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Thermal stress induced by annealing the Cu filling of through-silicon vias (TSVs) requires

further investigation as it can inhibit the performance of semiconductor devices. This

study reports the filling behavior of TSVs prepared using direct current and pulse

current Cu electrodeposition with and without pre-annealing. The thermal extrusion of

Cu inside the TSVs was studied by observing the extrusion behavior after annealing

and the changes in grain orientation using scanning electron microscopy and electron

backscatter diffraction. The bottom-up filling ratio achieved by the direct current

approach decreased because the current was used both to fill the TSV and to grow

bump defects on the top surface of the wafer. In contrast, pulse current electrodeposition

yielded an improved TSV bottom-up filling ratio and no bump defects, which is

attributable to strong suppression and thin diffusion layer. Moreover, Cu deposited with

a pulse current exhibited lesser thermal extrusion, which was attributed to the formation

of nanotwins and a change in the grain orientation from random to (101). Based on the

results, thermal extrusion of the total area of the TSVs could be obtained by pulse current

electrodeposition with pre-annealing.

Keywords: through-silicon-via (TSV), pulse current, pre-annealing, thermal extrusion, seed layer

INTRODUCTION

The through-silicon via (TSV) is an important technology for connecting dies in 3D interconnects
to overcome the physical and economic limitations associated with wiring and enhance the
performance of semiconductor devices (Beica et al., 2008; Motoyoshi, 2009; Cao et al., 2013; Pan
et al., 2018). In general, Cu with its high electrical conductivity is used to fill TSVs by deposition
methods, such as chemical vapor deposition, physical vapor deposition, and electrodeposition.
Among these, electrodeposition is a simple and efficient approach for the cost-effective production
of void-free fillings (El-Giar et al., 2000).

After TSV filling, Cu is typically subjected to high-temperature processes such as annealing
to stabilize its microstructure (Yang et al., 2011). However, annealing induces thermal stress,
which can cause reliability problems such as degraded device performance in keep-out
zone and thermal extrusion of Cu (De Wolf et al., 2011; Heryanto et al., 2012; Ryu
et al., 2012; Guo et al., 2013). A keep-out zone, or keep-away zone, is an area where
the transistor is affected by thermal stress from the mismatched coefficients of thermal
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expansion between Si (2.3 ppm/◦C) and Cu (16.7 ppm/◦C); this
stress can decrease the carrier mobility and device performance
(Selvanayagam et al., 2009; De Wolf et al., 2011; Farooq et al.,
2011; Heryanto et al., 2012; Ryu et al., 2012). Cu extruded from
the surface of the Si wafer by annealing can destroy the insulating
layer or interconnection layer. The stress distribution of a TSV
affects the size and performance of the chip because the TSV is
larger than the transistor (Chen et al., 2012). In addition, when
a TSV, which connects chips and chips, is arranged in multiple
arrays, the higher TSV density can cause greater effects from
thermal stress during annealing. Therefore, as the dimensions of
TSVs continue to decrease, TSV thermal stress becomes a more
important issue.

Nanotwins, which can be formed with a pulse current, change
the microstructure of Cu and enhance its mechanical properties
(Liao et al., 2013; Seo et al., 2014). Lu et al. succeeded in
forming nanotwin Cu using a pulse current with a high current
density at a low temperature (Lu et al., 2004). Xu et al. formed
nanotwin Cu thin films using a pulse current and measured
the stress of Cu using an in situ measurement system; they
found that the nanotwin structure formed due to stress changes
induced by repeated pulse on-time and off-time cycles (Xu et al.,
2007, 2009). These previous studies reported the relationship
between nanotwins and enhanced mechanical properties of Cu
thin films. However, there have been no studies on the properties
of Cu inside TSVs fabricated by pulse current electrodeposition.
In addition, Jing et al. performed a reliability assessment of
Cu extrusions in TSVs with controlled annealing conditions
including pre-chemical-mechanical polishing (CMP) (Jing et al.,
2015). The effect of pre-CMP was also studied by De Wol
et al. who showed that the pre-CMP time and temperature after
sintering reduced the Cu extrusion (De Wolf et al., 2011). Jing
et al. also measured silicon stress and Cu extrusion with different
annealing temperatures and pre-annealing by simulation and
micro-Raman microscopy (Jing et al., 2014). However, the effect
of both electrodeposition conditions and the employment of a
pre-annealing process on the crystal structure and mechanical
process of Cu in TSVs has not yet been reported.

