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Abstract
To determine whether the injury mortality prediction (IMP) statistically outperforms the traumamortality prediction model (TMPM) as a
predictor of mortality.
The TMPM is currently the best trauma score method, which is based on the anatomic injury. Its ability of mortality prediction is

superior to the injury severity score (ISS) and to the new injury severity score (NISS). However, despite its statistical significance, the
predictive power of TMPM needs to be further improved.
Retrospective cohort study is based on the data of 1,148,359 injured patients in the National Trauma Data Bank hospitalized from

2010 to 2011. Sixty percent of the data was used to derive an empiric measure of severity of different Abbreviated Injury Scale predot
codes by taking the weighted average death probabilities of trauma patients. Twenty percent of the data was used to create
computing method of the IMP model. The remaining 20% of the data was used to evaluate the statistical performance of IMP and
then be compared with the TMPM and the single worst injury by examining area under the receiver operating characteristic curve
(ROC), the Hosmer–Lemeshow (HL) statistic, and the Akaike information criterion.
IMP exhibits significantly both better discrimination (ROC-IMP, 0.903 [0.899–0.907] and ROC-TMPM, 0.890 [0.886–0.895]) and

calibration (HL-IMP, 9.9 [4.4–14.7] and HL-TMPM, 197 [143–248]) compared with TMPM. All models show slight changes after the
extension of age, gender, and mechanism of injury, but the extended IMP still dominated TMPM in every performance.
The IMP has slight improvement in discrimination and calibration compared with the TMPM and can accurately predict mortality.

Therefore, we consider it as a new feasible scoring method in trauma research.

Abbreviations: AIC = Akaike information criterion, AIS = Abbreviated Injury Scale, BR = body region, GCS = Glasgow Coma
Score, HL = Hosmer–Lemeshow, IMP = injury mortality prediction, ISS = injury severity score, LISS = logarithm injury severity score,
ln = natural logarithm, MARC = model-averaged regression coefficient, NBR = number of body region, NFS = no further specify,
NISS = new injury severity score, NTDB = National Trauma Data Bank, ROC = receiver operating characteristic, SWI = single worst
injury, TDP = traumatic death probability, TMPM = trauma mortality prediction model, TMR = traumatic mortality rate, WADP =
weighted average death probability.
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1. Introduction

The trauma score has an independent score method after the
establishment of the Abbreviated Injury Scale (AIS).[1] It is the one
that is designed by the only dictionary especially as a system to
define the severity of injuries through the body. The latest version
of such technique appeared in 2005,[2] which was updated in
2008.[3] Although the injury severity score (ISS)[4] of AIS-based
severity values has been considered as a “gold standard” in the
anatomic injury severity indicators and widely used in clinical
science, the real definition is a “sum of squares,”which is possible
to lose part of the calculating information of trauma and lead to
the poor ability of predicting mortality.[5–8] The new injury
severity score (NISS)[5] overcomes the shortcoming of ISS, but
overestimates the mortality of injuries in the same body region
(BR), so it cannot completely replace the ISS.[9] The logarithm
injury severity score (LISS)[6] adopts natural logarithm (ln) to
transformAIS and automatically removes the score of 1 or 2 from
the AIS, which is better than the NISS and ISS in predicting
mortality. However, it is similar to ISS and NISS, which cannot
solve the problem that the same value in different BRs does not
imply the same mortality rate.[7,9–11]

The trauma mortality prediction model (TMPM)[7] derives an
empirical severity value for each diverse AIS predot codes, which
is called the model-averaged regression coefficient (MARC).
Then we calculate the TMPM value according to MARC values
and predict the mortality. The TMPM is better than the ISS in
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discriminating survivors from nonsurvivors. Recently, research-
ers concluded that the TMPM outperforms the NISS and ISS as a
predictor of mortality.[8] Although TMPM is statistically
rigorous, it is not accurate enough in mathematics.
We suggest a new method in predicting death of injured

patients with the injury severity that is indicated by the AIS code
dictionary to fix the inaccuracy of AIS severity measurements,
especially the prediction results of TMPM. Based on the National
Trauma Data Bank (NTDB) database, first, 60% of the data is
used to derive a weighted average death probability (WADP) for
each of different AIS predot codes. TheseWADP values provide a
platform for comparing the personal injury severity and are
included in the mortality prediction model about personal injury.
Then, 20% of the data is used to evaluate the injury mortality
prediction (IMP) model (consists of the 5 worst injuries). Last, the
remaining 20% of the data (validation data set) is used to
compare these 2 newmodels with the TMPMmodel based on the
latest standard in using measures of discrimination, calibration,
and the AIC.
Figure 1. Flowchart for data analyzed. IMP= injury mortality prediction,
WADP=weighted average death probability.
2. Methods

2.1. Data source

This study was conducted using data from the NTDB on patients
hospitalized with traumatic injuries between 2010 and 2011.
Available information included patient demographics, hospital
demographics, AIS codes (version 1998), Glasgow Coma Score
(GCS), mechanism of injury (based on International Classifica-
tion of Diseases, 9th Revision, Clinical Modification External
cause of injury codes), encrypted hospital identifiers, and in-
hospital mortality. The data set consisted of 1,496,123 patients
with one or more AIS codes. Patients without AIS codes (12,301)
or with burns or nontraumatic diagnoses (e.g., poisoning,
drowning, suffocation) (110,630), with missing or invalid data
(data missing on age, sex, length of hospital stay, or outcome)
(17,295), and patients who sustained a single injury and AIS code
component was 9 (3445), whose age younger than 1 year
(85,327), or over 89 years (46,128) were excluded from our
analysis. Patients who were dead on arrival (4771) or transferred
to another facility (45,396) were also excluded. We also required
the hospital to have hospitalized at least 500 trauma patients in 1
year, because we believed that hospitals have substantial
experience in trauma treatment, and the AIS coding would be
more accurate (107,790 patients were excluded). E-codes were
mapped to 1 of the 6 mechanisms of injury by an experienced
clinical trauma surgeon: low fall, motor vehicle crash, violence,
blunt injury, stab wound, and gunshot wound. The hospital
demographics show that the majority of the hospitals in the study
data set are Level I and II trauma centers with more than 200 beds
and<2000 patients each year, are nonprofit, and are community
hospitals and university affiliated hospitals. The final data set
included 1,148,359 patients admitted to 476 hospitals. The
details for recruitment were shown in Fig. 1.

2.2. Overview of IMP development

In our study data set of 1336 AIS injury codes, we evaluated only
60%, lost 7 AIS injury codes (only contains 12 BRs). Therefore,
there were 1329 AIS injury codes involved in development of
trauma mortality rate (TMR) and WADP eventually. First, we
calculated the TMR of each AIS predot code (Appendix A, http://
links.lww.com/MD/B848). Then we created 3 separate logistic
2

regression models based on TMR, GCS, and BR, respectively,
and added 5 additional comprehensive variables: number of body
regions (NBR), age, gender, injury mechanism, and hospital fixed
effects. Simultaneously, the optimal ratio of GCS and BR death
probability was used to modify traumatic death probability
(TDP) of TMR. We applied average of the first 3 highest (worst)
TDP values as WADP for each AIS predot code (Appendix B,
http://links.lww.com/MD/B848).
Of the total data set (not used for the estimation of WADP

values), 20% was used to estimate IMP. To calculate IMP
coefficient according to logistic regression model (Table 4), and
deduce specific formula for the IMP (Appendix C, http://links.
lww.com/MD/B848). The remaining 20% of the data (validation
data set) was not used for the estimation of WADP values or
the development of IMP to estimate the statistical performance
of IMP.
2.3. Customization of each trauma model

This validation data set enables us to test the performance of the
TMPM, single worst injury (SWI) and IMP. TMPM model
applies the original MARC values, which are sorted according to
the severity in multiple injury patients, and determines whether
the 2 worst injury in the same BR, and then calculates each
TMPM probability of death. An SWI model is defined as the
WADP value for the worst injury (i.e., the greatest WADP value).
IMP contains 5 of the worst (max)WADP values of the injuries in
severity order, determines whether or not the worst and second
worst injuries are in the same BR, the product of the 2 worst
injuries WADP values is a variable and NBR (as ln(NBR) and
NBR0.382, fractional polynomial analysis is suggested[12]) in each
individual injury patient, according to the IMP-specific formula
to calculate the probability of death. Meanwhile, all 3 models are
then re-estimated after adding age, gender, and injury mechanism
to simple injury models, which only include the information on
anatomic injury. We apply the robust variance estimators,[13]

because the outcomes of patients treated at the same trauma
center may be correlated.
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Table 2

Model performance: anatomic injury models.

Model description ROC (95% CI)
∗

HL stat (95% CI)† AIC

TMPM 0.890 (0.886–0.895) 197 (143–248) 40,406
SWI 0.895 (0.891–0.899) 176 (125–223) 39,161
IMP 0.903 (0.899–0.907) 9.9 (4.4–14.7) 38,037

The IMP demonstrated the best discrimination, calibration, and AIC compared with TMPM and the SWI
models.
AIC=Akaike information criterion, CI= confidence interval, HL stat=Hosmer–Lemeshow statistics,
IMP= injury mortality prediction, ROC= receiver operating characteristic, SWI= single worst injury,
TMPM= trauma mortality prediction model.
∗
Comparing the ROC between any 2 models, P< .001.

† HL stat IMP vs TMPM, P= .02, IMP vs SWI, P= .04, and SWI vs TMPM, P< .001.
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2.4. Statistical analysis

The statistical performance of the trauma models was assessed
with the area under the receiver operating characteristic curve
(ROC), the Hosmer–Lemeshow (HL) statistics, and the Akaike
information criterion (AIC). The AIC is a measure of the
Kullback–Leibler information number, which quantifies how
close a statistical model approaches the true distribution. The
reason of comparison is that the best model in a particular data
set is the model with the lowest AIC. A bootstrapping algorithm
(1000 replications) was used to calculate the bias-corrected 95%
confidence intervals for the ROC and the HL. A P< .05 was
considered statistically significant. All statistical analyses were
performed with STATA/SE version 12.0 for Windows. The study
was approved by the Institutional Review Board of Hangzhou
Normal University, People’s Republic of China.
3. Results

In this study, the total of the WADP is 1329 different AIS coded
injuries (Supplemental Digital Content 1.xls, http://links.lww.
com/MD/B847). These WADP values range from 0.008 for a
minor injury (AIS 730299.1: “digital nerve injury no further
specify [NFS]”) to a value of 3.687 for an unsurvivable injury
(AIS 919208.6: “burn of larynx trachea and lung”). WADP
values provide finer precision than the 6 consecutive integer
values useable to the AIS severity. It is interesting to note that
seemingly “minor” injuries (e.g., AIS 341402.1: “sprain/strain
thyroid region”) are assigned to higher WADP values, while
others are “severe” injuries (e.g., AIS 311000.6: “open wound of
neck NFS complicated”) assigned WADP values are relatively
low. We think that they are appropriate, because by design,
WADP values reflect an injury’s propensity lead to death rather
than their subjective severity.
Patient demographics are summarized in Table 1. In this study,

the mortality rate was 2.76%, of which White and Black were
66.2% and 14.3%, respectively. The 2 most common causes of
trauma were low falls (38.6%) and motor vehicle accidents
(36.2%). Females accounted for 35.5%.
The statistical performance of all of the models is shown in

Tables 2 and 3. The IMP exhibits significantly both better
Table 1

Patients’ demographics.

Characteristics No. of patients, %

Age, y (IQR) 42 (23–62)
Gender, female 407,200 (35.5)
Race
White, not Hispanic 760,141 (66.2)
Black 163,860 (14.3)
Hispanic 128,135 (11.1)
Asian 19,129 (1.7)
Native American or Alaskan Native 12,663 (1.1)
Other race 64,431 (5.6)

Mechanism of injury
Low fall 443,654 (38.6)
Motor vehicle accident 415,915 (36.2)
Violence 96,587 (8.4)
Blunt 71,709 (6.3)
Stab 62,162 (5.4)
Gunshot 58,332 (5.1)

Dead 31,661 (2.76)

IQR= interquartile range.
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discrimination, calibration, and the AIC statistic, compared with
either the TMPM or the SWI model. With the addition of age,
gender, and mechanism of injury, IMP continued to exhibited
superior model performance, compared with TMPM or the SWI
model. The IMP coefficients are shown in Table 4.
Figure 2 shows the TMPM and IMP, respectively, against the

actual mortality rates. The TMPM mortality rates were
distributed at 2-sided dotted reference line but displayed an
arch shaped curve. The data fits a linear function with an R2=
0.9134, P< .001. The IMP mortality rates were uniformly
distributed much closer to the dotted reference line and the data
fits a linear function with an R2=0.9913, P< .001.

4. Discussion

With the continuous improvement of the diagnosis and
treatment, trauma mortality will also significantly decrease.
Although patients with injuries treated at trauma centers have
better outcomes compared with patients admitted to nontrauma
centers,[14] there are still significant differences in the outcomes
among Level I trauma centers for severity of similar trauma
patients,[15] which may result from the inaccuracy of the current
scoring systems.
Designing a perfect trauma scoring system to accurately predict

mortality and outcome is a problem remaining to be solved by
trauma surgery experts. It is necessary that has reliable large data
set and a feasible calculation method to solve this problem. The
NTDB has the largest and the most credible trauma dataset
around the world. It includes trauma data for different trauma
centers in different regions of the United States and contains
information that provides us with research. Currently, TMPM is
the best trauma score method, and its ability is better than the ISS
and NISS in predicting mortality.[8] Thus, this research only
compared IMP with TMPM rather than ISS and NISS.
Table 3

Model performance: anatomic injury models augmented with age,
gender, and mechanism of injury.

Model description ROC (95% CI)
∗

HL stat (95% CI)† AIC

TMPM 0.919 (0.916–0.922) 242 (186–293) 38,018
SWI 0.917 (0.913–0.920) 158 (108–204) 37,847
IMP 0.923 (0.920–0.927) 40 (20–56) 36,528

Although every model will be changed by the addition of more predictors, IMP still shows superior
model compared with TMPM and the SWI models.
AIC=Akaike information criterion, CI= confidence interval, HL stat=Hosmer–Lemeshow statistics,
IMP= injury mortality prediction, ROC= receiver operating characteristic, SWI= single worst injury,
TMPM= trauma mortality prediction model.
∗
ROC IMP vs TMPM, P< .001, IMP vs SWI, P< .001, and SWI vs. TMPM, P= .06.

† Comparing the HL stat between any 2 models, P< .001.
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Table 4

IMP regression coefficients.

Predictor Coefficients Robust Std. Error Z P > Zj j 95% CI

WADP1 C1 2.6352 0.0390 67.60 .000 2.5588–2.7116
WADP2 C2 2.3540 0.1009 23.33 .000 2.1563–2.5518
WADP3 C3 0.3164 0.0613 5.16 .000 0.1963–0.4366
WADP4 C4 0.2047 0.0798 2.56 .010 0.0482–0.3611
WADP5 C5 0.3681 0.0766 4.81 .000 0.2179–0.5182
Same region C6 �0.3080 0.0354 �8.71 .000 �0.3773 to �0.2386
WADP1�WADP2 C7 �0.6582 0.0360 �18.29 .000 �0.7288 to �0.5877
ln (NBR) C8 �1.7419 0.1280 �13.61 .000 �1.9929 to �1.4910
NBR0.382 C9 1.6154 0.1736 9.31 .000 1.2752–1.9556
Constant C0 �9.0177 0.1782 �50.60 .000 �9.3669 to �8.6684

Coefficients for IMP model were recalculated based on all 229,426 patients not used to calculate WADP values. WADP1 indicates the worst injury (highest WADP value), WADP2 the second worst injury, and so on.
Same region is a binary variable, which is equal to 1 if the worst and second worst injuries are in the same body region, 0 otherwise. WADP1�WADP2 is the product of the WADP values for the 2 worst injuries.
NBR is the number of body regions for each injured patient.
CI= confidence interval, IMP= injury mortality prediction, ln=natural logarithm, NBR=number of body region, WADP=weighted average death probability.

Wang et al. Medicine (2017) 96:35 Medicine
In this TMR and WADP development data set, TMR value is
set to 0.8�0.618 (in reference to population crude death rate of
approximately 0.8% in the United States during the year 2010
and 2011),[16] take the golden point 0.618. Because the average
age of the injured patients was younger, then, actual death rate
for different AIS predot codes was 0, will increase death cases
apparently. However, in fact, its impact on the whole validation
data set can be negligible. There are 11 (only contains 15 patients)
Trauma Mortality Prediction Model
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Figure 2. Solid lines indicatemortality rates for different TMPM and IMP values.
The dotted reference lines represent perfect calibration. 95% Binomial
confidence intervals for 2 models are based on the same validation dataset
of 229,895 patients. IMP= injury mortality prediction, TMPM= trauma mortality
prediction model.
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single or multiple injuries with 100% mortality, but these single
or multiple injuries each has less cases, and the majority of code
pairs of 100% mortality have only 1 case. In this study, a case
survivor was added, then we calculated TMR value (Appendix A,
http://links.lww.com/MD/B848), which seems to decrease death
cases. In fact, this method of correction is appropriate, and in
more accord with clinical practice.
In this study, specific AIS predot code for different individual

patients is used, 3 separate logistic regression models were
created using TMR, GCS, and BR. Meanwhile the optimal
proportion of GCS and BR death probability was used to correct
TDP of TMR, in order to achieve the best value. This method
combines rigorous statistical regression models with mathemati-
cal properties in order to improve the prediction accuracy. For
specific AIS predot code using different individual patients, the 3
highest TDP weighted as its final average value (i.e., WADP)
(Appendix B, http://links.lww.com/MD/B848). For each individ-
ual, the contribution to the death depends primarily on the 3most
serious injuries, such as ISS, NISS, LISS, etc.
The coefficients for the worst injuries were approximately 3

times the coefficients for the less severe injuries (results not
shown) in this study, when the 2 worst injuries were not
interacted in IMP. This indicates that the worst injury determine
the probability of death of individual injury patients in a certain
extent. Therefore, SWI models in the prediction of death are also
efficient.[17] The TMPM holds that a patient’s 5 worst injuries
determine the possibility of mortality to a great extent.[7] TMPM
is more than ISS in the number of injured regions. ISS allows
calculation at the 3 best injuries.[4] The study considers the sum of
the 5 most severe WADP values as IMP value because only 5
coefficients of the worst injuries for each individual patient were
statistically significant in our data set. We find that the
discrimination and calibration of the IMP are slightly better
than TMPM which is statistically significant (Table 2).
This study finds that the NBR for each trauma patient has an

inherent and useful parameter in the prediction ability of trauma
death. NBR is better than patient’s age or gender in both the
discrimination and the relevance (results not shown). However,
the existing scoring methods (such as ISS, LISS, TMPM, etc.) do
not cover it. In this study, NBR is added to improve IMP predict
trauma results.
Generally speaking, the addition of any other information

(e.g., systolic blood pressure, respiratory rate, GCS, etc.) always
improves the accuracy of predictions.[7,18] The basic IMP is

http://links.lww.com/MD/B848
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attractive because only anatomical injury information is
available. However, IMP can also serve as the solid foundation
for the addition of more sophisticated prediction information
(e.g., physiological parameters) to further improve the accuracy
of the prediction results. There is similar result in this study, the
addition of GCS score can improve the ROC of the IMP from
0.923 to 0.943 (including 217,480 patients with GCS score, this
is not shown in analysis). When we added age, gender, and
mechanism of injury, the IMP had better discrimination,
calibration, and AIC than the TMPM and SWI with the
additional information (Table 3).
In this study, as required by the trauma score method, we have

removed all cases related to patients with single or multiple
injuries that only contains AIS severity code of 9. Nevertheless,
there are still BRs where AIS severity code equals to 9 in multiple
injuries cases (a total of 22 [1.66%] AIS predot codes, involving
0.61% of the BRs), and their corresponding WADP values could
be calculated. However, the impact to the entire data set can be
neglected.
This study only applies AIS-1998 rather than AIS-2005

version. Although AIS-2005 is more sophisticated and may be
better in predicting trauma mortality than AIS-1998.[2,19,20]

However, if we want to compare the differences between 2
versions, we can detect when there are quite a few cases in the
future.
The IMP prediction of mortality is based solely on the WADP

of patients’ AIS predot codes. We believe that clinicians can
calculate the value of an injury score. The popularity of any injury
score methods to some extent dues to its easiness of calculation.
IMP inherits and extends this advantage, and relies on the AIS
predot codes for each injury. Meanwhile, the IMP directly
expresses the probability of death, which is similar to TMPM.[7]
5. Limitations

This study uses NTDB data and inherits its limitations. It does not
contain all hospitals (trauma and nontrauma centers) trauma
patients and is not population based. TMR values are only set as
reference of traumatic death. They require computation of
WADP values by combining with the logistic regression model
and mathematical characteristics. The possibility of death in
patients is then evaluated with different AIS predot codes. The
calculation method is unique in this study. Although the
calculation process is somewhat complicated, it can improve
the ability of death prediction. Simultaneously, when WADP
values are applied to other trauma data sets, over time these
values may be changing, perhaps as the outcome of new
therapies. The WADP values, however, are that they are simple
periodically to recalculate WADP values based on the latest data
set.
6. Conclusions

The IMP has slight improvement in discrimination and
calibration compared with the TMPM and can accurate
5

predictions of mortality than it. Therefore, we consider it as a
new feasible scoring method in trauma research.
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