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Uncertainty analysis is the process of identifying limitations in scientific knowledge and
evaluating their implications for scientific conclusions. In the context of microbial risk
assessment, the uncertainty in the predicted microbial behavior can be an important
component of the overall uncertainty. Conventional deterministic modeling approaches
which provide point estimates of the pathogen’s levels cannot quantify the uncertainty
around the predictions. The objective of this study was to use Bayesian statistical
modeling for describing uncertainty in predicted microbial thermal inactivation of
Salmonella enterica Typhimurium DT104. A set of thermal inactivation data in broth
with water activity adjusted to 0.75 at 9 different temperature conditions obtained from
the ComBase database (www.combase.cc) was used. A log-linear microbial inactivation
was used as a primary model while for secondary modeling, a linear relation between the
logarithm of inactivation rate and temperature was assumed. For comparison, data were
fitted with a two-step and a global Bayesian regression. Posterior distributions of model’s
parameters were used to predict Salmonella thermal inactivation. The combination of
the joint posterior distributions of model’s parameters allowed the prediction of cell
density over time, total reduction time and inactivation rate as probability distributions at
different time and temperature conditions. For example, for the time required to eliminate
a Salmonella population of about 107 CFU/ml at 65◦C, the model predicted a time
distribution with a median of 0.40 min and 5th and 95th percentiles of 0.24 and 0.60 min,
respectively. The validation of the model showed that it can describe successfully
uncertainty in predicted thermal inactivation with most observed data being within the
95% prediction intervals of the model. The global regression approach resulted in less
uncertain predictions compared to the two-step regression. The developed model could
be used to quantify uncertainty in thermal inactivation in risk-based processing design
as well as in risk assessment studies.
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INTRODUCTION

Food safety management has been changing to a more
risk-based approach for food safety control with regulators
all over the world adopting microbial risk assessment as
the foundation for their decision-making (Koutsoumanis and
Aspridou, 2016). The dynamics of pathogens’ growth, survival,
and inactivation in foods should be explicitly considered
in microbiological risk assessment. Predictive microbiology
has been recognized as an important part of the risk
assessment for estimating the changes in microbial numbers
in foods along the farm-to-fork chain (Kakagianni and
Koutsoumanis, 2019). However, the application of predictive
models in risk assessment has different demands compared
with “traditional” predictive microbiology (Ross and McMeekin,
2003). The Codex guidelines for conducting microbiological
risk assessment apparently stress the importance of the concept
of uncertainty and variability (CAC, 1999). In risk-based
approaches, the use of deterministic models which provide
point estimation of microbial concentrations is problematic
(Nauta, 2002) and the need for development of the models
which are capable of expressing populations of pathogens
probabilistically (i.e., predict the probability distribution of
the microbial numbers at the time of consumption) has
been emphasized (Nauta, 2002; Ross and McMeekin, 2003;
Koutsoumanis et al., 2016).

In the context of risk assessment, uncertainty is used as a
general term which is relevant to all types of limitations in the
available knowledge that influences the range and probability
of possible answers to the assessment question (EFSA Scientific
Committee et al., 2018). Risk assessors should examine in
a systematic way every part of their assessment in order to
identify and characterize all uncertainties, including those related
with the inputs to the assessment as well as the methods and
models used in the assessment. In microbial risk assessment,
the uncertainty in the predicted microbial behavior can be an
important component of the overall uncertainty. Indeed, the
description of the microbial behavior in exposure assessment is
uncertain with the most important sources of uncertainty related
to the experimental error of the data used for the development of
the model as well as the fitting errors of the models (Nauta, 2002;
Pouillot et al., 2003).

One approach for quantifying uncertainty in predictive
microbiology is the Bayesian inference (Carlin and Louis,
2000; Congdon, 2007) where all the model parameters are
random variates and not fixed as other frequentist statistical
approaches. In a Bayesian framework, prior distributions for
all model parameters which reflect the state of knowledge
available before analyzing the data set are specified. In a second
step, posterior distributions for all parameters are computed
using Bayes’ theorem by combining prior distributions and
observed data (Pouillot et al., 2003). Bayesian inference has
been used for estimation of model parameter uncertainty
in several microbial risk assessment studies (Pouillot et al.,
2003; Barker et al., 2005; Crepet et al., 2006; Delignette-
Muller et al., 2006; Crépet et al., 2009). In most of these
studies, uncertainty is characterized for microbial growth while

less information are available for the applicability of Bayesian
inference in microbial inactivation models and the interpretation
of parameter uncertainty for describing reduction times for a
microbial population (Membré and van Zuijlen, 2011).

Apart from the experimental errors another important
uncertainty source in microbial behavior, predictions is the
errors in fitting the data to the models. Predictive microbiology
models are usually fitted to observed data in a two-step
fitting process. In the first step, the primary growth model
is fitted to experimental data and the kinetic parameters
are estimated. The second step is to independently fit a
secondary model to each of these kinetic parameters as a
function of experimental factors (e.g., temperature, pH, water
activity, etc). The global fitting is an alternative procedure in
which primary and secondary models are combined, which
provides a direct relationship between environmental factors and
microbial counts. The selection of the above fitting procedures
can significantly affect the uncertainty in model predictions
(Martino and Marks, 2007).

The objective of this study was to use Bayesian statistical
modeling for describing uncertainty in predicted microbial
thermal inactivation of Salmonella enterica Typhimurium DT104
by comparing a two-step and a global Bayesian regression. Such
a model can provide predictions as probability distributions
which enables to quantify uncertainty related to model
fitting in risk-based processing design and in microbial risk
assessment studies.

MATERIALS AND METHODS

Data
A set of Salmonella enterica Typhimurium DT104 thermal
inactivation data at 9 different temperature conditions (55, 60,
65, 70, 72, 74, 76, 78, and 80◦C) obtained from the ComBase
database1 was used for the development and validation of
the models. Data were reported by Mattick et al. (2001) who
investigated the bacterial inactivation of the pathogen in the
broth adjusted to water activity value of 0.75 by glucose-
fructose. Dilutions were made in maximal recovery diluent,
and viable counts were estimated with plating onto blood
agar and incubation for 48 h at 37◦C to ensure optimal
recovery of injured cells. An initial cell density of approximately
107 CFU/ml was used. Three to four replicates were tested at
each temperature (32 inactivation curves in total). Data at 8
temperature conditions (55, 60, 65, 70, 74, 76, 78, and 80◦C)
were used for model development and one temperature (72◦C)
for model validation.

Bayesian Modeling
Global Regression
In global Bayesian regression the primary model used to describe
the concentration of survivors over time was combined with the
secondary model describing the relation between inactivation

1www.combase.cc
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rate and temperature. As a primary model a log-linear model was
used (Peleg, 2006):

log10Nt = −k (T) t + log10N0 (1)

where N0 [log10 CFU/ml] is the initial population size at time 0
[h], t is the inactivation time [h], k (T) is temperature-dependent
inactivation rate parameter [log10 CFU/h] at temperature T [◦C].
For N0 the mean value of all observed initial cell densities was
used. The random variable of inactivation rate parameter was
described as a log-normal distribution:

k (T) ∼ LogNormal
(
log (µ), σ

)
(2)

where µ and σ are parameters of log-normal distribution. An
exponential model was used to describe the inactivation rate
parameter µ as a function of temperature as following:

µ = b× exp (c× T) (3)

where b and c are scaling parameter and exponential rate
parameter respectively. In global Bayesian regression Eqs. (1)–(3)
were combined as following.

1
t

log10
N0

Nt
∼ LogNormal

(
log

(
b× exp (c× T)

)
, σ

)
(4)

Eq. (4) was fitted to the observed Salmonella inactivation data
at 55, 60, 65, 70, 74, 76, 78, and 80◦C to obtain posterior
distributions for b, c, and σ parameters.

Two-Step Regression
For comparison, bacterial inactivation was also modeled with
a two-step approach using Bayesian regression. At first, the
primary model was fitted independently to the data at each
temperature (Tsep = 55, 60, 65, 70, 74, 76, 78, and 80◦C).

log10Nt = −kTsep t + log10N0 (5)

Then, the estimated inactivation rates kTsep were described as log-
normal distributions:

kTsep ∼ LogNormal(log(µTsep
), σTsep) (6)

where µTsep , σTsep are parameters estimated from the primary
model fitting. We can obtain the uncertainty of kTsep by using
joint posterior distribution µTsep and σTsep . 100 values for each
kTsep were selected randomly from the distribution to build a data
set of inactivation rates at temperature Tsep.

ktwo(T) = {k55i, k57i, . . . , kTsepi, . . . , k80i}, i = 1, 2, 3, . . . , 100
(7)

where kTsepi and ktwo (T) are ith random sampling from
kTsep and the data set of inactivation rates obtained from
the primary fitting at all temperatures Tsep. The data set of
inactivation rates ktwo(T) were fitted to the secondary model
as following:

ktwo(T) ∼ LogNormal(log(µtwo), σtwo) (8)

µtwo = btwo × exp (ctwo × T) (9)

µtwo, btwo and ctwo are mean values of inactivation rate,
scaling parameter and exponential rate parameter respectively.
By combining Eq. (8) and Eq. (9) the secondary model has the
following form:

ktwo(T) ∼ LogNormal(log(btwo × exp (ctwo × T)), σtwo) (10)

Salmonella inactivation data were fitted to Eq. (10) and the
posterior distributions of btwo, ctwo, and σtwo were obtained.

Computation
Bayesian inference can combine prior parameters into models.
Prior distributions can be set by using previous knowledge
on the parameters. It would be helpful when prior studies or
some experiences are known. Prior distribution has been used
in several studies related to bacterial growth or inactivation
model (Pouillot et al., 2003; Crepet et al., 2006; Crépet et al.,
2009; Spor et al., 2010; Jaloustre et al., 2011). Non-informative
prior distribution is also possible, when there is not enough
information of parameters. In this study, we used uniform
distribution as a non-informative prior distribution since there
was no prior information.

Computations were performed using Stan software2 and
rstan package of R software3. For each model, inferences were
conducted with 5×103 iterations with 4 independent chains
after an adaptation phase of 2.5×103 iteration. Convergence
was checked by both visually checking Markov Chain Monte
Carlo (MCMC) chain traces and examining Gelman and Rubin
convergence statistic. The R code used for the above calculation
is outlined in Supplementary Material.

2http://mc-stan.org
3https://cran.r-project.org/web/packages/rstan/index.html

FIGURE 1 | Empirical joint posterior distribution of parameters b, c, and σ
(under the diagonal), corresponding adjusted distributions (on the diagonal)
and correlation coefficients (over the diagonal) estimated with the global
Bayesian regression.
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RESULTS AND DISCUSSION

The posterior distributions for model’s parameters b, c, and σ
obtained with the global Bayesian regression are presented in

Figure 1. The mean values for b, c, and σ were 4.10 × 10−5,
0.20 and 0.31, respectively. The respective coefficients of
variation were 19.41, 1.42, and 5.29%. As shown in the latter
figure the posterior distribution of c and σ were symmetric

FIGURE 2 | Comparison between observed cell densities with those estimated by the Salmonella inactivation model at 55◦C (A), 60◦C (B), 65◦C (C), 70◦C (D),
74◦C (E), 76◦C (F), 78◦C (G), and 80◦C (H). Solid lines represent prediction with parameters of maximum a posterior probability estimate. The 95% confidence
intervals and prediction intervals are described with dashed and dotted lines, respectively.

Frontiers in Microbiology | www.frontiersin.org 4 September 2019 | Volume 10 | Article 2239

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02239 September 23, 2019 Time: 15:11 # 5

Koyama et al. Estimation Modeling Uncertainty

while the posterior distribution of b was slightly skewed
to the right. Parameters b and c showed a high negative
correlation (r = −0.984). A very low correlation was observed
between parameters b and σ (r = 0.0322) and parameters c
and σ (r =−0.0181).

Figure 2 presents a comparison between Salmonella
inactivation predicted by the model and the observed
data used for the development of the model. The results
showed that the observed data are highly variable with the
population range for some sampling times being up to 2
logs CFU/ml. In general, the observed variance in microbial
behavior can be attributed to both variability and uncertainty
(Nauta, 2002; Pouillot et al., 2003). In the case of microbial
inactivation individual cell heterogeneity can be an important
source of variability in population dynamics (Aspridou and
Koutsoumanis, 2015). Aspridou and Koutsoumanis (2015)
applied a statistical modeling approach for describing and
evaluating the individual cell heterogeneity as variability source
in microbial inactivation. Using Monte Carlo simulation, they
showed that the variability in the predicted inactivation behavior
is negligible for concentration above 100 cells due to the law
of large numbers but as the concentration decreases below
100 cells the variability increases significantly. Considering
however, that the data used in the present study were all above
the threshold of 100 cells the variable behavior shown in Figure 2
can be mainly attributed to uncertainty and in particular to the
experimental errors.

The use of Bayesian regression for the development of
the model allowed for providing predictions in the form of
probability distributions which characterize their uncertainty
level. In Figure 2, solid lines represent the predictions made
using the maximum posteriori probability estimate for the
parameters of the model. The latter estimate is asymptotically
equivalent to parameters estimated from maximum likelihood
estimation (Robert, 2007). Dotted lines represent the confidence
intervals and dashed lines represent the 95% prediction intervals
based on the probability distributions of the model’s parameters
presented in Figure 1. As shown in Figure 2, the majority
of the observed data points are within the 95% prediction
intervals. The description of the uncertainty by the developed
model is more clearly demonstrated in Figure 3. Figure 3A
presents the prediction of Salmonella enterica inactivation at
65◦C with the respective confidence and 95% prediction intervals.
For each temperature condition, the output of the model is a
probability distribution describing the uncertainty around the
prediction. Figure 3B shows the probability distributions of
Salmonella cell density at 65◦C after 0.1, 0.2, and 0.3 h. At
0.1 h, the median predicted value was 4.94 log CFU/ml and
the 5th and 95th percentiles were 3.86 and 5.59 log CFU/ml.
At 0.3 h, the probability distribution of the predicted cell
density is wider due to the cumulative effect of inactivation
rate uncertainty. In the latter case, the median predicted
cell density was 1.63 log CFU/ml and the 5th and 95th
percentiles were −1.59 and 3.61 log CFU/ml. Figure 3C
presents the probability distributions describing uncertainty
in the predicted time for the total inactivation of Salmonella
population. The median predicted time was 0.40 min and the

FIGURE 3 | (A) Prediction of Salmonella enterica inactivation at 65◦C.
(B) Probability distributions describing uncertainty in the predicted cell density
after 0.1 h (solid line), 0.2 h (dashed line), and 0.30 h (dotted line).
(C) Probability distributions describing uncertainty in the predicted time for
total inactivation of the population.

5th and 95th percentiles were 0.24 and 0.60 min respectively.
This information is of great importance for a risk-based
food processing design supporting food business operators
in decision making on the duration of thermal processing
based on an accepted level of risk for pathogen’s survival
(Koutsoumanis and Aspridou, 2016).

The developed model was further validated against observed
data on Salmonella thermal inactivation at 72◦C. These data were
not used for the development of the model. Figure 4 presents a
comparison between the observed and the predicted inactivation.
The model satisfactorily predicted the reduction of Salmonella
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FIGURE 4 | Comparison between observed (solid circles) and predicted
inactivation of Salmonella enterica at 72◦C. The solid, dashed and dotted lines
represent the maximum a posteriori probability estimate (solid), 95%
confidence band (dashed) of bacterial inactivation, and 95% prediction band
(dotted) of bacterial inactivation.

population. The prediction based on the maximum posteriori
probability estimate for the parameters of the model (solid line)
was very close to observed data while most data points were
within the 95% prediction intervals.

Fitting errors are another important source of uncertainty in
predictive microbiology. In most cases, predictive microbiology
models are fitted to observed data in a two-step fitting process.
In the first step, the primary model is fitted to the experimental
data and the estimated kinetic parameters are further fitted
to a secondary model. In general, there is no link between
these two steps and uncertainty associated with the primary
model is not taken into account in the secondary modeling.
All kinetic parameters’ values of the primary models usually
have the same weight in the secondary model regardless of
the goodness of fit of the primary model (Pouillot et al.,
2003; Martino and Marks, 2007). In order to evaluate the
effect of the fitting process on the uncertainty of the model’s
outputs, predictions of the model developed with the global
fitting approach were compared with those derived from a
two-step fitting method. For the two-step fitting, the data
of Salmonella inactivation were first fitted to the primary
model using Bayesian regression and the inactivation rate at
each temperature was estimated in the form of probability
distribution describing the uncertainty. At a second step, 100
values for each inactivation rate were selected randomly from the
distributions and fitted to the secondary model. A comparison
between the predictions of the model developed with the
global and the two-step fitting method at 72◦C is presented in
Figure 5A together with the observed data. Figure 5B shows
the probability distributions describing the uncertainty in the
predicted inactivation rate at three temperature conditions. The
comparison showed that the two-step approach results in a
higher uncertainty of the model’s outputs compared with the
global fitting. Previous studies comparing the two modeling
procedures with maximum likelihood estimation also reported
that the global approach provides less uncertain and more robust
predictions. Martino and Marks (2007) compared global and

FIGURE 5 | Comparison between global (black) and two step fitting (red)
results. (A) Observed data (solid circles) and prediction of Salmonella enterica
inactivation behavior under isothermal condition at 72◦C. The solid, dashed
and dotted lines represent the maximum a posterior probability estimate
(solid), 95% confidence interval (dashed) and 95% prediction band (dotted).
(B) Probability distributions of the estimated inactivation rate log k(T) at 55◦C
(solid line), 60◦C (dashed line), 65◦C (dotted line).

two step fitting for a Listeria monocytogenes growth model
and reported that the global regression yielded lower standard
errors of calibration and it was more robust than the two-
step procedure. Membré et al. (2004) combined primary and
secondary models within a global approach that directly related
the growth of L. monocytogenes to storage temperature and
reported that the bias factor was significantly improved compared
the two-step approach.

CONCLUSION

In conclusion, the model developed in the present study using
Bayesian regression enables to describe the uncertainty in
predicted thermal inactivation of Salmonella. The model provides
prediction in the form of probability distributions and can be
used to quantify the uncertainty related to model fitting in risk-
based processing design as well as in risk assessment studies. The
model could be further improved by incorporating variability
related to the heterogeneity in individual cell behavior (Aspridou
and Koutsoumanis, 2015; Koyama et al., 2019). The Bayesian
procedure could be also used to develop a complete model for
Salmonella thermal inactivation enabling to describe variability
and uncertainty separately.
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