Chen et al. investigated the effects of small grain size on
reducing extrusion and suggested higher current density, higher
additive concentration, and optimized annealing temperature
ramp rate could control grain size and reduce extrusion (Chen
et al., 2016, 2017). The microstructure of grain size was also
observed by An et al., who proposed diffusion creep rate model
of TSV-Cu (An et al., 2018). The creep deformation caused Cu
extrusion through the diffusion of grain boundaries. In addition,
Si anisotropy and Cu plasticity on interface cracking has been
found to affect extrusion (Dai et al., 2019).

High mechanical strength and electrochemical behaviors
are essential characteristics for Cu in TSV to improve the
performance of devices. In this study, a nanotwin structure
was formed by pulse current to enhance the properties of
electrodeposited Cu. In addition, the influence of plating and
annealing conditions on the crystal and mechanical properties of

Abbreviations: TSV, through-silicon via; EBSD, electron backscatter diffraction;

pre-CMP, pre-chemical–mechanical polishing.

Cu in TSVs and changes in the thermal extrusion behaviors were
investigated. TSVs were filled with Cu by direct current and pulse
current electrodeposition for different processing times as well
as with and without pre-annealing. The mechanical properties,
morphologies, and thermal extrusion behaviors were measured
experimentally, and via filling mechanisms for direct and pulse
current deposition were proposed.

MATERIALS AND METHODS

The electrolytes for Cu TSV filling were prepared by dissolving
1M CuSO4 (Yakuri Pure Chemicals, 99.5%, Japan) and 1.9mM
HCl (Daejung Chemicals & Metals, 60%, Korea) in deionized
water. The pH of the electrolytes was adjusted to 0.5 using
H2SO4 (Junsei Chemical, 95%, Japan). For void-free TSV filling,
100 ppm of suppressor (CuSupH-1, Hangaram Chemistry Co.,
Korea) was added. All of the Cu filling experiments were
conducted without agitation in a 100-mL electrochemical cell
with a typical three-electrode system consisting of a Pt-coated Ti
plate and Ag/AgCl electrode (Thermo Fisher Scientific, USA) as
the counter and reference electrode, respectively. A via-patterned
Si wafer with an aspect ratio of 12 (diameter: 5µm, depth:
60µm) and SiO2/Ta barrier layer/Cu seed layer were utilized
as the working electrode. The Cu TSV filling was performed
with direct current and pulse current deposition at current
densities of 1, 3, 5, and 10 mA/cm2 at room temperature
using a potentiostat/galvanostat (Princeton Applied Research,
VersaSTAT4, AMETEK, Inc., USA) after a diffusion time of 60 s.
The filling shapes of the direct current and pulse current are
shown in Figures 1A,B. The pulse current comprised various
factors, such as peak current density (ipeak), on-time (ton), and
off-time (toff). The average current density (iavg) of the pulse
current was calculated by the following equation:

iavg =
ipeak × ton

ton + toff
. (1)

In our previous study, the high peak current density and
short on-time of the pulse current were optimized with a high
frequency of the pulse current. For pulse current deposition,
the average current density was controlled by the off-time, and
the peak current and on-time were fixed at 450 mA/cm2 and
2µs, respectively.

After the Cu filling, the samples were molded with epoxy
resin and polished using a polishing machine (SSAUL BESTECH,
BESTPOL P362, Korea) to analyze the filling behavior in the
TSVs. The cross-sections of the Cu-filled TSVs were observed
using optical microscopy (Hirox, KH-7700, Japan). In addition,
the Cu films electrodeposited with both direct current and pulse
current on nonpattern wafers with a Ti layer were used for tensile
stress–strain testing. The Cu film of 10µm was electrodeposited
with an applied current time of 226min. The tensile strength of
the deposited Cu was measured by a universal testing machine
(UTM, INSTRON, model 3343, USA).

