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A mass spectrometry guided
approach for the identification of
novel vaccine candidates in gram-
negative pathogens
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Vaccination is the most effective method to prevent infectious diseases. However, approaches to
identify novel vaccine candidates are commonly laborious and protracted. While surface proteins are
suitable vaccine candidates and can elicit antibacterial antibody responses, systematic approaches
to define surfomes from gram-negatives have rarely been successful. Here we developed a combined
discovery-driven mass spectrometry and computational strategy to identify bacterial vaccine
candidates and validate theirimmunogenicity using a highly prevalent gram-negative pathogen,
Helicobacter pylori, as a model organism. We efficiently isolated surface antigens by enzymatic
cleavage, with a design of experiment based strategy to experimentally dissect cell surface-exposed
from cytosolic proteins. From a total of 1,153 quantified bacterial proteins, we thereby identified 72
surface exposed antigens and further prioritized candidates by computational homology inference
within and across species. We next tested candidate-specificimmune responses. All candidates were
recognized in sera from infected patients, and readily induced antibody responses after vaccination
of mice. The candidate jhp_0775 induced specific B and T cell responses and significantly reduced
colonization levels in mouse therapeutic vaccination studies. In infected humans, we further show
that jhp_0775 isimmunogenic and activates IFN~ secretion from peripheral CD4* and CD8* T cells.
Our strategy provides a generic preclinical screening, selection and validation process for novel
vaccine candidates against gram-negative bacteria, which could be employed to other gram-negative
pathogens.

Vaccination is recognized as the most effective way to prevent infectious diseases. Despite the eradication or con-
trol of many diseases, vaccines against major human pathogens - especially gram-negatives-are still missing, as
are streamlined approaches for their development. Among the key challenges in vaccine design is the selection of
antigens that are capable of inducing protective immunity against the pathogen. For this purpose, antigens must
be accessible for the immune system and be able to elicit specific humoral and cellular immune responses, with-
out triggering an immune response against self-antigens or non-pathogenic microorganisms. Protein antigens are
widely used for vaccination due to their sequence-encoded specific recognition by the immune system, however,
from the thousands of expressed proteins e.g. in a bacterial pathogen, only few fulfill these criteria. Therefore,
generic and rational selection processes for the identification of protein vaccine candidates are highly valuable.
To identify suitable vaccine candidates, screening approaches have to interrogate a pathogen’s proteome
according to biochemical/biophysical and functional characteristics. Physical accessibility of the antigens is key
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Figure 1. Workflow for discovery and validation of novel H. pylori vaccine candidates. (1) Design of
experiment optimized shaving conditions are used to isolate surface exposed proteins. A live culture of H. pylori
is treated with trypsin and the supernatant analyzed by (2) Quantitative mass spectrometry. After recombinant
production, surface exposure of proteins is evaluated based on their enrichment profile. (3) Candidates are
further selected based on their conservation and selectivity. (4) In vivo validation: candidates are evaluated for
their efficacy in mice and for their potential to elicit B and T cell responses in humans.

for the host’s immune system to recognize immunogenic epitopes. Outer membrane proteins (OMPs) are there-
fore considered most promising targets to select vaccine candidates, especially due to their physical accessibility
on the bacterial surface, and ability to be bound by opsonizing antibodies'~*. In a pioneering in silico approach,
Pizza et al.® predicted several OMPs with potentiality to confer protection against serogroup B N. meningitides,
some of these antigens were finally included in the Novartis 4CMenB vaccine®.

State of the art approaches identify OMPs by time consuming membrane extraction or labeling strategies and
subsequent mass spectrometry (MS). While these strategies delivered novel vaccine candidates, they are inher-
ently limited in their capacity to differentiate between inner or outer membrane localization and probe actual sur-
face accessibility. To map surface exposed proteins on bacteria, the “surface shaving” approach was introduced for
gram-positive bacteria (Rodriguez-Ortega et al. 2006) and also evaluated for gram-negative bacteria, unicellular
fungi, as well as pluricellular organisms”®. Here, a protease is added to a live bacterial culture to release peptides
of surface accessible proteins, which can be identified via MS. However, since modern MS can detect even trace
amounts of proteins, the presence of few lysed bacterial cells hampers the efficient and exclusive identification of
surface-exposed proteins, which poses a challenge in particular for gram-negative bacteria®. To overcome cur-
rent limitations, we developed a streamlined MS-based surface shaving approach that simultaneously optimizes
multiple experimental variables to identify cell surface exposed proteins and discriminate them from proteins
derived from cell death. We further computationally prioritized proteins by high homology within the pathogenic
bacterial genus and low homology to other bacterial species and the host.

In this study, we focused on the gram-negative human pathogen H. pylori for which to date no effective
vaccine is available. H. pylori infects half of the world’s population and is the leading cause of gastric cancer'.
Therapeutic options are increasingly limited by dramatically rising antibiotic resistances'!, raising the demand
for vaccines to combat this infection. In our study, we experimentally tested the immunogenicity of antigens
identified through our pipeline in humans as well as efficacy in murine vaccination studies. As infections with
gram-negative bacteria pose a major threat for human health, and eight out of the top ten WHO defined priority
pathogens are gram-negatives for which no vaccines are available'?, our approach establishes a paradigm blue-
print for the streamlined identification of candidates against those pathogens.

Results

Establishment of a surfome-shaving based pipeline for vaccinology in gram-negative patho-
gens. We established a combined experimental and computational vaccinology pipeline for gram-negative
bacteria - using H. pylori as a model organism - that enables the identification of few promising vaccine candi-
dates from thousands of expressed bacterial proteins. Our strategy combines statistical parameter optimization
(design-of-experiment (DoE)'?) guided surface shaving with quantitative MS followed by computational and func-
tional validation (Fig. 1). First, we analyzed the abundance of the annotated H. pylori proteomes comprehensively
and account close to 1,200 expressed proteins, which is, to our knowledge, the most comprehensive protein inven-
tory of this pathogen to date (Fig. 2A, Supplementary Fig. 1). Our proteomics analysis covers functional protein
classes well (on average 92%) and 80% of all putative membrane associated proteins (Fig. 2B).

Next, we tested experimental approaches to biochemically capture bacterial cell surface exposed proteins. We
evaluated biotinylation of surface proteins and streptavidin purification', which is the most frequently applied
technology for surfome identification'*>"', and identified 565 proteins (Supplementary Fig. 2). Since our MS pipe-
line detects minute amounts of proteins we cannot exclude that among these 565 proteins we identified a large
proportion of cytoplasmic proteins e.g. due to cell lysis or diffusion of the linker into cells. To evaluate the effi-
ciency of identifying surface proteins by biotinylation we performed an enrichment analysis. We did not observe
a significant enrichment for membrane associated proteins (Supplementary Table Biotinylation), indicating that
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Figure 2. Identification of surface exposed proteins and selection of candidates. (A) Bar Plot depicting
number of quantified proteins (median number of quantification events) for the respective conditions. Error
bars denote standard deviation (Prot: whole proteome quantified, ctl: control, T: trypsin treatment for, 10, 20,
or 30 min:, bio: biotinylation). Controls comprise samples without the addition of trypsin (ctl 10, 20, 30) and
without biotinylation (ctl bio). (B) Percentage of coverage for individual functional groups (annotations, see
Supplementary Table) with respect to all quantified proteins in this study (including all conditions). The box
plot labeled ‘All’ depicts the percentage coverage of all annotations with a group size (number of annotated
proteins in the entire in silico proteome) >4. (C) Venn diagram depicting the overlap of proteins quantified

in at least 3 replicates (‘intensity’) for the samples. Proteins were filtered for contaminants, only identified by
side and reverse. “Control” contains all time course control samples, shaving contains all time course shaving
samples, proteome contains all complete proteome samples. (D) Unsupervised hierarchical clustering and
heat map of significantly correlating proteins (median of replicates, z-scored). Clusters c1 (blue) and c2

(pink) show the expected pattern for surface association and/ or secretion of proteins and were selected as
putative surface-associated vaccine candidates for subsequent analysis and prioritization (E) Extracted profile
of proteins in cluster c1 and cluster c2. Samples with trypsin shaving indicated in green. (F) Volcano plot
depicting annotations de-enriched and enriched in cluster 1 and cluster 2 compared to all proteins detected

in the surfome over time (including control samples). Enrichment was calculated with a fisher exact test (see
Supplementary Table cluster enrichment). Proteins annotated with membranes are enriched with a p-value
<0.0001. (G) Histogram (log count) depicting the identity of the 72 surfome candidates compared to bacterial
proteins (excluding H. pylori). Candidates were selected to have an identity lower than 33%. (H) Scatter plot
showing the identity of 72 surfome proteins compared to human proteins. Candidates were selected to have an
identity lower than 5% and an e-value [—log10] of less than 1. (I) Heat map of remaining candidate proteins
indicating their identity compared to all 264 H. pylori strains. Protein vaccine candidates that were further
characterized for their surface exposure through staining experiments (Fig. 3) are marked in green. The “cluster
1/2” annotation indicates associated protein cluster (D,E).

SCIENTIFIC REPORTS |

(2019) 9:17401 | https://doi.org/10.1038/s41598-019-53493-8


https://doi.org/10.1038/s41598-019-53493-8

www.nature.com/scientificreports/

A B *p = 0.0030
20 m Ay T
—_ &=
2 8
g 15 E oo
g §. ] .6 33 : [ | |
o L] —.‘-
Sy 10 £ ",
20 S 21
oo 5 -
®0 o El
€ B
0 T I-”jrl = 1'_l_|_
D A2 A5 O DD DD D N N
é’b 6\'\ é\ Q\\ \'& Y\. 0\&\6 \S P ;;o
R74R4R%4R7% Q/Qg Qg A '(\‘)
FTRFFTT S g
.{‘@ é '§\Q/
G
C D jhp_0775 immunized HPA immunized
e jhp_0775 stim 4 HPA stim
- ©  jhp_0775 unstim & HPA unstim
. —~ HPG &jhp_0775 = & -
: ~ jhp_0775 e 04y Mt ms o
- no antigen K =, —_ — —_ —_
= o
= 1.04 o 03
2 ¢ ;
2 ﬁ. 0.2
J 0.54 5 A <] A .
S o041 ° il ‘lf oot
- -
- . o £1¥. 5 iogt i%g &
0.0l — = . = t ooly@ii $T. i "B i
1:100 1:1000 1:10000 1:100000 [a] :
5 A A N S
Serum dilution o @ >

Figure 3. Confirmation of surface exposure of vaccine candidates and therapeutic efficacy of jhp_0775 in an
H. pylori mouse infection model. (A) Staining intensities of vaccine candidates (grey bars) and controls (white
bars) detected by purified antisera raised against the vaccine candidates and employed to stain the surface of
CFDA-SE labeled H. pylori. Antibodies derived from HPA immunized mice served as positive control. The
H. pylori gamma-glutamyltranspeptidase (HPG) served as additional control, as it is identified as periplasmic
and secreted protein [68]. HPA and HPG were stained with high and low intensities, respectively, validating
the experimental setup. (B) Mice were infected with H. pylori SS1 and immunized with jhp_0775 and cholera
toxin (CT) or with CT alone as control. Gastric H. pylori colonization was determined and depicted as colony
forming units (CFU) per mg stomach. (C) Antigen-specific serum IgG responses to jhp_0775 measured

by ELISA. (D) CD4+T cells producing indicated cytokines were analyzed by flow cytometry before (filled,
unstim) and after splenocyte restimulation (unfilled, stim) with jhp_0775 from mice immunized with CT as
adjuvant and jhp_0775 and HPG as antigens (circles) as well as with HPA from mice immunized with CT as
adjuvant and HPA and HPG as antigen (triangles). Data are shown as mean + SD. p-values were determined
by the nonparametric Mann-Whitney U test and the Sidak multiple comparison test for colonization levels
and cytokine responses, respectively. Asterisks show significant differences between groups (****p < 0.0001,
**p < 0.01, ¥<0.05).

a proportion of the detected signals derives from labeling of cytoplasmic proteins, which reflects a limitation of
this qualitative readout.

We therefore aimed at assessing protein surface exposure by quantifying enzymatically released peptides
of accessible proteins by trypsin cleavage of live bacteria in comparison to bacteria not treated with trypsin.
We employed rather mild buffer conditions and quantitative enrichment as it has been used to identify
protein-protein interactions!*?. We set out to evaluate a similar strategy employing quantitative data instead of
qualitative data to account for background signal from cytosolic proteins. To address the effect metabolic activity
of the bacteria we included PFA fixation in our screen. This allows separation of peptides enriched from surface
cleavage from those associated with e.g. secreted vesicles of metabolically active bacteria.

Since prolonged trypsin cleavage correlates with increased cell death and a concomitant release of cytosolic
proteins, we optimized cell surface peptide shaving for reduced cytosolic protein release (Supplementary Fig. 3).
For this purpose, we made use of fluorescently labeled bacteria, as cytosolic protein leakage can be measured
quantitatively in a high throughput format. We modeled different experimental variables such as incubation
time and buffer compositions simultaneously using DoE with cell lysis as a quantitative readout (Supplementary
Fig. 3).

The high sensitivity of our mass spectrometer pipeline quantifies even small amounts of proteins released by
background processes during our optimized shaving procedure, as indicated by the large number of quantified
proteins throughout all conditions and overlap of quantified proteins (Fig. 2A,C). Qualitative surface candidate
selection is based on presence or absence of a protein in the sample rendering background lysis, which is a con-
ceptual problem. In contrast our quantitative label free proteomics workflow enables us to determine even small
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Uniprot ID Gene name Cluster
Q9ZJM9 jhp_1276 1
QYZL06 jhp_0776 1
Q9ZL62 jhp_0718 1
QYZLM7 jhp_0552 1
Q9ZLP8 jhp_0530 1
QVZLS6 jhp_0501 1
Q9ZLUO0 cagN 1
Q9ZLU7 orfl7 1
Q9ZLV5 orf8 1
Q9ZLV7 orf6 1
QYZLY2 jhp_0444 1
Q9ZM54 jhp_0369 1
QYZMP5 jhp_0173 1
Q9ZMT2 jhp_0136 1
POAOV1 Ipp20 2
Q9ZJF7 jhp_1355 2
Q9Z]Y3 babB 2
Q9ZK39 jhp_1103 2
Q9ZKV2 babA 2
Q9ZL07 jhp_0775 2
Q9ZLV0 14 2
QYZMUS jhp_0119 2

Table 1. Final vaccine candidates derived from surfome analysis and homology prioritization. Cluster column
denotes the enrichment pattern from which the proteins were selected (see Fig. 2E).

protein abundance difference across samples?!. Based on that workflow, we devised a stepwise selection process
leveraging a high quantitative accuracy to distinguish most promising surface-vaccine candidate proteins from
background.

Proteins on the surface of H. pylori are expected to increase throughout the trypsin treatment. In a first step,
we performed correlation analysis (see material and methods: Correlation analysis) of 1153 quantified H. pylori
proteins resulting in the identification of 146 putative surface proteins — the H. pylori surfome —that correlated
with the time course (10 min, 20 min 30 min) for the trypsin treatment. A hierarchical clustering of the 146 sur-
fome candidate proteins indicated two clusters (cluster 1 and 2 indicated in blue and purple, respectively) of
overall 73 proteins with a high signal under the shaving conditions and consistently low signal for the trypsin-free
control samples (Fig. 2D, Supplementary Fig. 1B). Notably, many proteins reach their maximum signal before the
30 min time point. Proteins that showed higher abundances for metabolically inactivated H. pylori in the control
groups (without trypsin) were excluded (Supplementary Fig. 1B). In an annotation enrichment analysis of the
73 surfome proteins, we observed a significant enrichment of membrane proteins and depletion for cytosolic
proteins (Fig. 2F) as it is expected for surface associated proteins.

Intriguingly, among these 73 proteins of the H. pylori surfome only 54 proteins were exclusively enriched in
the presence of trypsin (Fig. 2D,E, cluster 1). The remaining 19 proteins (cluster 2) showed an increased abun-
dance in the metabolically active (PFA —) control samples in addition to the strong signal for surface exposure
(high in trypsin conditions) Fig. 2D,E, cluster 2). Based on that profile, we hypothesized that cluster 2 might
comprise proteins on the surface of vesicles secreted by H. pylori.

To further narrow down the list of candidate proteins for an in vivo vaccine study, we prioritized candidates in
silico similar to Moffit et al.?%. To minimize cross reactivity towards other bacterial species and humans, we filtered
for proteins that share less than 33% amino acid sequence identity to any other bacterial species and less than 5%
homology to human proteins (Fig. 2G,H). To favor pan-protectivity within the H. pylori genus, we confirmed the
identity of the remaining 22 candidates across 264 UniProt annotated H. pylori proteomes (Fig. 2I and Table 1).

Validation of surfome exposed vaccine candidates in vitro and in vivo. As proof of concept,
we next aimed at confirming the surface exposure and immunogenicity of selected identified vaccine candi-
dates. We selected five vaccine candidates (jhp_0775, jhp_0173, jhp_0119, jhp_0552, jhp_1103) and recom-
binantly expressed and purified them from E. coli (Supplementary Fig. 4A-]). We immunized mice with the
recombinant proteins, and used the purified polyclonal antisera (Supplementary Fig. 4K) to stain CFDA-SE
(Carboxyfluorescein Diacetate Succinimidyl Ester) labeled bacteria (gating strategy see Supplementary Fig. 6A).
All analyzed candidates showed robust staining frequencies by flow cytometry well above the mock-control or
cytoplasmic proteins, confirming their surface exposure (Fig. 3A). Next, we selected the previously uncharacter-
ized protein jhp_0775 for in vivo efficacy experiments because it exhibits the highest homology to all H. pylori
strains (98.5%) and is among the 200 most abundant proteins in the H. pylori proteome (Supplementary Fig. 1).
We immunized mice therapeutically with jhp_0775 to address to which extent the immune response in a chronic
infection setting can be increased. To this end, we first infected BALB/c mice with H. pylori strain SS1 and then
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positive negative Sensitivity
Uniprot ID Gene name | n=378 n=299 (Prevalence) Specificity
Q9ZLM7 jhp_0552 145 265 38.4 88.6
Q9ZMP5 jhp_0173 164 258 43.4 86.3
Q9ZL07 jhp_0775 141 261 37.3 87.3
Q9ZMU8 jhp_0119 144 256 38.1 85.6
Q9ZK39 (HopQ) jhp_1103 227 263 60.1 88.0
Q9ZLI1 (FliD) jhp_0689 361 274 95.5 91.6
Q9ZL47 (HPA, HpaA) jhp_0733 319 257 84.4 86.0

Table 2. Humoral immune response measured by Luminex® multiplex bead assay. The specificity (negative
sera) and sensitivity (prevalence of antibody responses in positive sera) show the percentage of true negatives
and true positives, respectively. Positivity-cutoffs for each antigen were defined at 2.5 times or 9 times (for
jhp_0689) their standard deviation of the negative median fluorescence intensity (MFI).

immunized them with jhp_0775 and cholera toxin (CT) as adjuvant. Four weeks after immunization, jhp_0775
immunized mice showed significantly reduced H. pylori colonization levels as compared to control (mock/CT)
immunized mice (Fig. 3B). We quantified the humoral immune response by antigen-specific ELISA, and detected
a strong increase in antigen-specific IgG levels after immunization (Fig. 3C). To characterize cellular immunity
and quantify Th1 and Th17 immune responses, splenocytes from immunized mice were restimulated with recom-
binant jhp_0775 and the frequencies of CD4+ T cells producing the cytokines IFN~, TNFq, IL-2 and IL-17 were
measured by flow cytometry (Fig. 3D and Supplementary Fig. 6B). In agreement with a strong cellular immune
response, we observed significantly increased levels of all cytokines except IFN~. This cellular immune response
was comparable to the response against HPA, a well-described H. pylori vaccine candidate known to induce T-cell
responses in HPA immunized mice (Fig. 3D)%.

Confirmation of immunogenicity in human samples. To validate the immunogenicity of a panel of
5 selected candidates, and specifically jhp_0775, in human, we analyzed the humoral and cellular responses in
samples from volunteers infected with H. pylori. While a strong immune response towards a specific antigen in
the context of a chronic infection may indicate that such response does not achieve eradication of the pathogen,
no immune response against a conserved antigen may suggest that the candidate protein is not immunogenic in
human, or not properly presented. We therefore initially quantified the degree of a preexisting humoral response
in infected humans by analyzing sera from a characterized human patient cohort with a LUMINEX® bead-based
assay (Table 2). FliD, a flagellum-associated protein, which was previously identified by our group and validated
as a highly sensitive and specific biomarker for H. pylori infection, served as positive control?, as well as HPA, a
surface protein which is often used as vaccine candidate®. Intriguingly, despite bacterial surface exposure of the
antigens, most vaccine candidates showed only a low prevalence of antibody responses. In H. pylori infection,
as well as for many other pathogens, the cellular immune system is key to mount an effective immune response,
and efficacy of vaccination against H. pylori highly depends on T cell responses®. Thus, we tested the capacity
of our selected candidate jhp_0775 to induce a cellular response in PBMCs derived from infected patients by
measuring IFN~ secretion in an ELISpot assay (Fig. 4A). Upon restimulation with recombinant jhp_0775, one
out of four tested patients showed a significant number of IFN~ secreting cells. This patient reacted specifically
to jhp_0775, while not reacting to HPA, a protein known to contain T cell epitopes?”. As expected, the unstim-
ulated negative control did not show any spots, while the Staphylococcal enterotoxin B (SEB) and MHC class II
CD4 peptide pool-stimulated positive controls confirmed the functionality of the immune cells and CD4 mem-
ory T cells, respectively. Therefore, as a proof of concept for our approach, jhp_0775 is recognized in vivo and
induces antigen-specific cellular responses in infected patients, but is not readily detected in all infected patients.
Several cell types are capable of producing IFN~ upon stimulation by antigen presenting cells. To further dis-
sect the capacity of jhp_0775 to trigger a cellular immune response, we analyzed the cellular origin of human
PBMC-derived IFN~ secretion using intracellular cytokine staining. PBMCs from the ELISpot reactive donor
showed a specific increase in IFN~ producing CD4" and CD8* T cells in flow cytometry, in comparison to the
non-reactive donor (Fig. 4B; gating strategy: Supplementary Fig. 6C). Thus, in vivo, both CD4* and CD8" T cells
are capable of responding to jhp_0775-derived epitopes after infection as well as vaccination.

In summary, our novel vaccine discovery pipeline, which combines quantitative MS, computational candi-
date characterization and selection, as well as in vivo validation, revealed several proteins as promising H. pylori
vaccine candidates. In mice, jhp_0775 significantly reduced colonization levels after immunization correlating
with an increased humoral and cellular immune response. In humans, jhp_0775 is capable of eliciting a cellular
immune response leading to IFN~ producing CD4" and CD8™ T cells, both of which are considered important
correlates of protection.

Discussion

The history of vaccines is a success story. Vaccines led to the eradication of smallpox and significantly reduced
the number of fatalities from other diseases like measles, tetanus, diphtheria and pertussis. However, effective
vaccination strategies are still missing for many infectious diseases with major clinical and socioeconomic impact.
Moreover, spreading antibiotic resistance escalates the demand for effective disease prevention and underlines
the importance of vaccination. Therefore, effective and fast strategies to screen for novel vaccine candidates are
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Figure 4. Immune response against jhp_0775 in humans. (A) ELISPOT analysis indicating cellular immune
response against HPA and jhp_0775. Staphylococcal enterotoxin B (SEB) and MHC II CD4 peptide pool served
as controls. The numbers at the top left of each well indicate the corresponding spot-counts per well. Neg ctrl,
negative control without stimulation (B) Human PBMCs from infected patients were stimulated with jhp_0775,
the highly immunogenic H. pylori antigen CagA and PMA/Ionomycin as positive control, and CD4* and CD8"
IFN~ producing cells analyzed by flow cytometry. The percentage of IFN~ producing cells is indicated within
each plot. PBMCs were not stimulated in the negative control, PMA/Ionomycin stimulated as positive control
and stimulated with the highly immunogenic H. pylori antigen CagA as well as jhp_0775 to test the specificity of
the IFN~ secretion.

needed. This is particularly important for gram-negative pathogens, which dominate the WHO list of priority
pathogen threads, but for which no vaccines are available.

To select the most promising targets from thousands of bacterial proteins, a promising strategy is to focus
on proteins on the exposed surface of the pathogen’ or, in case of intracellular pathogens, on the host cell®. A
variety of protocols have been developed over the years for isolating proteins exposed on bacterial surfaces. These
surfome approaches have been applied to identify potential vaccine candidates”?. A remaining challenge is to
provide a generic and adaptable strategy that accounts for background lysis, especially of gram-negative bacteria,
which are more sensitive to lysis®.

The high dynamic range and high abundance of contaminating cytosolic proteins require labeling- and
orthogonal enrichment strategies or bioinformatics filtering e.g. based on prediction of signal peptides or locali-
zation to eliminate proteins derived from cell lysis’. While a missing experimental dissection of proteins derived
from background lysis increases the amount of false positive (not surface-exposed) proteins, computational fil-
tering is usually associated with false negatives as many proteins are excluded based on incomplete or incorrect
annotations in public domain databases. Consequently, and in contrast to our strategy, previous attempts favor
the identification of very few highly abundant surface proteins®%.

Our pipeline facilitates an easy adaption to screen other pathogens for vaccine candidates. A DoE based opti-
mization strategy generically improves the surfome mapping while reducing background lysis, thereby providing
conceptual advantages to common strategies®. In addition, we outline a strategy to discriminate surface-exposed
from secreted proteins by comparing the gradual increase of proteins in metabolically active bacteria (PFA — in
this study) to those that are inactivated (PFA+). However, additional studies separating vesicles by filtration or
density centrifugation are required to test that hypothesis. In comparison to widely used cell surface biotin label-
ling!5~!8, our approach results in lower cytosolic background detection for H. pylori and presumably also other
gram-negative pathogens. However, DoE based experimental optimization of surface biotinylation with minimal
co-labeling of cytosolic proteins may present an interesting future research strategy.
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In our surface shaving strategy, we use trypsin to digest proteins on the bacterial surface. Cleaving after argi-
nine and lysine residues, trypsin produces peptides with an average length of 14 amino acids. The advantage is
that these peptides have a high chance of a unique sequence within the proteome?!. A proteomics analysis of the
bacterial surface may, however, be biased toward proteins exhibiting trypsin cleavage sites since arginine and
lysine - the amino acids after which trypsin cleaves - are not evenly distributed®’. We and others have previ-
ously shown that a combination of multiple enzymes presents an experimental strategy to overcome this bias*-**.
Although our surfome approach does not require complete protein sequence coverage as differential protein
abundances are inferred from pairwise peptide comparisons by the MaxLFQ algorithm?!, it would be interesting
for future studies to employ multiple enzymes to map exposed protein domains more comprehensively.

A potential limitation of this study is that H. pylori is exposed to very harsh conditions in the host’s stomach
and might remodel the proteome in vivo. Since we overall have a very high coverage of close to 80% of the H.
pylori proteome (80% of membrane proteins) we do not expect to miss a large proportion of candidate proteins.
However, we cannot exclude that some proteins, in particular those that are important in immune evasion, are
only expressed in the host environment. It would be very interesting to study H. pylori exposed to conditions
mimicking the human stomach.

The experimental determination of sequence-conservation and commonality of antigens among strains pre-
sents a common challenge for achieving broad cross-protection. Our computational filtering strategy for conser-
vation increases the success towards identifying suitable vaccine candidates for three reasons. First, it increases
the likelihood to achieve pan protection, which is desirable in particular for pathogens with high genetic varia-
bility such as H. pylori*. Second, highly conserved proteins within the genus are presumably essential for specific
bacterial pathogenesis. Third, low conservation compared to other species will reduce the risk of inducing an
immune response against commensal bacteria. In any case, limited accessibility of surface proteins due to mucoid
capsules, polysaccharide side chains and glycolipids present in many gram-negative bacteria should be considered
and experimentally excluded, as done in this report by surface staining with specific antisera.

A vaccine candidate suitable for clinical development should be efficacious in animal models and be able to
trigger B- and T-cell immune responses in humans. Especially for H. pylori, a broad immune response comprising
B- and T-cell responses seems necessary for protection®”. We first showed in a mouse vaccination study that the
antigen jhp_0775 induces specific B and T cell responses and significantly reduces colonization levels, validating
the protective capacity of this antigen. However, targeting antigenic surface proteins may not be sufficient to
prevent or eradicate infection due to complex host immune responses, where the effectiveness of vaccine can-
didates will depend on the interaction of host immune cells, antibodies, replicating organisms, and evasion of
host defenses by the pathogen in chronic infections. It must be noted that rodents are not the natural hosts for H.
pylori, and “artificial” colonization requires relatively high doses of bacteria which were adapted to the mouse®®.
Thus, in immunization studies, sterility is almost never observed, and a reduction of colonization by 1log is
usually considered as protection®. The lack of IFN~ in our model can be attributed to the inbred BALB/c mouse
strain, in which IFN~ responses are generally low with the utilized immunization strategy*’. Indeed, when we
assessed the T cell responses in humans, CD4+ and CD8+ T cells derived from infected patients secreted IFN~
as shown by ELISPOT and ICCS. On the other hand, the selected antigens revealed low to medium sero-reactivity
in a well-characterized human cohort.

Such low but detectable baseline sero-reactivity and T cell response is a desired property of novel vaccine can-
didates in the context of chronic infections. In chronic infections, the immune system is not capable to eradicate
the pathogen, which in part could be mediated by two functionally distinct protein classes: (1) proteins that are
exposed on the bacterial surface but are only weakly recognized by the host immune system and (2) proteins that
actively attenuate the host’s immune system. In both cases these proteins contribute to the immune evasion and
thus, to establish and maintain a chronic infection. Specifically targeting the immune system to proteins derived
from these two classes could provide an unexploited potential to eradicate pathogens causing chronic infections.

In summary, we established a streamlined combination of a DoE guided shaving proteomics with a compu-
tational candidate prioritization and functional immunogenicity assays, to identify jhp_0775 as a novel H. pylori
vaccine candidate. Our study thereby provides a generic roadmap to facilitate a rapid vaccine candidate discovery
with widespread applications for other bacterial pathogens.

Methods

Recombinant protein production in Escherichia coli. Preculture. Chemically competent E. coli
BL21(DE3) were transformed with the production plasmid, plated on LB plates containing the suitable antibiotic
and incubated until single colonies were visible. A single colony was picked to inoculate LB medium containing
the suitable antibiotic. The culture volume was at least 1/50th of the production culture. After incubation over-
night at 37 °C under vigorous shaking, the main production culture was inoculated to an ODg, of 0.1 and incu-
bated depending on the expression system and induction method employed.

T7 promoter system using autoinduction. Autoinduction was performed essentially as described by (Studier
2005). In brief, after inoculation, bacteria were grown at 37 °C with 250 to 275 rpm (shaking diameter of 2,5cm)
- trying to ensure a maximum oxygen transfer rate for high cell density growth*!- in auto-inducing terrific broth
(TB) medium supplemented with 2 mM MgSO,, 100 mg/L Kanamycin-Sulfate (Carl Roth), 0.2 g/L PPG2000
(Sigma Aldrich) and 0.2% (w/v) Lactose-monohydrate (Sigma Aldrich), until an ODy, of 1-2 was reached.
Afterwards, the temperature was lowered to 25 °C and auto-induced overnight, typically reaching a final OD,
of 10 to 15 the following morning. To facilitate insoluble protein production, the induction temperature was left
unchanged at 37 °C. Bacteria were harvested by centrifugation at 6000 g for 15min at 4°C using an SLA-3000
rotor in a pre-cooled Sorvall RC-6 Plus centrifuge (Thermo Fischer) and either directly processed for protein
purification or scraped into sealable plastic bags and stored at —20°C.
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T7 promoter system using IPTG induction. Bacteria were grown as described for autoinduction but with minor
modifications. The TB medium did not contain Lactose-monohydrate. After reaching an ODy, of 2-3, the tem-
perature was lowered to 25 °C, incubated for another 1 to 1,5hours and subsequently induced by addition of
1 mM Isopropyl-3-D-thiogalactopyranoside (IPTG, stock concentration 1 M).

Tet promoter system using AHT induction. Proteins were produced as described for IPTG, but using 200 ug
Anhydrotetracycline hydrochloride (AHT) per liter of culture as inductor (stock concentration 2mg*ml~! in
ethanol).

Recombinant protein purification.  Cell disruption & feed preparation. Bacteria were resuspended in
10 ml cold NiNTA buffer A (100 mM Tris, 500 mM NaCl, pH 8.0) per gram of biological wet weight (BWW), sup-
plemented with 0.1 mM AEBSF-HCI, 150U/g BWW DNase I and 5mM MgCl, with an Ultra-Turrax T25 digital
(IKA) at 10 000 to 14 000 rpm for 30 to 60 seconds. Cell disruption was performed by high-pressure homogeni-
zation with a PANDA2000 (GEA Niro Soavi) at 800-1200 bar in 3 passages at 4 °C. The cell lysate was clarified
by centrifugation at 25000 g for 30 min at 4 °C in an SLA-1500 rotor. If supernatants contained the recombinant
protein, remaining particles were removed by filtration with a 0.2 uM filter. If the protein was located in the pellet,
the supernatant was discarded and the pellet resuspended with an Ultra-Turrax T25 digital (IKA) at 10 000 to
14 000 rpm for 30 to 60 seconds in ten volumes per gram pellet “NiNTA unfold red A” (100 mM Tris, 500 mM
NaCl, 6 M GuaHCl, 1 mM DTT, pH 8.0) buffer, containing guanidine hydrochloride as denaturing and DTT as
reducing agent. Then, the solution was stirred for 30 minutes at 4 °C and clarified by centrifugation at 25000 g for
30min at 4°C.

Chromatography setup.  For chromatography, an automated FPLC system was used at 2 to 8 °C (AKTA™ avant
25, GE Healthcare). A standardized inlet system was developed, using inlet A5, A6 and A7 for 20% ethanol, 1 M
NaOH and H,0, respectively, and inlet B5, B6 and B7 for 20% ethanol with 0.2 M acetate, 2M NaCl and H,0,
respectively. Outlet 1 was connected to a nickel waste container. This setup facilitates two functions: almost any
column can be cleaned in place (CIPed) right after use without switching buffers using universally applicable CIP
programs; NiNTA chromatography can be automated for sequential runs of different proteins. Therefore, this
setup allows sequential, automated and unattended multiple protein purification.

NiNTA chromatography from cell lysate supernatants.  Proteins were purified by consecutive nickel affinity and
size exclusion chromatography. Briefly, the clarified cell lysate was loaded onto a 5ml pre-packed NiNTA HisTrap
FF crude column (GE Healthcare) pre-equilibrated with NiNTA buffer A, washed with ten column volumes (CV)
of NiNTA buffer A mixed with 2% NiNTA buffer B (100 mM Tris, 500 mM NaCl, 500 mM Imidazole, pH 8.0) and
the bound protein eluted with a 15 CV linear gradient to 75% NiNTA buffer B. Eluted peak fractions were col-
lected, pooled and concentrated to a final concentration of 3 to 10 mg*ml ™! using a 10kDa molecular-weight cut-
off spin concentrator. After each use, columns were completely stripped according to manufacturer’s instructions,
cleaned in place (CIP) by 5 CV 1 M NaOH with a residence time of at least 30 minutes, recharged with NiSO, and
stored in 20% ethanol. All nickel-containing liquids were collected in a special waste flask.

NiNTA chromatography from insoluble protein fractions. Insolubly produced proteins were purified as described
for soluble proteins with minor changes. Before loading the DTT containing supernatant, the HisTrap FF crude
column (GE Healthcare) was prepared for reducing conditions according to the manufacturer’s instructions,
as care has to be taken to remove all non-chelated nickel ions. Briefly, the column was equilibrated with 5 CV
NiNTA buffer A, blank eluted with 5 CV NiNTA buffer B, and re-equilibrated with 5 CV “NiNTA unfold red A”.
Then, the feed was loaded, washed and eluted as described above, except using “NiNTA unfold red B” (NiNTA
unfold red A 4+ 500 mM Imidazole) as elution buffer. Eluted peak fractions were collected, pooled and concen-
trated to a final concentration of at least 10 mg*ml ' using a 10kDa molecular-weight cutoff spin concentrator
before refolding by rapid dilution.

Protein refolding by rapid dilution. ~ After denaturing NINTA chromatography and concentration, unfolded and
reduced proteins were refolded by rapid dilution. The refolding buffers used herein contain high amounts of
arginine - an efficient enhancer of protein refolding (Baynes et al. 2005; Arakawa et al. 2007; Tischer et al. 2010) -
with DTT maintaining reducing conditions. After protein concentration, a 20-fold excess of pre-cooled refolding
buffer (330 mM ArgPO,, 10mM DTT, pH 7.4) was placed on a magnetic stirrer. At 4°C, the protein was slowly
added dropwise to the refolding buffer under slight stirring, incubated for 45 minutes and sterile filtered. The
filtrate was reapplied to a NiNTA column as described above with minor changes. The column was prepared for
reducing conditions with re-equilibration by “NiNTA reducing A” (NiNTA buffer A +5mM DTT), the refolded
protein loaded and washed by NiNTA buffer A with a subsequent residence time of 45 minutes, allowing con-
trolled oxidation of disulfide bonds. Afterwards, the protein was eluted with NiNTA buffer B, pooled, concen-
trated and polished by size exclusion chromatography.

Size exclusion chromatography. 5ml of the NiNTA purified and concentrated proteins were loaded onto a
HiLoad 16/600 Superdex 75 pg or 200 pg column (GE Healthcare), pre-equilibrated with formulation buffer
(330 mM arginine/H,PO,, pH 7.4) and eluted at a flow rate of 1 ml*min~". Finally, protein containing fractions
corresponding to a monomer peak or a defined multimer peak were pooled, concentrated to at least 1 mg*ml ™!
and stored at —20°C or —80 °C. For calibration, the gel filtration calibration kits were used according to manufac-
turer’s instructions (GE Healthcare). The resulting calibration curve values were fitted and the resulting equations
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used for subsequent molecular weight calculation. After purification of a protein, the column was CIPed by 0.5 to
1 CV 1 M NaOH with a residence time of at least 60 minutes, washed with 2 CV of H,0 and stored in 20% ethanol.

Polyclonal antibody purification from serum. Polyclonal IgG antibodies were purified from mouse serum by
Protein A affinity chromatography. Therefore, a 1 ml MabSelect™ SuRe column (GE Healthcare) was equilibrated
with 5 CV of Protein A buffer A (20 mM Na,HPO,, 140 mM NaCl, pH 7.2). Serum from one mouse was diluted
to 10ml in Protein A buffer A, particles removed by sterile filtration and applied to the column with a residence
time of 2 to 3 minutes, ensuring greater dynamic binding capacity. Then, the column was washed with 15 CV of
Protein A buffer A. Bound antibodies were eluted isocratically with a step to 100% Protein A buffer B (100 mM
citric acid, pH 3.0). To neutralize the pH of the elution buffer, 200 ul of 1 M Tris pH 9.0 per 1 ml of eluted fraction
were pre-filled into a 96 deep well collection plate. Afterwards, fractions containing the antibodies were pooled,
dialyzed against PBS, concentrated to 2 mg*ml~" and stored at —80°C.

SDS-PAGE.  Gels were casted into 1.0 mm Novex® gel cassettes (Life Technologies) consisting of a separating gel
(8 to 15% (w/v) acrylamide, 375 mM Tris-HCI pH 8.8, 0.1% SDS, 0.1% APS and 0.1% TEMED) and a stacking gel
(5% (w/v) acrylamide, 125 mM Tris-HCl pH 6.8, 0.1% SDS, 0.1% APS and 0.1% TEMED) Protein samples were
prepared by adding 4x sample buffer and heating at 95 °C for 5 minutes. For recombinant proteins, 1 to 10 ug per
lane was applied to estimate purities. Gels were placed into an XCell SureLock™ Mini-Cell electrophoresis system
chamber (Life Technologies) and proteins separated at 170V for 90 to 120 minutes. Alternatively, the samples
were prepared and separated using the Bolt®-system (Thermo Fisher Scientific) with 4-12% Bis-Tris Plus precast
gels. Subsequently, gels were stained either with Coomassie staining solution, having a detection limit of approxi-
mately 100 ng per band (Shevchenko et al. 1996), or with Quick Coomassie™ Stain (Serva Electrophoresis GmbH,
Heidelberg, DE), having a detection limit of 5 ng per band.

Quantification of endotoxin content. 'The endotoxin content of recombinantly produced proteins was deter-
mined using the EndoLISA® ELISA-based Endotoxin Detection Assay (Hyglos) according to manufacturer’s
instructions. Fluorescence was measured using an Infinite® F200 pro fluorescence reader (Tecan) equipped with
a 380/20 nm and a 465/35nm excitation and emission band-pass filter, respectively. To ensure measurements
within the standard curve, proteins were diluted 10, 100, 1000 and 10 000-fold with endotoxin-free water. For
data analysis, a sigmoidal curve fit was used to fit the standard curve, where fluorescence values ranging from 0.05
to 100 EU*ml ! were within the dynamic range.

Luminex® analysis of patient sera. The Luminex® assay was used to measure the serological IgG response of

human serum samples to the vaccine candidates. Antigens were dialyzed against a theoretical buffer excess of
>1000 against an amine free buffer (20 mM NaP;, 500 mM NaCl, pH 7.4) to enable subsequent immobilisation
to carboxylated MagPlex microspheres using a standard EDC-NHS coupling strategy. The concentration of the
antigens was greater than 0.1 mg*ml~'. Antigen immoblilisation and Luminex® multiplex bead array experi-
ments were essentially performed as described previously (Filomena et al. 2015; Planatscher et al. 2013), using a
well characterized patient cohort of H. pylori 378 positive and 299 negative sera according to urea breath test and
histology.

Murine infections and immunizations. Mouse strains and housing. Six to eight-week old female BALB/c mice
were purchased (Harlan Winkelmann GmbH) and housed at the MIH (Technische Universitdt Miinchen,
Medical Microbiology, Immunology and Hygiene, Munich, Germany) under specific pathogen free conditions.
All animal experiments were conducted in compliance with European guidelines for the care and use of labora-
tory animals. Experiments were approved by the animal welfare committee of the “Regierung von Oberbayern”
(Az.55.2-1-54-2532-107-16).

Experimental infection with H. pylori. H. pylori infections were essentially carried out as described previously
(Semper et al. 2014). Briefly, four to six hours before infection, mice were fasted. 1 x 10° H. pylori SS1 were sus-
pended in 200 ul BB medium supplemented with 10% FCS and were given orogastrically in a volume of 200 ul
three times at an interval of two days. Groups of eight mice were used. Upon termination, mice were sacrificed
by CO, inhalation.

Quantitative assessment of colonization. Colonization was quantified by detaching H. pylori from murine
stomachs, plating and counting the colony forming units (CFU). Therefore, stomachs were opened and resid-
ual chow removed by washing in PBS. Afterwards, a piece of 15 to 30 mg was removed, immediately immersed
in 1 ml BB medium supplemented with 10% FCS. Bacteria were detached from the stomach by vortexing for
5 minutes. Subsequently, 100 ul of supernatant was plated directly (1:10) on WC-dent special plates and another
100 ul serially diluted, additionally plating dilutions of 1:100 and 1:1000. Afterwards, plates were incubated under
microaerophilic conditions for five days at 37 °C before counting CFU. Plates containing one to 400 colonies were
considered for counting, usually spanning two dilutions, and the corresponding mean of CFU per mg stomach
tissue calculated.

Immunogenicity of vaccine candidates. The immunogenicity of vaccine candidates was tested and antiserum
raised by immunizing wild type BALB/c mice intraperitoneally (i.p.) with 30 ug antigen and 10 ug Cholera Toxin
(CT, Sigma Aldrich) as adjuvants four times at an interval of one week. Antigens and adjuvants were administered
in a volume of 200 ul diluted in formulation buffer. One week after the last immunization, mice were sacrificed
and blood was withdrawn with needles pretreated with heparin. The collected blood was centrifuged at 10 000 g
for 10 minutes and the plasma collected. The plasma was either stored at —20°C or directly used to purify the
antibodies.
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Therapeutic efficacy of vaccine candidates. To test the efficacy of selected vaccine candidates, mice were vac-
cinated in a therapeutic setup. Wild type female BALB/c mice were infected orally by 108 H. pylori SS1 on day
0, 2 and 4. Subsequently, the animals were immunized orally on day 28 and orally combined with i.p. on day 35
and 42. For oral immunization with a single antigen, 100 ug were administered combined with 10 ug CT, whereas
30 ug for each antigen was used in case of combining multiple antigens. For i.p. immunization, 30 ug for each
antigen was administered with 10 ug CT. Antigens and adjuvants were administered in a volume of 200 ul diluted
in formulation buffer (330 mM ArgPO4, pH 7.4). On day 70, mice were sacrificed, bacteria extracted from the
stomach and plated on agar plates.

Immunochemical methods. Western blot. