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Endocrine therapy remains the primary treatment choice for ER+ breast

cancers. However, most advanced ER+ breast cancers ultimately develop

resistance to endocrine. This acquired resistance to endocrine therapy is

often driven by the activation of the PI3K/AKT/mTOR signaling pathway.

Everolimus, a drug that targets and inhibits the mTOR complex has been

shown to improve clinical outcomes in metastatic ER+ breast cancers.

However, there are no biomarkers currently available to guide the use of

everolimus in the clinic for progressive patients, where multiple therapeutic

options are available. Here, we utilized gene expression signatures from 9 ER+

breast cancer cell lines and 23 patients treated with everolimus to develop and

validate an integrative machine learning biomarker of mTOR inhibitor response.

Our results show that the machine learning biomarker can successfully

distinguish responders from non-responders and can be applied to identify

patients that will most likely benefit from everolimus treatment.
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Introduction

Breast cancer is now the most commonly diagnosed malignancy and cause of cancer-

related death in women worldwide (Houghton and Hankinson, 2021). In the

United States, one in eight women will be diagnosed with breast cancer throughout

their lifetime (Siegel et al., 2019). At the molecular level, nearly 3 in 4 breast cancers

display increased expression of the estrogen receptor (ER+) and do not express the human

epidermal growth factor receptor 2 (HER2-). The primary systemic treatment of ER+/

HER2- breast cancer is endocrine therapy, which targets the dependency of these tumors

on the estrogen signaling pathway for proliferation. These include selective estrogen

receptor modulators (SERMs) like tamoxifen, selective estrogen receptor degraders

(SERDs) like fulvestrant, and aromatase inhibitors (AIs) like exemestane (Smith and

Dowsett, 2003; Patel and Bihani, 2018).

Patients with primary or early-stage ER+/HER2- breast cancer generally have a

favorable outlook, with excellent 5-year survival rates on endocrine therapy, even without
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the use of adjuvant chemotherapy (Early Breast Cancer Trialists’

Collaborative et al., 2012). However, the response rates tend to be

lower in patients with metastatic disease, with only 30% of the

patients displaying tumor regression on endocrine therapy

(Osborne and Schiff, 2011). This outcome has been attributed

to primary or acquired endocrine resistance in progressive

tumors. Studies have shown that advanced and metastatic

ER+ breast cancers can develop endocrine resistance through

various mechanisms, such as mutations in the ER-alpha gene,

amplification/overexpression of epidermal growth factor and

fibroblast growth factor receptor family genes, and activation

of downstream signaling via the PI3K/AKT/mTOR signaling

pathway (Musgrove and Sutherland, 2009; Clarke et al., 2015).

Consequently, add-on drugs that target the resistance

mechanisms, such as the PI3K inhibitor alpelisib and the

mTOR inhibitor everolimus, have shown promising results in

clinical trials for advanced ER+ breast cancers. For example, the

SOLAR-1 trial reported an improvement of median overall

survival in PIK3CA mutated cancers from 5.7 months in the

fulvestrant group to 11 months in the alpelisib plus fulvestrant

group. The BOLERO-2 trial showed significant improvement in

progression-free survival in post-menopausal ER+ breast cancers

from 2.8 months on exemestane alone to 6.9 months on

everolimus plus exemestane (Baselga et al., 2012).

Unlike the PI3K inhibitors, currently, there are no clinically

relevant biomarkers available for the selection of everolimus as

the treatment for ER+ breast cancers. In the absence of suitable

guidelines, this choice is primarily based on patient and caregiver

preferences. We have previously shown that effective prognostic

and response biomarkers can be developed from the baseline

(pre-treatment) transcriptomes of the tumors using systems

biology and machine learning (Nath et al., 2019; Nath et al.,

2022). In this study, we apply a machine learning framework to

develop a novel biomarker model to predict clinical response to

everolimus. We adopt a hybrid approach that integrates

signatures of treatment response from well-controlled in vitro

experimentation of cell lines treated with everolimus with

empirical signatures derived from the baseline tumor

transcriptomes of 23 patients. Using this approach, we

develop and validate a predictive model of everolimus

response and demonstrate its potential application in

identifying candidates for mTOR inhibitor treatment.

Materials and methods

Breast cancer cell line culture and drug
treatment

Nine ER+/HER2- breast cancer cell lines were used in this

study. CAMA-1, LY2, and MCF7 cell lines were grown and

cultured in Dulbecco’s Modified Eagle Medium (DMEM,

Gibco, Cat# 11995073) + 10% heat-inactivated Fetal Bovine

Serum (FBS, Sigma-Aldrich, Cat # F4135) + 1x antibiotic-

antimycotic (Gibco, Cat# 15240062). T47D, BT-483, ZR-75-1,

HCC1428, MDA-MB-134-VI, and MDA-MB-175-VII were

grown and cultured in RPMI-1640 (Gibco, Cat# 11875119)

+ 10% heat-inactivated FBS + 1x antibiotic-antimycotic. Cell

lines were authenticated by STR profiling (at City of Hope

Integrative Genomics Core) and tested negative for

mycoplasma contamination using MycoAlert Mycoplasma

Detection Kit (Lonza, Cat# LT07-118).

To determine an effective concentration of everolimus and

exemestane for everolimus plus exemestane signature each cell

line was plated at 1,000 cell/well in a 384-well flat bottom TC-

treated plate (Corning, Cat# 3764) and allowed to adhere at 37°C

humidified incubator + 5% CO2. After 24hrs post-plating, cells

were incubated with a dose-response of everolimus or

exemestane or 0.2% DMSO control for 4 days (40 μL total

volume). Viability was assessed as a measure of total ATP

using the CellTiter-Glo assay (Promega, Cat# G7573)

according to manufacturer instructions. See Supplementary

Table S1 and Supplementary Figure S1.

Each cell line was plated at 250,000 cells/well in 2 ml of the

respective culture media on a 6-well tissue culture treated plate

(Costar, Cat# 3506) and allowed to adhere at 37°C humidified

incubator + 5% CO2. After 24 h post-plating, the cells were

treated with either 0.2% DMSO (control) or a combination of

0.5 nM everolimus + 25 μM exemestane (Selleck Chemicals, Cat#

S1120, S1196 respectively) in their respective culture media.

Following treatment, the cells were incubated for 6 h at 37°C

+ 5% CO2 in a humidified incubator.

Cell lines RNA extraction, cDNA synthesis,
library preparation, and sequencing

After 6 h of treatment, the plated cells were rinsed one time

with ice-cold 1x PBS (Gibco, Cat# 10010049) followed by

collection via cell scrapping in ice-cold 1x PBS. Collected cells

were stored frozen overnight at -80°C in RNAlater (Invitrogen,

Cat# AM7023). Frozen cells were thawed at 4°C, washed in 1x

PBS, and RNA was isolated using the AllPrep DNA/RNA Mini

Kit (Qiagen, Cat# 80204) according to the manufacturer’s

instructions. Sequencing libraries were prepared and ran at

Fulgent Genetics (Temple City, CA) using NEBNext Ultra II

Directional RNA Library Prep Kit (New England Biolabs, Cat#

E7760L) and sequenced on Illumina NovaSeq 6000 with S4 flow

cell (2 × 150 cycles) with 20 M PE reads per sample.

Cell lines RNA-seq data preprocessing

Raw sequencing read files (fastq) were pre-processed using

the Bioinformatics ExperT System (BETSY) (Chen and Chang,

2017). Sequencing quality was assessed using FastQC and
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adapter trimming was performed using trimmomatic (0.33)

(Bolger et al., 2014). Sequences were aligned using STAR

(2.7.6a) (Dobin et al., 2013), followed by counts estimation

using HTSeq (Anders et al., 2015) and estimation of gene

expression levels using RSEM (1.3.1) (Li and Dewey, 2011).

Transcript per million (TPM) values from RSEM were

log2(x+1) transformed and filtered to remove genes with the

lowest variance (25th percentile) and lowest expression (30th

percentile).

Developing signature for in vitro
everolimus response using bayesian
binary regression

Filtered TPMmatrix for the nine cell lines was used to train a

supervised Bayesian binary regression model based on the

method developed by West et al. (West et al., 2001) and

implemented in the GenePattern module SIGNATURE

(Chang et al., 2011). Expression values were quantile

normalized and a set of 100 features (genes) were obtained

that were correlated with the treatment status (DMSO vs.

everolimus plus exemestane). A prediction model based on

Bayesian regression that used the two metagenes (principal

component of the signature gene matrix) with Monte-Carlo

simulations was used to obtain classification accuracy in leave-

one-out cross-validation (LOOCV) analysis. Based on the

successful classification of the cell lines using this model, the

selected features were used for further analysis.

Patient microarray data preprocessing

Gene expression data from patients in a neoadjuvant

everolimus trial (Sabine et al., 2010) were obtained from

NCBI GEO accession GSE119262. We used expression data

from the pre-treatment tumors to train and validated the

model. The tumor samples were profiled using Illumina

HumanRef-8 v2 Expression BeadChips and quantile

normalized using BeadArray (Sabine et al., 2010). We

aggregated the expression matrix by first averaging data from

multiple probes at the gene level and then averaging the

expression levels of replicates. The log-transformed expression

levels were standardized such that each gene had a mean = 0 and

standard deviation = 1 across the samples.

Integrative machine-learning framework
for response prediction

We implemented a LOOCV framework using the caret

package for R (Kuhn, 2021) to combine the in vitro signature

genes with genes selected from the clinical dataset to develop an

integrative biomarker. In each iteration of the cross-validation,

we first selected a set of relevant features using Fast Correlation

Based Filter for Feature Selection implemented (FCBF) using the

FCBF package for R (Lubiana and Nakaya, 2021). We then

obtained an integrative signature by combining the in vitro

signature and the FCBF selected features and used this set of

genes as predictors in a random forest model, with the patient

response as the outcome variable. This was performed using the

randomForest R package (Liaw and Wiener, 2002). An internal

cross-validation was performed within each iteration to tune the

mtry hyperparameter. All analyses were performed in R version

4.1.0 (R Core Team, 2021).

Functional enrichment analyses

Pathway enrichment analyses were performed using the g:

Profiler2 package for R (Kolberg et al., 2020). Genes in the in vitro

signature were split into two lists (up or down in everolimus

treated cells) and analyzed for enrichment of GO:BP, KEGG, and

REACTOME pathway terms. Functional enrichment was

performed for the over-representation of genes using the

hypergeometric test and adjusted for multiple comparisons.

Enrichment plots and tables were created using the g:

Profiler2 package, with color coding in the tables showing the

level of evidence associated with the terms. A dark blue color

indicated weaker evidence whereas an orange color indicated

strong, experimentally derived evidence for the term.

Results

An integrative machine learning
framework

We developed an integrated biomarker development

approach that harnessed evidence from controlled in vitro

experiments with ER+/HER2- breast cancer cell lines treated

with everolimus and combined this with data from a

neoadjuvant clinical trial of ER+ breast cancer patients

treated with everolimus. The outline for our approach is

shown in Figure 1. First, we cultured nine cancer cell lines,

including MCF7, T47D, CAMA1, ZR-75-1, HCC1428, MDA-

MB-134, BT483, LY2 and MDA-MB-175 in either 0.2%

DMSO (control) or a combination of 0.5 nM everolimus +

25 µM exemestane. The treatment concentration for the

experiment was determined based on the dose-response

curves of the nine cell lines (Supplementary Figure S1;

Supplementary Table S1). After 6 h of treatment, total RNA

was extracted from each pair of untreated and treated cell lines

and sequenced at a target read depth of 20 M reads. We then

filtered the pre-processed gene expression (RSEM) from each

cell line to retain the most informative genes by removing low
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expression and low variance genes. The expression levels were

quantile normalized, followed by feature selection, and fitting

a Bayesian binary regression model with treatment status as

the outcome (Figure 1A). Concurrently, we obtained gene

expression data from pre-treatment biopsies of 23 ER+ breast

cancers that received neoadjuvant everolimus for about

2 weeks (Sabine et al., 2010). This trial reported clinical

response as a change in Ki67 staining percentage at the end

of 11–14 days of treatment, with patients showing more than a

10% decrease in Ki67 staining classified as responders. We

then implemented a LOOCV framework that used two sets of

features: 1. A set of signature genes from used in the Bayesian

binary regression model of the cell lines treated with

everolimus and exemestane and 2. A set of features that

were selected using FCBF. This integrated set of features

was used to train a random forest classifier within each

fold of the LOOCV (Figure 1B).

Transcriptomic signature of in vitro
everolimus response

We created an in vitro everolimus response signature using

RNA-seq profile of the nine ER+ breast cancer cells, with the

treatment status (DMSO vs. everolimus plus exemestane) as the

outcome variable. Starting with a matrix of filtered gene

expression data across cell lines, we first defined the signature

set by selecting genes using Pearson correlation that best

differentiated the cell lines based on treatment status

(Figure 2A). A Bayesian binary regression model was then fit

FIGURE 1
Outline of integrative approach for mTOR inhibitor biomarker development. (A) The in vitro signature was developed using 9 ER+ breast cancer
cell lines. Each cell line was treated with either DMSO or everolimus plus exemestane. Total RNAwas extracted, and cDNA libraries were prepared for
RNA-seq. The raw transcripts were pre-processed, followed by quantile normalization and feature selection using the Bayesian binary regression
framework. (B) Microarray data from early-stage ER+ breast cancer patients treated with neoadjuvant everolimus were pre-processed and
analyzed within a leave-one-out cross-validation (LOOCV) framework. Each iteration of the LOOCV generated a list of features correlated with
response. These features were integrated with the response signature derived from cell lines to obtain an integrated signature. The integrated
signature was then used as a set of predictors in random forest model to predict the response in the test sample.

Frontiers in Molecular Biosciences frontiersin.org04

Nath et al. 10.3389/fmolb.2022.981962

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.981962


on the first two principal components of the signature gene

expression matrix to classify the cells. This model was sampled

using a Markov chain Monte Carlo algorithm to obtain posterior

probabilities and 95% confidence intervals (Figure 2B). A

probability closer to 1 indicated that the signature genes were

active in cells treated with everolimus. As shown in Figure 2B, the

signature could clearly distinguish cell lines based on treatment

status.

Further examination of the signature genes revealed key

biological processes and pathways activated or inactivated in

the cell lines post treatment. Enrichment analysis for GO:BP,

KEGG and REACTOME terms in the genes expressed at higher

levels in cells treated with everolimus revealed activation of

pathways related to cell death and apoptosis (Figure 3A;

Supplementary Table S2). For example, some of the key

enriched pathways included response to oxidative stress,

regulation of apoptosis, ferroptosis and pexophagy, which are

well-known consequences of mTOR inhibition in vitro. On the

other hand, genes that were downregulated were enriched in

terms associated with translation and cell proliferation

(Figure 3B; Supplementary Table S3). Again, this agreed with

the expectation that mTOR inhibition would lead to reduced

protein turnover and proliferation rates.

Predicting clinical response using
integrative model

A clinical study of ER+ breast cancers evaluated

everolimus response by measuring percentage

Ki67 staining change over the course of treatment of

2 weeks (Sabine et al., 2010). This clinical trial reported

response data from 23 pre-treatment biopsies and 21 post-

treatment biopsies. We used the pre-treatment gene

FIGURE 2
In vitro everolimus response signature and validation. (A) Heatmap of genes selected by the binary regression model to classify and predict
everolimus response in 9 ER+/HER2- breast cancer cell lines. The genes in the signature are listed in rows and the columns indicate cell lines. Both
rows and columns are shown as hierarchical clusters, with the columns split into two clades, resulting in clustering by treatment status (DMSO and
everolimus plus exemestane). (B) LOOCV analysis of the 9 breast cancer cell lines. Hollow circles indicate cell lines treated with DMSOwhile the
solid circles indicate cell lines treated with everolimus plus exemestane. The X-axis indicates metagene score, calculated from the principal
component of the genes in the signature. Y-axis indicates predicted probability of response, with a value closer to 1 indicating response. The vertical
bars indicate 95% confidence interval of the prediction probability.
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expression data to develop a biomarker that can predict

response to everolimus treatment. This analysis was

performed within an LOOCV framework, where each

iteration of the cross validation involved selecting relevant

features associated with treatment response in the training

split, integrating the selected features with the in vitro gene

signature, and training and validation of a random forest

model. We used FCBF algorithm to select the features

associated with treatment response. This algorithm

utilized symmetrical uncertainty, an information theory

derived concept that selected genes with high correlation

with the outcome but low correlation with other variables.

The genes selected with FCBF were integrated with the

in vitro signature to train and evaluate the random forest

model. LOOCV analysis showed that the predicted

probabilities of response based on pre-treatment gene

FIGURE 3
Enrichment analysis of in vitro gene signature. (A,B) The dotplots show significance of the enrichment terms from GO:BP, KEGG and
REACTOME signatures, with Y-axis showing −log10 of the FDR-adjusted p-value from the enrichment test. Key significant terms enriched in genes
that were (A) expressed at higher levels in the treated cells or (B) expressed at higher cells in the untreated cells are annotated in the table below. The
term size indicated number of genes in the original signature, while the color code indicates strength of evidence associated with the term.
Terms supported by experimental evidence are shown in orange.
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expression data agreed with the actual clinical outcomes, as

reported by the clinical trial (Figure 4A). Similarly, the

predicted probabilities of non-response agreed with the

reported clinical response (Figure 4B). Overall, the

random forest model fit on the complete clinical dataset

of 23 pre-treatment tumor samples was highly accurate, with

consistently high accuracies (>0.9) achieved in the LOOCV

analyses for tuning the hyperparameters of the random forest

model fit on the full dataset (Figure 4C).

Identifying potential candidates for
everolimus treatment

Given the high prediction accuracy of the model in

LOOCV analyses, we applied the random forest model

trained on the full clinical dataset of 23 pre-treatment

samples to predict mTOR inhibitor response in the

METABRIC cohort of ER+/HER2- tumors (Curtis et al.,

2012). This cohort included 833 breast cancer patients that

FIGURE 4
Developing integrated model with patient response data. (A,B) LOOCV analysis of the GSE119262 datasets comparing the prediction
probabilities of (A) response or (B) non-response (resistance) calculated using the integrated model combining the in vitro response signature with
the FCBF-selected features. The density plots on the left show distribution of the prediction probabilities in samples grouped by actual clinical
response, with red indicating patients that were clinical non-responders (<10% decrease in Ki67% staining after 2–4 weeks) and blue indicating
patients that were clinical responders (>10% decrease in Ki67% staining after 2–4 weeks). The boxplots on the right show statistical comparison of the
prediction probabilities between patients grouped by actual clinical response. (C) Dot plot showing trends in change of accuracy of the random
forest model in LOOCV analysis with varying values of the mtry hyperparameter. An accuracy of ~0.95 was achieved with mtry = 8 and used to
construct the final prediction model.
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had received endocrine therapy and were either alive at study

completion or died due to the disease. We had previously

developed a biomarker model to predict patients with high

risk of death on endocrine therapy in this cohort. This model,

called ENDORSE, could successfully stratify patients based on

predicted endocrine resistance. We had also noted that the

patients with ENDORSE risks showed activation of the mTOR

signaling pathway. Therefore, we compared the predicted

probabilities of mTOR inhibitor response with the

ENDORSE classes in the METABRIC cohort. Here, we

found that the predicted mTOR response were significantly

higher in medium and high-risk groups than the low-risk

groups (Figure 5A). Moreover, a large proportion of the high-

risk tumors (>40%) showed a high probability of mTOR

inhibitor response (>0.75) compared to medium-risk (15%)

or low-risk tumors (10%). We further investigated the

biological signals enriched in the tumors with a high

probability of mTOR inhibitor response (>0.75).
Interestingly, we found an overwhelming majority of the

biological processes and signaling pathways at the top of

the list of significant terms to be associated with immune

signaling and communication (Figure 5B; Supplementary

Table S4). In contrast, the signatures enriched in non-

responders were associated with estrogen signaling or

FIGURE 5
Application of the mTOR inhibitor model on external dataset. (A) The boxplots show predicted probability of mTOR inhibitor response in
METABRIC ER+/HER2- patients (n = 833). The patients were classified as endocrine sensitive (low-risk), endocrine intermediate (medium-risk) and
endocrine resistant (high-risk) using the ENDORSE model. The adjusted p-values annotated above the boxplots show pairwise comparisons
obtained from Tukey’s HSD test applied to a one-way ANOVA model (B,C). The dotplots show significance of the enrichment terms from GO:
BP, KEGG and REACTOME signatures, with Y-axis showing -log10 of the FDR-adjusted p-value from the enrichment test. Key significant terms
enriched in genes that were (B) expressed at higher levels in the tumors predicted to be responsive to mTOR inhibitor treatment or (C) expressed at
higher levels in the tumors non-responsive tomTOR inhibitor treatment are annotated in the table below. The term size indicated number of genes in
the original signature, while the color code indicates strength of evidence associated with the term. Terms supported byweak evidence are shown in
blue while experimentally derived signatures are shown in orange.
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smoothened signaling pathways (Figure 5C; Supplementary

Table S5). These suggested the tumors predicted to be non-

responsive to mTOR inhibitors were still largely dependent on

estrogen signaling or bypassed mTOR signaling via the

smoothened pathway for growth and proliferation.

Discussion

The use of mTOR inhibitors such as everolimus has shown

promising results in improving outcomes of ER+/HER2- breast

cancer patients(Ellard et al., 2009; Baselga et al., 2012; Andre

et al., 2014; Piccart et al., 2014). However, there are several

treatment options available for progressive and advanced ER+

breast cancers, which include drugs that target the PI3K and

mTOR signaling pathways. While the presence of activating

mutations on the PIK3CA gene guide the use of PI3K

inhibitors such as alpelisib (Narayan et al., 2021), the decision

to use mTOR inhibitors like everolimus is completely based on

patient and provider choice. Therefore, our goal was to

systematically develop a new biomarker that may be useful in

predicting clinical outcomes for mTOR inhibitors. We have

previously developed a prognostic model for endocrine

resistance in breast cancer patients using the tumor baseline

transcriptomic data (Nath et al., 2022). Here, we extended our

approaches to develop a novel machine learning biomarker for

everolimus response.

To date, only one clinical trial with any mTOR inhibitor has

reported genomic information from breast cancer patients before

and after treatment (Sabine et al., 2010). This trial was of limited

size of only 23 pre-treatment samples, which made it challenging

to train and develop an effective biomarker model. We addressed

this issue by first identifying which genes are expressed in

response to everolimus in a well-controlled in vitro

environment. Such approaches have been extensively used to

generate gene expression signatures by directly manipulating the

expression of genes or using chemical perturbations in vitro. For

example, the curated and oncogenic signature collection in the

molecular signatures database contains over 3000 such signatures

generated using genetic or chemical perturbations (Liberzon

et al., 2011) that are frequently used in prognostic and drug

response signatures (Sonachalam et al., 2012; Tan et al., 2019;

Kong et al., 2020; Zeng et al., 2022).

As the in vitro environment is less affected by the inter-

sample variances typically observed in animal and patient-

derived data, our approach allowed us to pick genes with high

confidence that show a significant change upon everolimus

treatment and are likely good candidate features for a

machine learning biomarker model (Figure 2). These genes

were sensible and associated with expected biological

phenomenon (Figure 3). We then implemented an approach

that leveraged pre-treatment tumor transcriptomes and clinical

outcomes data from the 23 patients combined with the in vitro

signature. This integrated model was highly accurate in

predicting clinical everolimus response in the LOOCV

analyses of the patient data (Figure 4).

We further applied the biomarker to predict mTOR inhibitor

response in an independent cohort of ER+/HER2- breast cancer

patients from the METABRIC study (Curtis et al., 2012). We

obtained gene expression and overall survival data from

833 patients. These patients had received only endocrine

therapy and were classified using a prognostic model that

predicted risk of death on endocrine therapy (Nath et al.,

2022). We had previously found that the METABRIC patients

with high risk of death on endocrine therapy showed elevated

pathway activity of PI3K/AKT/mTOR signaling pathway (Nath

et al., 2022). By applying our biomarker, we found that indeed a

vast proportion of the predicted mTOR responsive patients were

those in the high risk group (Figure 5). Activation of mTOR

signaling is a well-documented phenomenon associated with

endocrine resistance and poor prognosis of ER+ breast cancer

patients (Ciruelos Gil, 2014; Paplomata and O’Regan, 2014;

Dong et al., 2021; Nunnery and Mayer, 2020). Thus, our

novel biomarker could be useful in identifying the patients

that are most likely to benefit from mTOR inhibitor treatment.

Another interesting aspect of our study were the biological

signatures and pathways activated in vitro upon everolimus

treatment and the ones enriched in patients predicted to be

responsive. The in vitro signature largely showed enrichment of

expected biological pathways, including cellular oxidative stress

(Piao et al., 2014), autophagy (Crazzolara et al., 2009) and

apoptosis (Tai et al., 2017). In comparison, the patient data

showed a large proportion of immune activation pathways as the

most significant signatures. mTOR signaling is well-known to

play an important role in directing adaptive immune response by

receiving microenviromental signals and activating T-cells and

dendritic cells (Delgoffe and Powell, 2009). In the tumor

microenvironment, mTOR signaling regulates the activity of

macrophages and T-cells through inflammatory factors like

IL-10, TGF-beta, and membrane bound CTLA-4 and PD-1

(Kim et al., 2017). This has been linked with a shift in

balance from an anti-tumor to a pro-tumor immune

microenvironment by reducing the proportion of anti-tumor

CD8+ T-cells and increasing the proportion of Treg and tumor-

associated M2 macrophages (Kim et al., 2017; Mafi et al., 2021).

Thus, the enrichment of these immune activation-related terms

in the patient data captures a known effect of elevated mTOR

pathway activity and supports the biomarker-driven

classification of the patients as likely responders to mTOR

inhibition. We also observed an enrichment of smoothened

receptor pathway signatures in the mTOR-resistant tumor. As

a major component of the hedgehog signaling pathway, both the

canonical and non-canonical activation of the smoothened

pathway has been linked with stem-cell like traits,

invasiveness and metastatic progression of breast cancers

(Jeng et al., 2020). Consequently, multiple interventions
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targeting the hedgehog and smoothened signaling pathway are

currently being evaluated in breast cancer (Bhateja et al., 2019).

Key limitations of this study are lack of a large-scale training

dataset and an additional independent validation dataset for the

biomarker model. The clinical training data used in the study

consisted of only 23 pre-treatment samples, with a large number

of potential predictive features. We attempted to mitigate this

challenge by systematically reducing the number of predictive

features using the in vitro signature and selecting a limited

number of empirical features from the clinical datasets for

model construction. Furthermore, we performed the model

development and validation in a LOOCV framework, where

the empirical features from the clinical dataset were only

picked from the training split. The model was then applied to

predict outcome in the left-out test sample. This approach helped

in diminishing problems associated with overfitting models to

the data and overestimating model accuracies. Nevertheless,

clinical translation of the biomarker will benefit greatly from

additional validation and refinement using prospective biopsies

or through retrospective analyses of banked samples.

Given that patients progressing on endocrine therapy have

multiple treatment options, including aromatase inhibitors,

chemotherapy, PI3K inhibition or mTOR blockage,

development of biomarkers to guide therapy selection of these

patients can help ensure they are treated with the most effective

drug regimen. This study uses both experimental and patient-

based data to develop a biomarker for response to everolimus,

and to understand the signaling underlying inhibition of mTOR

signaling in ER+ breast cancer.
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