To investigate the effects of Cu thermal extrusion in the TSV,
the TSVs were fully filled andmechanically polished to expose the
top surface of the via using a polishing machine. Figure 2 shows
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FIGURE 1 | The schematic diagram (current vs. time) of (A) direct current and (B) pulse current.

FIGURE 2 | Process flow of thermal annealing.

the experimental procedure. The prepared samples were pre-
annealed and annealed at 420◦C for 60 and 20min, respectively,
using rapid thermal annealing under an N2 atmosphere after
TSV filling. The ramp-up and ramp-down rate were set as
84◦C/min and 7◦C/min, respectively. The distributions of Cu
grain orientation angles in the TSVs depending on current type
(direct or pulse) and the use of pre-annealing were observed
by electron backscatter diffraction (EBSD, TESCAN, MIRA3)
after top polishing. Annealing was performed after top polishing
under an atmosphere of 95% Ar and 5% H2 to prevent
oxidation. The thermally extruded top surfaces of the TSVs
were observed by field emission scanning electron microscopy

(FE-SEM, TESCAN,modelMIRA3) for the selected current types
(direct and pulse) and with and without pre-annealing.

RESULTS AND DISCUSSION

TSV Filling Using Pulse Current
The cross-sectional optical images of Cu-filled TSVs deposited
for duration of 10min with direct and pulse currents are shown
in Figure 3. In pulse current electrodeposition, the on-time and
frequency are critical factors for TSV filling. The effect of on-
time on TSV filling was investigated in our previous study
(Jin et al., 2013). In that study, on-time and frequency affected
the coulombic current density and dissolution rate, and the
fastest void-free bottom-up filling was achieved with an on-
time of 2 µs. Therefore, for pulse current electrodeposition,
the peak current density and on-time were fixed at 450
mA/cm2 and 2 µs, respectively. The TSV filling ratio using
a direct current decreased with increasing average current
density because of the current lost to the additional growth
of bump defects on the surface (Supplementary Figure 1).
The filling ratio was calculated as the height of the filled
Cu relative to the depth of the TSV. Electrodeposition using
direct and pulse currents had the highest filling ratios without
bump defects at 1 and 3 mA/cm2, respectively (number of
bump defects shown in Supplementary Figure 1). During direct
current electrodeposition, the suppressor on the top surface
of the wafer desorbed, and thus bump defects formed in the
suppressor desorbed region. Bottom-up filling did not begin
with 5 or 10 mA/cm2 because many bump defects formed.
In contrast, the suppressor is re-supplied during the off-time
using a pulse current. Therefore, the filling ratio for pulse
current electrodeposition was higher than that of direct current
deposition because the top surface of the wafer was strongly
suppressed and thus the current was only used for TSV filling
instead of defect formation. However, the supply of suppressor
in the TSV was not sufficient for deposition above an average
current density of 5 mA/cm2 due to the short off-time. In
addition, the suppressor easily desorbed from the sidewall of
the TSV under very high current densities using pulse current
electrodeposition, resulting in a pinch-off effect at the sidewall
and a void because of the much higher current density and lower
suppressor concentration (Song et al., 2012; Wheeler et al., 2013;
Yang et al., 2013; Wang et al., 2016, 2018; Xiao et al., 2017).

Frontiers in Chemistry | www.frontiersin.org 3 October 2020 | Volume 8 | Article 771

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kim et al. Cu in TSV With Pulse Current and Pre-annealing

FIGURE 3 | Cross-sectional images of Cu-filled TSVs deposited by direct current and pulse current for 10min.

FIGURE 4 | Cross-sectional images of Cu-filled TSVs and their bottom-up

filling ratios depending on deposition time. (A) Direct current (1 mA/cm2 ), (B)

pulse current (3 mA/cm2 ).

Cross-sectional images and bottom-up filling ratios until

filling completion acquired with the best defect-free conditions

(1 and 3 mA/cm2 for direct and pulse currents, respectively) for

each deposition time are shown in Figure 4, with the results for

direct current electrodeposition in Figure 4A. The initial filling

using direct current electrodeposition reached completion in less

than 200 s, and the filling ratio linearly increased because the

current was effectively used for TSV filling. In addition, the linear
slope of the filling ratio with respect to deposition time from the
start might indicate a constant thickness of the diffusion layer
of cupric ions and a sufficient ion supply. However, it may be
difficult for the cupric ions to diffuse into the via for a TSV with
a high-aspect ratio (Gambino et al., 2015; Lee and Chen, 2018).
In addition, as shown in Figure 4B, the bottom-up filling ratio
using pulse current electrodeposition was lower than that using
a direct current at the initial stage due to re-adsorption of the
suppressor during the off-time. The adsorbed suppressor could
interrupt the initial bottom-up filling; the bottom-up filling then
began after the breakdown of the suppressor on the bottom of
the via (Wheeler et al., 2013; Yang et al., 2013). However, the
slope of the pulse current filling ratio with respect to deposition
time becomes linear and steeper than that of the direct current
from 200 s onward, indicating a shorter diffusion layer and higher
filling ratio. The diffusion layer using a pulse current was reduced
because of the supply of cupric ions provided during the off-time
(Chandrasekar and Pushpavanam, 2008).

The proposed TSV filling mechanisms for direct current
and pulse current electrodeposition are shown in Figure 5.
The concentrations of cupric ions and suppressor decrease
gradually toward the bottom of the via before electrodeposition.
Figure 5A shows the filling mechanism using a direct current.
The suppressor at the bottom of the TSV easily desorbs by
breaking down, and the TSV filling begins from the bottom when
the current is initially applied. The filling ratio remains constant
over time because of the sufficient diffusion of cupric ions to the

Frontiers in Chemistry | www.frontiersin.org 4 October 2020 | Volume 8 | Article 771

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kim et al. Cu in TSV With Pulse Current and Pre-annealing

FIGURE 5 | Schematic of suppressor and ion concentration for TSV filling and filling mechanisms with a (A) direct current and (B) pulse current (δ is the diffusion layer;

the thickness of Csupp indicates the suppressor concentration).

FIGURE 6 | Tensile stress–strain curves of samples electrodeposited with a

direct current and a pulse current.

TSV. However, the suppressor on the wafer surface also desorbs,
resulting in bump defects and thus a lower filling ratio. However,
the sufficient supply of cupric ions and suppressor using pulse
current electrodeposition results in a shorter diffusion layer of
cupric ions and increased adsorption of the suppressor, as shown
in Figure 5B. Therefore, bottom-up filling does not begin by
adsorption of the suppressor on the via bottom. Instead, TSV
filling starts after desorption of the suppressor on the bottom
of the TSV with a higher filling ratio due to the short diffusion
layer. In addition, unlike direct current deposition, pulse current
deposition does not form bump defects on the surface because the

suppressor is re-adsorbed during the off-time. In other words, the
high filling ratio using pulse current deposition was attributed to
the shorter diffusion layer and lack of bump defect formation.

Mechanical Properties Using Pulse Current
In addition to increasing the TSV filling ratio, pulse current
deposition also forms a nanotwin structure. In our previous
work, a high density of nanoscale twins was observed under
pulse current conditions (Jin et al., 2013). In addition, the
thermal extrusion behavior, which is related to mechanical
strength, decreased with nanotwin structures. Lu et al. similarly
concluded that nanotwins could increase mechanical strength
(Lu et al., 2004). Therefore, stress–strain curves were measured
to investigate the mechanical strength of Cu plated with direct
and pulse currents. Figure 6 shows the stress–strain curves of
samples electrodeposited with a direct current and a pulse current
with an. Stress–strain curves consist of elastic and plastic regions
(Sharir et al., 2008). In the elastic region, which has a linear slope
before the yield strength, only elastic (reversible) deformation
occurs, whereas non-reversible (permanent) deformation begins
to occur in the plastic region located between the yield strength
and fracture point. Therefore, the yield strength can indicate
the maximum allowable strength before plastic deformation
occurs (Yonenaga, 2005). The 0.2% offset strength, which is
defined as the stress that results in a strain of 0.2%, was
measured for engineering evaluation instead of yield strength
(Albrecht et al., 2017). The Cu formed by a direct current had
a 0.2% offset strength of 186 MPa, which resulted in plastic
deformation at a low strain energy, while the Cu formed by
a pulse current had a higher 0.2% offset strength of 372 MPa,
allowing it to deform elastically without plastic deformation
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FIGURE 7 | Thermal extrusion behaviors and grain orientations (EBSD analysis) of TSVs depending on current type (direct current 1 mA/cm2, pulse current 3

mA/cm2 ) (A) before and (B) after pre-annealing.

