details are given 
in Supplementary Table S2. The estimated P(D|T+) and 
P(D|T−) for the single cut-point solution in the sample (with 
a probability of aMCI of 56%), as well as for an estimated 
population probability of aMCI (10%; estimated from 
the literature; Petersen et al., 2009; Roberts & Knopman, 
2013) are presented in Supplementary Table S3A (see 
Supplementary Figure S1 for graphical representation of 
estimates). Given the sample probability of aMCI is much 
higher than that in the population, these estimates provide 
information as to the expected performance of the BHA in 
the broader population. The selected optimal two cut-points 
for the BHA PLR model resulted in 23%, 56%, and 21% 
of the sample in the low, indeterminate, and high proba-
bility of aMCI categories, respectively. The sample preva-
lence and selected population prevalence classification rates 
and 95% CI for the two cut-point solution are presented in 
Supplementary Table S3B. Estimated P(D|T+) and P(D|T−) 
for the sample and for an estimated population probability 

Figure 1. Flow diagram of participant classification by the Brain Health 
Assessment (index) and Neuropsychological Assessment (reference). 
MCI  =  mild cognitive impairment; aMCI  =  amnestic mild cognitive 
impairment.
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of aMCI for the LR models are presented in Supplementary 
Tables S4 and S5A and B for comparison.

MoCA Models

The mean total MoCA score was 25.4 (SD = 2.3) for the 
NC group and 23.9 (SD = 2.6) for the aMCI group. The 

MoCA LR model indicated that higher total MoCA scores 
were associated with lower probability of aMCI (p = .007; 
OR = 0.52; 95% CI: 0.32–0.84). The model-based ROC 
AUC was 0.67 (95% CI 0.55–0.78).

Four variables were selected in addition to age for the 
MoCA PLR model when MCE was minimized at λ = 0.03 
(MCE = 38%). All other covariates had penalized parameter 
estimates equal to 0. Higher scores on digits (OR = 0.84), 
abstraction (OR = 0.82), delayed recall (OR = 0.65), and 
orientation (OR = 0.87) were associated with lower pre-
dicted probability of aMCI. Older age was associated with 
higher predicted probability of aMCI (OR  =  1.10). The 
model-based ROC AUC was 0.71 (95% CI 0.61–0.82; 
Figure 2). The MoCA PLR model had a similar ROC AUC 
compared to the MoCA LR model (difference = 0.04, 95% 
CI −0.02 to 0.11, p = .18).

This model classifies 50% of the sample as having NC 
(low probability) and 50% aMCI (high probability), given 
the chosen single cut-point with sensitivity of 58%, spec-
ificity of 70%, PPV of 73%, and NPV of 61% (Table 2 
and Supplementary Table S2). The estimated P(D|T+) and 
P(D|T−) for the chosen single cut-point in the sample and 
for the estimated population probability of aMCI are pre-
sented in Supplementary Table S3A (and Supplementary 
Figure S1). The selected optimal two cut-points for the 
MoCA PLR model resulted in 8%, 70%, and 22% of 
the sample in low-, indeterminate-, and high-probability 
categories (see Supplementary Table 3B for estimated pop-
ulation probabilities).

Figure 2. ROC curves for final BHA and MoCA PLR models. The ROC 
curves for the BHA (solid line) and MoCA (dashed line) PLR models 
with the single cut-point (solid triangle for BHA; open triangle for 
MoCA) and two cut-points (solid circles for BHA; open circles for 
MoCA). MoCA = Montreal Cognitive Assessment; BHA = Brain Health 
Assessment; PLR = penalized logistic regression; ROC = receiver oper-
ating characteristic.

