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Abstract
Background: In this study, we want to evaluate the response to Lutetium‑177  (177Lu)‑DOTATATE 
treatment in patients with neuroendocrine tumors  (NETs) using single‑photon emission computed 
tomography  (SPECT) and computed tomography  (CT), based on image‑based radiomics and 
clinical features. Methods: The total volume of tumor areas was segmented into 61 SPECT and 
41 SPECT‑CT images from 22  patients with NETs. A  total of 871 radiomics and clinical features 
were extracted from the SPECT and SPECT‑CT images. Subsequently, a feature reduction method 
called maximum relevance minimum redundancy  (mRMR) was used to select the best combination 
of features. These selected features were modeled using a decision tree  (DT), random forest  (RF), 
K‑nearest neighbor  (KNN), and support vector machine  (SVM) classifiers to predict the treatment 
response in patients. For the SPECT and SPECT‑CT images, ten and eight features, respectively, 
were selected using the mRMR algorithm. Results: The results revealed that the RF classifier with 
feature selection algorithms through mRMR had the highest classification accuracies of 64% and 
83% for the SPECT and SPECT‑CT images, respectively. The accuracy of the classifications of DT, 
KNN, and SVM for SPECT‑CT images is 79%, 74%, and 67%, respectively. The poor accuracy 
obtained from different classifications in SPECT images  (≈64%) showed that these images are not 
suitable for predicting treatment response. Conclusions: Modeling the selected features of SPECT‑CT 
images based on their anatomy and the presence of extensive gray levels makes it possible to predict 
responses to the treatment of 177Lu‑DOTATATE for patients with NETs.
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Introduction
Neuroendocrine tumors  (NETs) are rare 
malignancies[1,2] that are divided into 
three groups according to the World 
Health Organization  (WHO) classification 
based on the mitotic rate and Ki‑67 
index. The first group had a Ki‑67 index 
of  <3%  (Group  1), the second group 
had a Ki‑67 index between 3% and 
20%  (Group  2), and the third group had 
a Ki‑67 index  >20%  (Group  3).[3] Peptide 
receptor radionuclide therapy  (PRRT) 
is a novel approach for the treatment 
of this type of cancer, in which 
radionuclide‑labeled peptides bind to 
somatostatin receptors. Neuroendocrine 
cells with somatostatin receptors are 
targeted by lutetium‑177  (177Lu)‑labeled 

somatostatin analog octreotate, and 
the DNA of these cells is destroyed 
through radioactive decay.[4‑6] 177Lu has 
a half‑life of 6.73  days, emits gamma 
rays (113 keV [6.4%] and 208 keV [11%]), 
and is used for imaging purposes. It is used 
to treat patients with NET as it also emits 
beta particles  (497 keV) with a penetration 
range of about 2  mm in the human body, 
which decomposes into  (177Hf) through 
the emission of these particles.[7] With 
the injection of 177Lu‑DOTATATE, the 
absorption of radionuclides into the tumor 
is increased compared to that in healthy 
tissues.

The use of response evaluation criteria in 
solid tumors, biochemical evaluation of 
tumors, and other approaches are considered 
expensive and time‑consuming.[8] Radiomics 
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is a novel and low‑cost method for studying medical 
images, in which various image features that are not 
visible to the human eye are extracted.[9] In this approach, 
each pixel of the image contains features of the tumor 
that are related to the treatment response.[10] Radiomics 
involves several steps, including image acquisition, image 
segmentation of the region of interest, feature extraction, 
feature selection, modeling, and evaluation.[11,12] Radiomics 
features are based on the intensity, morphology, and texture 
of the tumor phenotype. In recent years, many researchers 
have used a combination of radiomic features and artificial 
intelligence  (AI) for various purposes, such as predicting 
the histology of cancer types, grading neuroendocrine 
cancers, and predicting survival.[8,9,13,14] Ma et  al. studied 
41  patients with pancreatic NET  (PNET) with disease 
Grades 1, 2, and 3. They extracted 107 features from 
68Ga‑DOTATATEPET/computed tomography  (CT) images 
and screened 12 radiomic features according to Pearson’s 
correlation coefficient. Using logistic regression modeling, 
they were able to predict the grade of tumors with an area 
under the curve  (AUC) of 0.97%.[15] In 2023, Alibabaei 
et  al. extracted features based on radiomics  (GLCM) of 
magnetic resonance images  (MRI) of glioblastoma patients 
with MATLAB. They were able to obtain the important 
distinctive characteristics of the response to the treatment 
and the progression of the disease by statistical analysis 
by the collected data from all groups were imported to 
Statistical Package for Social Sciences (SPSS) for Windows 
software (SPSS Inc., Chicago, IL, USA).[16] Dehghani et al. 
segmented brain tumors using fluid‑attenuated inversion 
recovery  (FLAIR), T1‑weighted  (T1W), T2‑weighted, 
and T1W  (T1ce) magnetic resonance. Their method was 
automated and based on deep learning. Their dataset 
included 370  samples with specific tumor masks. They 
concluded that the quantitative evaluation of single‑channel 
models with FLAIR sequence has a higher segmentation 
accuracy compared to its counterparts with a Dice index of 
0.10 ± 0.77.[17]