at a higher strain energy. The higher offset strength was
due to the nanotwin boundaries interrupting the migration of
dislocations (Lu et al., 2004; Jin et al., 2013). Grain boundaries
also block the migration of electrons, resulting in a high electrical
resistance. However, nanotwin boundaries block the migration
of dislocations without disturbing the transport of electrons.
Therefore, the twin boundaries formed by a pulse current
can increase the mechanical strength of Cu without sacrificing
electrical conductivity.

Thermal Extrusion of TSV Using Pulse
Current and Pre-annealing
The thermal extrusion behaviors and EBSD analysis of TSVs
prepared with direct current and pulse current plating are
illustrated in Figure 7A. The thermal extrusion behavior was
observed after annealing at 420◦C for 20min in an N2 gas
atmosphere. The Cu electrodeposited using direct current inside
the TSV was severely expanded after annealing, which is
attributed to plastic deformation from thermal stress exceeding
the yield strength (Heryanto et al., 2012). In contrast, thermal
extrusion occurred to a lesser extent in the Cu deposited with a
pulse current, which is attributed to the Cu nanotwins allowing
only for elastic deformation during annealing. However, the Cu
at the edge of the TSV severely expanded even with the use

of a pulse current. The proportion of the extruded area among
the total TSV area for each direct current and pulse current
condition was 71.9 and 47.7%, respectively. EBSD analysis was
used to investigate the grain orientation before thermal extrusion.
The Cu plated with a direct current had a random orientation,
resulting in thermal extrusion throughout, whereas the Cu plated
with a pulse current had a (101) orientation except at the
TSV edge, resulting in more thermal extrusion at the edge.
Thermal extrusion seems to be affected by not only nanotwins
but also preferred orientation. The random crystal orientation
at the edge might be attributable to the Cu seed layer formed
by physical vapor deposition. Thus, further methods such as
an additional annealing process are necessary to improve the
crystal orientation and minimize thermal extrusion. The thermal
extrusion behaviors and EBSD analysis of TSVs prepared with a
direct current and pulse current after an additional pre-annealing
treatment are shown in Figure 7B. Pre-annealing was carried
out at 420◦C for 60min in an N2 gas atmosphere. After pre-
annealing, the proportion of the extruded area among the total
TSV decreased from 71.9 to 47.0% under the direct current
condition and from 47.7 to 23.7% under the pulse current
condition. The pre-annealing also changed the grain orientation
at the center of the Cu plated by a direct current to the (101)
orientation and grain orientation at the edge of the Cu plated by
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a pulse current to the (101) orientation as determined by EBSD.
Supplementary Figure 2 shows that the dominant preferred
orientation of both the direct current and pulse current Cu
samples was further improved toward the (101) orientation after
pre-annealing. Therefore, it is important to note that controlling
the density of nanotwin boundaries and the grain orientation
could improve the mechanical properties of TSVs and reduce the
extent of thermal extrusion.

CONCLUSIONS

The filling behaviors and thermal extrusion of the high-aspect
ratio Cu in TSV using pulse current with pre-annealing were
much improved. In summary, The pulse current plating formed
less bump defect on the surface, which indicates low current loss
high filling efficiency than direct current one because the cupric
ion and suppressor were supplied during off-time. In addition,
mechanical properties of Cu electrodeposited using pulse current
were improved. The tensile strength of Cu electrodeposited with
pulse current was 425 MPa, which was higher than one of direct
current (206 MPa). The higher tensile strength and more (101)
preferred orientation of Cu using pulse current much reduced
thermal extrusion.
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