Table 1. Participant Demographic Information by Reference Standard Diagnostic Group

Participant characteristics NC, n = 40 aMCI, n = 51 Effect size

Age 74 (7.0) 75 (5.7) 0.19
Gender (% female) 53 49 0.04
Education 16 (2.4) 15 (2.5) 0.12
 Range 10–20 10–20  
ESL status (% ESL) 20 10 0.15
IQ 125 (11.4) 125 (10.2) <0.01
 Range 100–145 92–143  
BHA shapes Z-score −0.02 (1.1) −1.06 (1.6) 0.76
  Range −2.46 to 1.69 −7.30 to 1.26  
BHA faces Z-score 0.40 (1.0) −0.63 (1.0) 1.03
 Range −1.59 to 1.84 −2.20 to 1.63  
BHA trails Z-score 0.06 (1.2) −0.03 (1.0) 0.08
 Range −5.68 to 1.37 −2.77 to 1.26  
BHA Stroop Z-score 0.12 (1.2) −0.72 (2.1) 0.49
 Range −4.15 to 1.90 −8.72 to 1.96  
BHA normative score 0.14 (0.7) −0.61 (1.0) 0.85
  Range −1.89 to 1.09 −3.59 to 0.99  
MoCA total score 25 (2.3) 24 (2.6) 0.61
 Range 2–29 17–29  

Notes: NC = normal cognition; aMCI = amnestic mild cognitive impairment; ESL = English as a second language; BHA = Brain Health Assessment; Shapes = Spa-
tial Working Memory task; Faces = Face–Name Association task; Stroop = Stroop Interference task; Trails = Letter–Number Alternation task; MoCA = Montreal 
Cognitive Assessment. Unless otherwise specified, data are presented as means with standard deviations in parentheses. Effect sizes are Cohen’s d for t-tests and 
Cramer’s V for χ 2.
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Statistical Comparison of BHA and MoCA

The BHA LR model has a similar ROC AUC compared 
to the MoCA LR model (difference = 0.08, 95% CI −0.03 
to 0.19, p = .13). The BHA PLR model also has a similar 
ROC AUC compared to the MoCA PLR model (differ-
ence  =  0.05, 95% CI −0.06 to 0.16, p  =  .36); in both 
cases, model differences are nonsignificant. The PLR ROC 
are the most separated in the sensitivity range 0.59–0.95 
(Figure 2). The corrected partial AUC is 0.73 for the BHA 
PLR model and 0.66 for the MoCA PLR model, but the 
difference of (corrected) AUC of 0.07 is nonsignificant 
(p = .24). For the single cut-point models, Supplementary 
Figure S2 illustrates that the BHA PLR model has a 
higher P(D|T−) over a range of aMCI prevalence. After 
choosing two cut-points, the BHA model classifies less of 
the sample into the indeterminant probability category 
and more into the low probability category, compared to 
the MoCA model (Stuart–Maxwell p = .004).

Convergent Validity

As given in Table 3, correlations between BHA measures 
and comparable traditional cognitive measures identified 
a priori were all significant and represented moderate to 
large effects, indicative of convergent validity of the BHA 
tasks. Scatterplots of these relationships are presented in 
Supplementary Figure S3.

Discussion
There is a need for brief cognitive assessment tools that 
can detect early signs of cognitive decline, and online, 

self-administered measures provide the potential for broad 
reach of cognitive screening to individuals who may other-
wise not receive clinical assessments. To date, few studies 
have attempted to validate computer and online screening 
tools for the detection of MCI and dementia (De Roeck 
et al., 2019). We examined the traditional scores calculated 
from the BHA and MoCA as well as models allowing se-
lection of the most predictive variables. In both cases, the 
BHA and MoCA showed similar diagnostic accuracy for 
identifying aMCI. Modeling of BHA and demographic 
variables yielded an overall diagnostic accuracy of 68%, 
with the PLR model indicating that aMCI was predicted by 
age, Face–Name Association, and Spatial Working Memory 
variables. This makes sense, given the defining mnemonic 
changes of aMCI. Similar analyses of the MoCA indicated 
diagnostic accuracy of 67%, with the PLR model indicating 
aMCI was predicted by age and cognitive domains in-
cluding attention, abstraction, orientation, and delayed 
recall. Despite the similar diagnostic accuracies, however, 
the BHA and MoCA differed in proportions of participants 
with negative, positive, and inconclusive diagnostic results, 
as discussed below.

Diagnosis with aMCI, of course, requires a clinical and 
functional evaluation (Albert et al., 2011) and would not 
be communicated to test-takers outside a clinical setting. 
However, there is an important role for screening meas-
ures to detect aMCI in clinical settings, as well as for the 
selection of appropriate participants for intervention trials 
in research settings. These varied uses of screening meas-
ures may stipulate the utility of different cutoffs for a given 
measure. A more inclusive cutoff with high sensitivity, and 
thus a low false-negative rate, is prudent in clinical settings 
to minimize screening-out of individuals who may benefit 

Table 2. Cross-tabulation of Index (BHA) and Comparator (MoCA) Test Results by Results on the Reference Standard 
(Neuropsychological Diagnosis) Based on Single Cut-Point Analyses

Test TP FP FN TN Sensitivity (95% CI) Specificity (95% CI)

BHA 29 7 22 33 57 (43–71) 83 (71–94)
MoCA 33 12 18 28 65 (52–78) 70 (56–84)
Difference     −8 13

Notes: n = 91 for both tests. TP = true positive; FP = false positive; FN = false negative; TN = true negative; BHA = Brain Health Assessment; MoCA = Montreal 
Cognitive Assessment.

Table 3. Correlations Between BHA Subtests and Traditional Cognitive Measures

BHA cognitive task Traditional cognitive measure Pearson r

Spatial Working Memory KBNA Spatial Location −0.38**
Stroop Interference D-KEFS Color Word Interference 0.48**
Face–Name Association KBNA Word List Recognition 0.56**

WAIS-III DCS Incidental Paired 0.52**
Letter–Number Alternation Trail Making Test Part B 0.61**

Notes: n = 91. BHA = Brain Health Assessment; KBNA = Kaplan–Baycrest Neurocognitive Assessment; D-KEFS = Delis–Kaplan Executive Function System; WAIS-
III = Wechsler Adult Intelligence Scale Third Edition; DCS Incidental Paired = Digit Symbol Coding Incidental paired recall task.
**Correlation is significant at the 0.01 level (two-tailed).
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from a gold-standard neuropsychological assessment to 
better determine cognitive status and routing into avail-
able clinical intervention programs. In this case, the higher 
cutoff point can be used to ensure clients with aMCI are 
not missed. For research recruitment, on the other hand, 
where there is a premium on ensuring accurate sample 
composition, false-positive cases need to be minimized, and 
a cutoff emphasizing high specificity is preferable. In this 
case, the use of a lower cutoff will ensure only individuals 
most likely to have aMCI are selected into research trials.

We thus calculated optimal dual cutoff points for the 
BHA, maximizing both sensitivity and specificity, and al-
lowing for determining the probability of aMCI based on 
test scores. Using dual cutoffs in our sample, 21% of par-
ticipants were classified as high probability of aMCI (test 
positive), 56% as indeterminate probability (test inconclu-
sive), and 23% as low probability (test negative). It is clear 
that a number of individuals diagnosed as having aMCI 
by neuropsychological assessment (n = 51) did not screen 
into the high probability group, and similarly, the indeter-
minate probability group includes some individuals not 
diagnosed with aMCI (n = 40). Interestingly, a comparison 
of classifications using dual cutoffs for BHA and MoCA 
data indicates that the BHA classifies fewer individuals in-
conclusively than the MoCA. The BHA appears to better 
differentiate between those at more moderate and lower 
probability for aMCI, as indicated by the Stuart–Maxwell 
test. The advantage seen for the BHA relative to the MoCA 
in the screening of higher functioning people is remarkable 
given that the MoCA, a clinician-administered tool, would 
be expected to be of better diagnostic capacity than an un-
supervised test, all else being equal. Results suggest that 
initial screening using the BHA may save a number of indi-
viduals unnecessary additional medical visits over screening 
using the MoCA, which may be somewhat less precise (im-
precision that may be reflected in the relatively small sum-
mary score difference seen between aMCI and NC in our 
sample). On the other hand, when the probability for aMCI 
is high, both tests yield similar results, and the MoCA may 
have some advantage identifying more severe cognitive im-
pairment affecting orientation and basic processing skills, 
as the BHA does not measure these domains.

We also estimated classification rates based on BHA 
screening in the population of adults older than age 60 (in 
which the estimated prevalence of aMCI is ~10%; Petersen 
et  al., 2009; Roberts & Knopman, 2013). Using our op-
timal dual cutoffs, the estimated rate of high-probability 
screens using the BHA was 10%. Similar estimation done 
using the MoCA indicated 8% would screen as high prob-
ability. However, in this scenario, screening using the BHA 
provided better differentiation of those at low and possible 
moderate probability than did the MoCA. Of note, popula-
tion estimates are provided to show the projected accuracy 
of the BHA and MoCA in scenarios with a lower probability 
of aMCI than that seen in our sample. However, screening 
for aMCI should not be undertaken at a population level 

due to the likelihood of false positives, but rather in the 
context of those seeking services in a clinic setting, as they 
are at a higher risk of aMCI.

We also examined the convergent validity of the BHA 
tasks with standard neuropsychological measures of sim-
ilar cognitive constructs. Results indicate good convergent 
validity of BHA tasks, with medium to large associations 
between these and their traditional neuropsychological 
counterparts. We have previously provided evidence for in-
ternal consistency, test–retest reliability, alternate version 
reliability, measurement error, and structural validity of the 
BHA (Troyer et  al., 2014). Evidence for diagnostic accu-
racy and convergent validity provided in the current study 
adds further support for the measurement properties of 
the BHA. Additional research is needed to examine as-yet-
untested properties, including responsiveness, discriminant 
validity, and cross-cultural validity.

There are some limitations to this study. We utilized a 
cross-sectional design that did not allow for the examina-
tion of within-subject variability in performance across time 
points. A longitudinal design would allow for this, but was 
not feasible due to the required duration and resources. We 
did not factor test–retest reliability in the current sample into 
calculations of predictive validity. However, the BHA has 
been found to have adequate test–retest reliability in a large 
sample of healthy older adults (Troyer et al., 2014). Outliers 
for two participants were also fit to the data, which reduced 
sample variability, and may have had some, likely small, im-
pact on results. The sample size was also not large enough 
to have optimal power for direct comparisons between BHA 
and MoCA models given correlated ROC AUCs. As the main 
goal of this study was to determine the ability of the BHA and 
MoCA to differentiate aMCI from those with NC, we also 
excluded those with evidence of significant depression or anx-
iety and those with nonamnestic MCI, which may decrease 
the generalizability of results, as may the relatively high mean 
education levels seen in our sample. Given the demonstrated 
utility of the BHA in detecting aMCI in this study, however, 
future research further examining the utility of this measure 
in more diverse samples is certainly warranted.

Conclusions
Accurate identification of aMCI enables early planning 
for patients and families and earlier implementation 
of interventions to potentially slow cognitive decline. 
The BHA is a short, self-administered, online cognitive 
measure with utility as a screening measure for aMCI 
in community-dwelling older adults. In spite of unsuper-
vised administration of the BHA, our analyses indicate 
similar overall accuracy of classification as that of the 
MoCA, with some advantage to the BHA in identifying 
those with NC. Our results provide support for the va-
lidity of the BHA as a cost- and time-efficient tool that 
can assist in streamlining preassessment for aMCI by 
health care practitioners.
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