In 2022, Xu et al. conducted a study using logistic regression 
model features of MRI to differentiate nonhypervascular 
PNETs from pancreatic ductal adenocarcinomas  (PDACs). 
The results with high model accuracy showed that these 
features could distinguish hypervascular PNETs from 
PDACs before surgery.[13] In the same year, Zhang et  al. 
also used an random forest (RF) algorithm on the radiomic 
features of CT images to differentiate PDAC from PNET. 
They achieved this goal with an accuracy, sensitivity, and 
specificity of 0.742, 0.934, and 0.930, respectively.[14] In 
2022, we used machine learning to investigate CT images 
of NET patients who underwent PRRT. We found that 
the features extracted using the extreme gradient boosting 
pattern in combination with the RF classifier can predict 
the response to treatment with an accuracy of 89%.[18]

In recent years, much research has been done in the field of 
grading different tumors, evaluating the behavior of tumors, 

and predicting the response to treatment using different 
medical images with AI. In this research, we used different 
machine‑learning algorithms to predict the response to 
treatment with 177Lu‑DOTATATE in patients with NETs. 
What distinguishes our research from the work of others is 
the use of features extracted from single‑photon emission 
CT (SPECT) and SPECT‑CT images for this purpose.

Materials and Methods
Patient characteristics

This study included patients with NETs whose disease 
was confirmed by pathological tests. The “Ki‑67” index 
was measured using immunohistochemistry and was 
determined based on the WHO classification. Ki‑67, or 
the mitotic index, is a way of describing how many cells 
are dividing and is considered a clinical feature.[19] A total 
of 22  patients  (12  female and 12  male) were selected for 
SPECT‑CT imaging. The average ages of the male and 
female patients were 56.54 and 57.18  years, respectively. 
The disease of the selected patients was proven by 
pathological tests. None of them had received any other 
treatment such as radiotherapy or chemotherapy before 
PRRT treatment with 177Lu‑DOTATATE. Three patients 
died during treatment. A  summary of the initial patient 
information is shown in Table 1.

Lutetium‑177‑DOTATATE therapy

Each patient received 6.7–7.4 GBq of 177Lu‑DOTATATE 
four to six times with an interval of 2 to 3  months. 
However, depending on the patient’s physical condition and 
the specialist’s diagnosis, the activity could be lower.

After each treatment period, the patients were asked several 
questions about “fatigue,” “drowsiness,” “nausea,” and 
other symptoms. The Edmonton Symptom Assessment 
System‑Revised  (ESAS‑R) scale was used to answer 
the questions. In other words, these evaluations were 
performed to determine the effect of treatment on the 
patient’s quality of life. The patients were instructed to 
rate their condition on a scale of 0 to 10. Zero denotes the 
best state; the farther away from 0, the worse the physical 
condition of the patient. The scores for each course were 
compared with those for the first course of treatment. If the 
patient’s condition changes by 25%, it implies no response 
to treatment. A  score between 25% and 75% indicated a 
relative response to treatment, whereas a score above 75% 
indicated a complete response to treatment.

Single‑photon emission computed tomography imaging 
and follow‑up

SPECT images were taken 24  h after radiopharmaceutical 
injection to determine the extent of radiopharmaceutical 
uptake into the lesion and the location of the lesion. All 
SPECT images of the patients were obtained using a 
SIEMENS gamma camera model 2016. They all had 
similar image dimensions  (128  ×  128) and 4.8 mm3 voxel 
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sizes. Uptake was not observed in areas with healthy tissue. 
During the treatment, four SPECT images were obtained for 
each patient. Only the first image of the patient was used to 
compare the condition of the patient in the next imaging 
session. Therefore, the initial images were discarded, and 
the radiomic features of the next three images were used 
to predict the response to treatment. Basically, there should 
be 66 SPECT images obtained from 22 patients. However, 
because three patients died during treatment, their images 
remained incomplete. Thus, the total number of SPECT 
images was reduced to 61.

Single‑photon emission computed tomography–
computed tomography acquisition

A baseline CT image was obtained from each patient 
before starting treatment. Two CT images were also 
taken 6 and 12  months after treatment. CT images 
of patients were taken in different clinics with 
different protocols. All images were resampled with 
dimensions of 512  ×  512 and 1 mm3 voxel sizes by 
three‑dimension  (3D) Slicer software. CT images of 

some patients were used in our previous research. In this 
study, patients’ CT images were used for fusion with 
their SPECT images to obtain SPECT‑CT images.[18] 
Furthermore, the 3D Slicer software was used to fuse the 
images. First, all images were converted from DICOM 
to NRRD format. “Landmark Registration” part of the 
“Registration” module was selected for fusing images. 
The CT image was defined as a fixed image and the 
SPECT image as a moving image. For the two images to 
overlap completely, it was necessary that the dimensions 
of the two images were adjusted manually and identically 
using the “Volume” module. This module has “Image 
Dimensions,” “Image Spacing,” and “Image Origin” tools 
that can be accessed for this purpose. After this step, the 
“Translation” and “Rotation” sections of the “Transform” 
module were used to make the tumoral region of the 
SPECT image fall exactly on the same region in the CT 
image.

The first CT image of each patient was fused with the 
SPECT image of the first cycle, the second with the SPECT 
image of the third cycle, and the last with the SPECT 
image of the fourth cycle. The initial SPECT‑CT image 
was only used for comparison with subsequent periodic 
images. Therefore, the initial SPECT‑CT images of the 
patients were discarded to determine radiomic features, and 
the next two images were used for this purpose. In total, 44 
SPECT‑CT images from 22 patients were used to determine 
the radiomics features. As three patients died during the 
treatment, their images remained incomplete. In total, 41 
SPECT‑CT images were obtained for the radiomics analysis 
of patients with NETs.

Tumor segmentation

On the SPECT and SPECT‑CT images, areas showing 
radiopharmaceutical uptake into the lesion were 
segmented under the supervision of a nuclear physician. 
Segmentation was performed using the 3D Slicer software 
version  4.11  (https://www.slicer.org). Figure  1a and c 

Table 1: Characteristics of the patients included and 
the single‑photon emission computed tomography 

and single‑photon emission computed tomography–
computed tomography images

Characteristic Patients number
Patients under study for SPECT images

Male (age average) 11 (57.18)
Female (age average) 11 (56.54)
The range of patient’s age 38–81
Dead patients 3

IHC result
Ki‑67<3% 8
3% < Ki‑67<20% 9
Ki‑67≥20% 2
Unknown Ki‑67 3

The primary site of the tumor
Pancreas 6
Stomach 2
Small intestine 4
Pelvis 1
Lungs 5
Liver 1
Metastatic NETs of unknown origin 5

Site of metastasis
Pelvis 3
Liver 16
Lungs 4
Lymph nodes 6
Bone 5
Breast 1
Thyroid 1

IHC – Immunohistochemistry; Ki‑67 – The Ki‑67 index, or mitotic 
index, describes the number of dividing cells; SPECT – Single‑photon 
emission computed tomography; NETs – Neuroendocrine tumors

Figure 1: (a) Single‑photon emission computed tomography (SPECT) image 
of a patient with neuroendocrine tumors (NETs). (b) Segmentation of the 
region of interest in the SPECT image. (c) Single‑photon emission computed 
tomography–computed tomography (SPECT‑CT) image of a patient with 
NETs. (d) Segmentation of the region of interest in the SPECT‑CT image

dc

ba

https://www.slicer.org
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show examples of the SPECT and SPECT‑CT images, 
respectively. Figure 1b and d show the segmentation of the 
desired areas.

Radiomic and clinical features extraction

After specifying the region of interest in the medical 
images using 3D Slicer software, radiomics features were 
extracted. Radiomic features can reveal differences in 
tumor phenotypes.[20] Intensity  (n  =  18), texture  (n  =  75), 
shape (n  =  14), and transform‑based  (wavelet) features 
(n = 744)[17,18] were extracted. In wavelet transforms, despite 
preserving spatial information, the image is converted into 
the frequency domain.[21] Age, sex, number of lesions, and 
the largest and smallest lesions were qualitatively evaluated 
in both SPECT‑CT and SPECT images, and their values 
were placed separately in the SPECT‑CT and SPECT 
datasets as other features  (n  =  5). In both images, the 
absorption intensity was another factor that was considered. 
Mild, moderate, and high uptake levels were separated, 
and their percentages were calculated. These features were 
added to the SPECT and SPECT‑CT datasets as additional 
features (n = 3).

We also extracted clinical features. In each treatment 
period, patients were tested before receiving 
radiopharmaceuticals. The tests include “white blood cell 
count,” “red blood cell count,” “hemoglobin  (Hb) test,” 
“creatinine blood test  (Cr),” “platelet count,” “blood urea 
nitrogen,” “bilirubin test,” “alkaline phosphatase level 
test,” “(alanine aminotransferase or serum glutamic‑pyruvic 
transaminase),” and “aspartate aminotransferase  (AST or 
serum glutamic oxaloacetic transaminase [SGOT]).”. These 
tests and “Ki‑67” were considered clinical features. The 
values of the clinical features (n = 11) and injection activity 
injected activity (n = 1) in patients during each period were 
added to the quantitative features. The activity injected into 
the patients after some time showed its effect on the rate 
of lesion healing (shrinkage or disappearance of the lesion) 
on CT images. Therefore, “activity” was also considered a 
feature in the CT dataset.

Feature normalization

After extracting the features, we found that the ranges 
of their values differed significantly. This difference 
reduces the prediction and performance of the model. 
Therefore, before selecting the features and classification, 
the minimum–maximum normalization  (feature scaling) 
method was used. This method is a simple way to 
normalize the data. The minimum‑maximum normalization 
formula is as follows:

' min

max min

x x
x =  

x x



� (1)

Where x is an original value and x´ is the normalized value. 
Using this method, the values of the features were scaled in 
the range of 0 to 1.[22]

Feature selection

After data normalization, the next step in the radiomics 
method is feature selection. The number of extracted 
features  (871 features) was much greater than the number 
of samples  (61  samples in SPECT and 41  samples in 
SPECT‑CT), which increased the machine learning time 
and the overfitting of the model. To overcome this problem, 
feature reduction techniques were used. In this study, the 
minimum redundancy - maximum relevance  (mRMR)[23,24] 
was used to select important features. The mRMR method 
measures the relationship between each attribute and target 
variable based on mutual information. Mutual information 
is defined as follows:

I  X,Y P x, y
P  x, y

P x P y
dx dylog � (2)

where x and y represent random variables. P  (x, y), P  (x), 
and P (y) are probabilistic density functions. The algorithm 
holds the most relevant features and removes the remaining 
features (maximum relevance).

Rel(s) = 1
S

I X ,Ytt s
( )

∈∑ � (3)

“S” is a feature set. In the next step, the relationship 
between each feature is evaluated, the variables that are 
strongly related to each other are removed, and only one of 
them is retained (minimum‑redundancy).

Red 1
2s =

S
I(X ,X )t s t s( ) ∑ ∈ � (4)

After feature selection, a t‑test was performed to 
measure the relationship between each feature and 
the target  (response to treatment), and a P  <  0.05 was 
considered to be statistically significant.

Classification and modeling

One of the types of machine learning methods is supervised 
learning. Supervised learning is divided into classification 
and regression.[25] In this research, the machine learning 
method of classification and labeling was used. In the study 
of SPECT‑CT and SPECT images, the labels obtained from 
the “ESAS‑R” scale were used to predict the response 
to treatment using the clinical and radiomic process in 
the classification problem. “Nonresponse to treatment,” 
“partial response to treatment” and “complete response 
to treatment” were marked with “1”, “2” and “3” labels, 
respectively. For the patients who died in the middle of the 
treatment, label 1 was assigned, meaning no treatment.

To categorize the data into different classes, a support 
vector machine  (SVM), decision tree  (DT) with Gini 
coefficient, RF, and k‑nearest neighbors (KNN) were used.

SVM searches for the hyperplane that has the most margins 
with the classes and minimizes errors. The data cannot always 
be separated linearly. Therefore, in this category, different 
kernel tricks are used, and the data are projected onto a higher 
dimensional space using a function.[26] DT is one of the most 
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powerful supervised machine learning methods. Finding 
the root is the first step in forming a tree, which is obtained 
with two different “Gini” and “Entropy” coefficients. A  tree 
is a set of nodes and branches, each representing a feature. 
One of the advantages of a DT is that it can be interpreted 
and is suitable for analyzing large amounts of data in a 
short time.[27] The RF algorithm stands out among machine 
learning algorithms because of its good performance with 
multiclass and unbalanced data. An RF is a set of trees, where 
each tree provides a label for a new sample. The final label 
was determined by the majority vote of the trees.[27] Finally, 
KNN is the simplest classifier used for both regression and 
classification. However, they are primarily used to classify 
issues. The KNN algorithm uses a KNN data label to 
identify new data classes.[28] All codes were written in Python 
version 3.8.4 (https://www.python.org).

Model performance evaluation

The receiver operating characteristic  (ROC), and AUC 
are commonly used to evaluate the performance of binary 
classifiers. However, they are unsuitable for assessing 
multiclass classifiers, and evaluations based on confusion 
matrixes are preferred. In this study, confusion matrixes 
were used to obtain the sensitivity  (SN), specificity  (SP), 
and accuracy (ACC) criteria of the model.[29]

TPSN =
TP + FN � (5)

TNSP =
TN + FP

� (6)

TP + TNACC =
TP + TN + FP + FN � (7)

Sensitivity is the ability of a model to find “no response 
to treatment” cases. Specificity is the ability of a model 
to find “response to treatment” cases. The accuracy is 
the ability of a model to correctly differentiate between 
“no response to treatment” and “response to treatment” 
cases. To compensate for the small number of samples, 
we used the K‑fold cross‑validation strategy to study the 
machine learning algorithms. Based on the lowest number 
of labels in the classifications, the K‑fold was considered 
to be nine for the SPECT and SPECT‑CT attributes. Using 
this strategy made our results generalizable. The dataset 
was divided into  (K  =  9) folds. The models were trained 
and evaluated nine times. Each time, a different fold was 
used as a validation set. The performance measures from 
each class were averaged to estimate the generalization 
performance of the model.

Results
Of the total clinical and radiomic features  (871 features) 
extracted from 41 SPECT‑CT images  (taken from 
22  patients), eight features that were closely related to the 
prediction of response to treatment were selected using 
the mRMR method  [Figure  2]. All four radiomic features 

were wavelet transformed. The other four clinical features 
are “activity injected into patients (dose),” “Hb,” “Cr,” and 
“AST  (SGOT).” “Cr” is an indicator of kidney function. 
The “SGOT” test is used to diagnose liver failure. All 
features had a P < 0.01.

Among the 871 features extracted from 61 SPECT images, 
ten features that had the strongest relationship with the 
prediction of response to treatment were selected based 
on the mRMR pattern  [Figure  3]. All features were 
transform‑based wavelet features. Nine features had a 
P  <  0.01. The “LLH_gldm_Large Dependence High Gray 
Level Emphasis” feature had a P = 0.2.

It should be noted that initially, 20 important features were 
selected from both SPECT and SPECT‑CT images using 
the mRMR pattern. Only the most effective features were 
retained in the treatment using a trial‑and‑error method and 
feature modeling. In other words, only ten features were 
obtained for the SPECT images, and eight features were 
obtained for the SPECT‑CT images.

The features selected from the SPECT‑CT, and SPECT 
images were separately modeled using classifiers  (DT, 
RF, KNN, and SVM). The results of the evaluation of the 
classifiers are shown in Figures 4 and 5 with a bar plot. In 
these diagrams, the horizontal and vertical axes represent 
the model and its performance in terms of percentages 
The red, green, and blue columns indicate the accuracy, 
specificity, and sensitivity of the models, respectively. The 
number of trees  (n‑estimator) in the RF algorithm was 
assumed to be 100. The best result for the KNN algorithm 
was obtained by setting the number of neighbors to (K = 3) 
for the SPECT and SPECT‑CT data.

The combination of mRMR features obtained from both 
the SPECT and SPECT‑CT images with the RF and DT 
classifiers was more accurate than the other predictive 
models. According to Figure  4, the accuracy, specificity, 
and sensitivity of the RF and DT models were 83%, 94%, 
and 77% and 79%, 93%, and 77% for the SPECT‑CT 
features, respectively. In the SPECT images  [Figure  5], 
evaluation of the features obtained from the mRMR pattern 

Figure 2: Obtained features by the mRMR algorithm in order of importance 
for single‑photon emission computed tomography images. mRMR: 
Minimum redundancy - maximum relevance. SGOT: Serum glutamic 
oxaloacetic transaminase

https://www.python.org
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in combination with the machine learning algorithms 
showed that the performances of the RF and DT models 
were almost the same. The accuracy of both models in 
predicting response to treatment was 64%.

Discussion
After extracting and integrating the quantitative features 
of SPECT and SPECT‑CT images with clinical factors, 
the mRMR algorithm was used to select features related 
to treatment response. The reason for its use is the 
popularity of the algorithm in medical studies,[30,31] its high 
computational accuracy, and its feature ranking. The SVM, 
DT, RF, and KNN were used to categorize the data into 
different classes.

According to Figure  2, the “dose” was the biggest factor 
influencing the response to the 177Lu‑DOTATATE treatment. 
Based on the P  value  (mentioned in the result section) for 
this feature in the SPECT‑CT dataset, it can be said that it 
is 99.99% related to the response to treatment. In addition, 
the quantitative features extracted from the images are 
important factors.

Figure 3 shows that the quantitative features obtained from 
the SPECT images were all transform‑based  (wavelet) 
types, whereas in the SPECT‑CT images  [Figure  2], there 
were four features of this type. In the SPECT‑CT features, 
“Hb,” “SGOT,” and “Cr” were also among the factors 
affecting treatment. The clinical features of patients in each 
course of treatment influence their response to treatment. 
Cr measures kidney function, and SGOT is used to 
diagnose the liver failure. “Hb” is also used to determine 
the amount of Hb in the blood. Radiomics can identify 
tumor phenotypes based on these features.[32] In the studies 
of Laudicella et al.,[10] which used the radiomics process to 
predict the response in GEP‑NETs under 177Lu (DOTATOC) 
PRRT, the features of “skewness,” and “kurtosis” were 
considered effective features in response to treatment.

In our study, these features  (kurtosis and skewness) 
were not selected using the mRMR pattern as important 
features in the SPECT and SPECT‑CT images. In contrast 
to their results, in the SPECT‑CT hybrid image, radiomic 
features  (first order uniformity, glcm‑informational 
measure of correlation  [IMC1], and glrlm‑Long Run 
Emphasis  [LRE]) were selected as effective features 

Figure 3: Obtained features by the mRMR algorithm in order of importance for single‑photon emission computed tomography images. mRMR: Minimum 
redundancy - maximum relevance

Figure  4: Barplot of the performance of the predictive models for 
single‑photon emission computed tomography–computed tomography 
features in order of accuracy, specificity, and sensitivity. DT: Decision tree, 
RF: Random forest, KNN: K‑nearest neighbor, SVM: Support vector machine

Figure  5: Barplot of the performance of the predictive models for 
single‑photon emission computed tomography features in order of 
accuracy, specificity, and sensitivity. DT: Decision tree, RF: Random forest, 
KNN: K‑nearest neighbor, SVM: Support vector machine
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in response to treatment. “Uniformity”  (corresponding 
to first‑order uniformity) is used to measure the sum 
of the squares of any intensity value and is a measure 
of homogeneity. Higher uniformity indicates greater 
homogeneity. “IMC1” is a type of correlation that 
quantifies tissue complexity. “LRE” represents textures 
with a larger structure. An important common denominator 
between our study and that of Laudicella et al.[10] was that 
the Ki‑67 index was not selected as an effective attribute. 
This finding is clinically significant. This means that the 
degree of the tumor cannot be determined based on the 
response to treatment.

Liberini et  al.[33] used the radiomic features of 68Ga/
DOTATOC positron emission tomography  (PET)/CT 
images for the PRRT outcomes of two patients. They found 
the “glrlm‑LRE” feature to be effective, and they came to 
a common conclusion with us about this feature. Similar 
to Coroller et  al.,[20] we found a significant relationship 
between the variables and purpose. In each of the 
SPECT‑CT and SPECT images, all features selected by the 
mRMR algorithm had P  <  0.01. A  statistically significant 
relationship was observed between these features and the 
target (response to treatment).

Unlike most studies that have used ROC curves and the 
AUC to evaluate the performance of the classification 
model, confusion matrixes were employed in the present 
study. In this study, the target classes are multiclass. In 
2020, Sudre et  al. used radiomics based on dynamic 
susceptibility contrast (DSC)‑MRI to classify gliomas and 
their mutations and demonstrated the model’s performance 
using a confusion matrix.[34]

Various methods exist for addressing the issue of 
imbalanced data in the present study. According to Luque’s 
recommendations,[35] we used a decision‑tree‑based 
ensemble classifier  (RF), DT, and SVM to improve the 
performance of the model. These classifiers have been 
considered in many studies to solve the problem of 
imbalanced data. “KNN” was used in our research due to 
its simplicity.

As shown in Figure  4, among the predictive models 
for the features obtained from the SPECT‑CT images, 
RF  (ACC  =  83%, SN  =  77%, and SP  =  83%, 94%) 
performed better than the other classifiers. The next highest 
rankings were DT (ACC = 79%), KNN (ACC = 74%), and 
SVM (ACC = 67%). Although the SVM has been proposed 
to solve the problem of imbalanced data, its accuracy is 
lower than that of the KNN.

Radiomics analysis of CT images to predict the response 
to PRRT with 177Lu for comparison with SPECT and 
CT‑SPECT images is done. Three features (dose, LLH‑first 
order uniformity, and LLH‑glcm‑IMC1) were common 
to the features of the SPECT‑CT dataset. We used the 
radiomic features of CT images to predict the response 

to treatment in patients with NETs undergoing PRRT. 
Modeling of the features obtained from the mRMR pattern 
showed that the RF and DT algorithms could predict 
the response to treatment with 74% and 72% accuracy, 
respectively. The specificity and sensitivity of RF and DT 
classifiers in the CT images were 91% and 65% and 91% 
and 64%, respectively.

By examining the performance of the prediction 
models used for the features extracted from the SPECT 
images  [Figure  5], it was clear that the performances of 
RF and DT (ACCRF, DT = 64%; SPRF,DT = 88%; SNRF = 59%; 
SNDT = 58%) were better than that for the other classifiers. 
SVM and KNN ranked next. The high accuracy of 
RF compared with the other classifiers is in line with 
Luque’s suggestion for solving the problem of imbalanced 
data.[35] Outcome prediction in patients with Parkinson’s 
disease using the DaTScan SPECT imaging features was 
performed by Tang et al.[36] In their worrk, 92 imaging and 
six nonimaging features were extracted from 69  patients, 
and a leave‑one‑out strategy combined with artificial neural 
networks was applied to analyze the data. Combining the 
top imaging features from the selected regions significantly 
improves the prediction accuracy to 75%. In 2019, Ahn 
et al. conducted a study that evaluated the prognostic value 
of 18F‑fluorodeoxyglucose in patients with nonsmall‑cell 
lung cancer using the radiomics features of PET images. 
They utilized different classifiers, such as RF and 
neural networks, to model the features and evaluated 20 
features using the AUC. According to the results, the RF 
performance had an AUC of 0.956 and an ACC of 0.901, 
while the neural networks exhibited an AUC of 0.871 and 
an ACC of 0.780.[37]

A comparison of the performance of the predictive models 
for CT, SPECT, and SPECT‑CT features indicated that 
the features selected from the SPECT‑CT images were 
more accurate and better described the treatment response. 
The results  [Figures  4 and 5] showed that the RF and DT 
predictive models performed better than the SVM and KNN 
models. Regarding the power of predicting the response to 
treatment, it can be said that SPECT‑CT images are better 
than CT and SPECT images. This difference in accuracy is 
probably due to the extensive gray levels and high spatial 
resolution of SPECT‑CT images compared with those of 
SPECT.[38]

In general, by extracting and selecting clinical and imaging 
features  (SPECT‑CT images with greater accuracy) 
through the mRMR pattern and training these features to 
RF and DT classifiers  (owing to better performance), it is 
possible to determine whether patients with NETs should 
be treated with 177Lu‑DOTATATE. Therefore, one of the 
most important goals of radiomics, that is, personalization 
of treatment,[39] can be achieved by facilitating the decision 
of whether to continue treatment or seek alternative 
treatments from a specialist. A  limitation of the present 
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study is that the number of studied patients and the 
number of images taken from them  (both SPECT‑CT 
and SPECT) to investigate machine learning were low, 
owing to the rarity of this type of cancer. In this study 
CT, images of patients taken from different clinics were 
used to merge with SPECT images. However, all the 
images were converted to the same dimensions using the 
3D Slicer software before merging. Different imaging 
protocols and types of scanners can affect the features 
extracted from the images. It is suggested to use images 
that are all taken based on the same protocol in future 
studies. Low accuracy and errors in the fusion of SPECT 
and CT images can affect the final results. In this study, 
the modeling of clinical features and quantitative features 
extracted from images was done simultaneously. In future 
studies, it is suggested that modeling based on quantitative 
and qualitative characteristics be done separately to 
determine which study has better results. Another 
limitation of the study is the small number of patients due 
to the rarity of NETs. In future research, with the increase 
in the number of patients, it is suggested to conduct a 
more comprehensive study to determine whether the 
characteristics selected in this study with a small sample 
size are consistent with the study with a large sample size 
or not. In future studies, as the number of patients and 
images increases, deep learning should be used to model 
the radiomics process because its accuracy is far greater 
than that of machine learning, and its results are more 
reliable. Moreover, in the case of an increase in the number 
of patients with NETs, it is recommended that a distinction 
be made between them in terms of the type and location 
of the tumor, and the response to treatment is predicted 
accordingly. Hence, patients with bone metastases should 
be separated from those with liver metastases, and the 
radiomic process should be used for each group to 
determine which group of patients responds best to the 
177Lu‑DOTATATE treatment. Finally, it is recommended 
to employ other medical imaging techniques, such as MRI 
and whole‑body planar imaging, for these patients and to 
compare the results with those of the present study.

Conclusions
A comparison was made between predicting the response 
to 177Lu‑DOTATATE treatment in patients with NETs based 
on the radiomics process of SPECT and SPECT‑CT images. 
For both types of images, the mRMR algorithm was used 
to select the features. Modeling with different machine 
learning algorithms showed that the RF and DT models 
could predict treatment responses with optimal accuracy. 
In terms of image classification, it can be said that using 
SPECT‑CT images can predict the response to treatment, 
but SPECT images are not suitable for this. Furthermore, 
the combination of clinical features with quantitative 
features of SPECT images had no effect on the accuracy 
and sensitivity of machine learning algorithm models. 

This combination increased the accuracy and sensitivity of 
the model in SPECT‑CT images. This study showed that 
radiomics, as a noninvasive and cost‑effective method, can 
be useful for personalized treatment.

Acknowledgment

This study was financially supported by the “Research 
Department of the School of Medicine, Shahid Beheshti 
University of Medical Science” (Grant no. 24938).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References
1.	 Camus B, Cottereau AS, Palmieri LJ, Dermine S, Tenenbaum F, 

Brezault  C, et  al. Indications of peptide receptor radionuclide 
therapy  (PRRT) in gastroenteropancreatic and pulmonary 
neuroendocrine tumors: An updated review. J  Clin Med 
2021;10:1267.

2.	 Zhao  Z, Bian  Y, Jiang  H, Fang  X, Li  J, Cao  K, et  al. 
CT‑radiomic approach to predict G1/2 nonfunctional pancreatic 
neuroendocrine tumor. Acad Radiol 2020;27:e272‑81.

3.	 Nicolini  S, Bodei  L, Bongiovanni  A, Sansovini  M, Grassi  I, 
Ibrahim  T, et  al. Combined use of 177Lu‑DOTATATE 
and metronomic capecitabine  (Lu‑X) in FDG‑positive 
gastro‑entero‑pancreatic neuroendocrine tumors. Eur J Nucl Med 
Mol Imaging 2021;48:3260‑7.

4.	 Feijtel  D, Doeswijk  GN, Verkaik  NS, Haeck  JC, Chicco  D, 
Angotti  C, et  al. Inter and intra‑tumor somatostatin receptor 2 
heterogeneity influences peptide receptor radionuclide therapy 
response. Theranostics 2021;11:491‑505.

5.	 Dhanani  J, Pattison  DA, Burge  M, Williams  J, Riedel  B, 
Hicks  RJ, et  al. Octreotide for resuscitation of cardiac arrest 
due to carcinoid crisis precipitated by novel peptide receptor 
radionuclide therapy  (PRRT): A  case report. J  Crit Care 
2020;60:319‑22.

6.	 Pavel  M, Baudin  E, Couvelard  A, Krenning  E, 
Öberg K, Steinmüller T, et  al. ENETS consensus guidelines 
for the management of patients with liver and other distant 
metastases from neuroendocrine neoplasms of foregut, 
midgut, hindgut, and unknown primary. Neuroendocrinology 
2012;95:157‑76.

7.	 Kunikowska  J, Zemczak  A, Kołodziej M, Gut  P, Łoń I, 
Pawlak  D, et  al. Tandem peptide receptor radionuclide therapy 
using  (90)Y/(177)Lu‑DOTATATE for neuroendocrine tumors 
efficacy and side‑effects  –  Polish multicenter experience. Eur J 
Nucl Med Mol Imaging 2020;47:922‑33.

8.	 Spada  F, Campana  D, Lamberti  G, Laudicella  R, Dellamano  R, 
Dellamano  L, et  al.  [(177)Lu]Lu‑DOTA‑TATE versus 
standard of care in adult patients with gastro‑enteropancreatic 
neuroendocrine tumours  (GEP‑NETs): A  cost‑consequence 
analysis from an Italian hospital perspective. Eur J Nucl Med 
Mol Imaging 2022;49:2037‑48.

9.	 Bera  K, Braman  N, Gupta  A, Velcheti  V, Madabhushi  A. 
Predicting cancer outcomes with radiomics and artificial 
intelligence in radiology. Nat Rev Clin Oncol 2022;19:132‑46.

10.	 Laudicella  R, Comelli  A, Liberini  V, Vento  A, Stefano  A, 
Spataro  A, et  al.  [(68)Ga]DOTATOC PET/CT radiomics to 



Behmanesh, et al.: Predicting the treatment response with 177Lu DTATATE using radiomics

Journal of Medical Signals & Sensors | Volume 14 | Issue 10 | October 2024� 9

predict the response in GEP‑NETs Undergoing  [(177)Lu] 
DOTATOC PRRT: The “theragnomics” concept. Cancers (Basel) 
2022;14:984.

11.	 Horvat  N, Bates  DD, Petkovska  I. Novel imaging techniques 
of rectal cancer: What do radiomics and radiogenomics have to 
offer? A literature review. Abdom Radiol (NY) 2019;44:3764‑74.

12.	 Avanzo  M, Stancanello  J, El Naqa  I. Beyond imaging: The 
promise of radiomics. Phys Med 2017;38:122‑39.

13.	 Xu  J, Yang  J, Feng Y, Zhang  J, Zhang Y, Chang  S, et  al. MRI 
feature‑based nomogram model for discrimination between 
non‑hypervascular pancreatic neuroendocrine tumors and 
pancreatic ductal adenocarcinomas. Front Oncol 2022;12:856306.

14.	 Zhang  T, Xiang  Y, Wang  H, Yun  H, Liu  Y, Wang  X, et  al. 
Radiomics combined with multiple machine learning algorithms 
in differentiating pancreatic ductal adenocarcinoma from 
pancreatic neuroendocrine tumor: More hands produce a stronger 
flame. J Clin Med 2022;11:6789.

15.	 Ma  J, Wang  X, Tang  M, Zhang  C. Preoperative prediction 
of pancreatic neuroendocrine tumor grade based on  (68) 
Ga‑DOTATATE PET/CT. Endocrine 2024;83:502‑10.

16.	 Alibabaei  S, Rahmani  M, Tahmasbi  M, Tahmasebi Birgani  MJ, 
Razmjoo S. Evaluating the gray level co‑occurrence matrix‑based 
texture features of magnetic resonance images for glioblastoma 
multiform patients’ treatment response assessment. J Med Signals 
Sens 2023;13:261‑71.

17.	 Dehghani F, Karimian A, Arabi H. Joint brain tumor 
segmentation from multi magnetic resonance sequences through 
a deep convolutional neural network. J Med Signals Sens 
2024:14:9.

18.	 Behmanesh  B, Abdi‑Saray  A, Deevband  MR, Amoui  M, 
Haghighatkhah  HR. Radiomics analysis for clinical decision 
support in 177lu‑dotatate therapy of metastatic neuroendocrine 
tumors using CT images. Biomed Phys Eng 2022. Available 
from: https://www.jbpe.sums.ac.ir/article_48455.html. [Last 
accessed on 2022 Jun 15]. doi: 10.31661/jbpe.v0i0.2112-1444.

19.	 Biomarkers Definitions Working Group. Biomarkers and 
surrogate endpoints: Preferred definitions and conceptual 
framework. Clin Pharmacol Ther 2001;69:89‑95.

20.	 Coroller  TP, Grossmann  P, Hou  Y, Rios Velazquez  E, 
Leijenaar  RT, Hermann  G, et  al. CT‑based radiomic signature 
predicts distant metastasis in lung adenocarcinoma. Radiother 
Oncol 2015;114:345‑50.

21.	 Kolossváry M, Kellermayer M, Merkely B, Maurovich‑Horvat P. 
Cardiac computed tomography radiomics: A  comprehensive 
review on radiomic techniques. J Thorac Imaging 2018;33:26‑34.

22.	 Ding C, Han H, Li Q, Yang X, Liu T. iT3SE PX: Identification 
of bacterial type III secreted effectors using PSSM profiles 
and XGBoost feature selection. Comput Math Methods Med 
2021:6690299.

23.	 Peng  H, Long  F, Ding  C. Feature selection based on mutual 
information: Criteria of max‑dependency, max‑relevance, 
and min‑redundancy. IEEE Trans Pattern Anal Mach Intell 
2005;27:1226‑38.

24.	 Cai Y, Huang T, Hu L, Shi X, Xie L, Li Y. Prediction of lysine 
ubiquitination with mRMR feature selection and analysis. Amino 
Acids 2012;42:1387‑95.

25.	 Igual L, Seguí S, editors. Supervised learning BT –  Introduction 
to data science. In: A Python Approach to Concepts, Techniques 
and Applications. Cham: Springer International Publishing; 2024. 
p. 67‑97.

26.	 Dese K, Raj H, Ayana G, Yemane T, Adissu W, Krishnamoorthy J, 
et al. Accurate machine‑learning‑based classification of leukemia 
from blood smear images. Clin Lymphoma Myeloma Leuk 
2021;21:e903‑14.

27.	 Chern  CC, Lei  WU, Huang  KL, Chen  SY. A  decision 
tree classifier for credit assessment problems in big data 
environments. Inf Syst E‑bus Manag 2021;19:363‑86.

28.	 Prabha  A, Yadav  J, Rani  A, Singh  V. Design of intelligent 
diabetes mellitus detection system using hybrid feature selection 
based XGBoost classifier. Comput Biol Med 2021;136:104664.

29.	 Heydarian  M, Doyle  TE, Samavi  R. MLCM: Multi‑label 
confusion matrix. IEEE Access 2022;10:19083‑95.

30.	 Liu  C, Bian  Y, Meng  Y, Liu  F, Cao  K, Zhang  H, et  al. 
Preoperative prediction of G1 and G2/3 grades in patients 
with nonfunctional pancreatic neuroendocrine tumors using 
multimodality imaging. Acad Radiol 2022;29:e49‑60.

31.	 Song  T, Zhang  QW, Duan  SF, Bian  Y, Hao  Q, Xing  PY, 
et  al. MRI‑based radiomics approach for differentiation of 
hypovascular non‑functional pancreatic neuroendocrine tumors 
and solid pseudopapillary neoplasms of the pancreas. BMC Med 
Imaging 2021;21:36.

32.	 Huynh  E, Coroller  TP, Narayan  V, Agrawal  V, Hou  Y, 
Romano J, et al. CT‑based radiomic analysis of stereotactic body 
radiation therapy patients with lung cancer. Radiother Oncol 
2016;120:258‑66.

33.	 Liberini  V, Rampado  O, Gallio  E, De Santi  B, Ceci  F, 
Dionisi  B, et  al.  (68)Ga‑DOTATOC PET/CT‑based radiomic 
analysis and PRRT outcome: A  preliminary evaluation based 
on an exploratory radiomic analysis on two patients. Front 
Med (Lausanne) 2020;7:601853.

34.	 Sudre  CH, Panovska‑Griffiths  J, Sanverdi  E, Brandner  S, 
Katsaros  VK, Stranjalis  G, et  al. Machine learning assisted 
DSC‑MRI radiomics as a tool for glioma classification by 
grade and mutation status. BMC Med Inform Decis Mak 
2020;20:149.

35.	 Carrasco A, Martín A, de las Heras A. The impact of class 
imbalance in classification performance metrics based on the 
binary confusion matrix, Pattern Recognition 2019;91:216-31.

36.	 Tang  J, Yang  B, Adams  MP, Shenkov  NN, Klyuzhin  IS, 
Fotouhi  S, et  al. Artificial neural network‑based prediction of 
outcome in parkinson’s disease patients using DaTscan SPECT 
imaging features. Mol Imaging Biol 2019;21:1165‑73.

37.	 Ahn  HK, Lee  H, Kim  SG, Hyun  SH. Pre‑treatment  (18)F‑FDG 
PET‑based radiomics predict survival in resected non‑small cell 
lung cancer. Clin Radiol 2019;74:467‑73.

38.	 Ritt  P. Recent developments in SPECT/CT. Semin Nucl Med 
2022;52:276‑85.

39.	 Sala  E, Mema  E, Himoto  Y, Veeraraghavan  H, Brenton  JD, 
Snyder  A, et  al. Unravelling tumour heterogeneity using 
next‑generation imaging: Radiomics, radiogenomics, and habitat 
imaging. Clin Radiol 2017;72:3‑10.

https://www.jbpe.sums.ac.ir/article_48455.html

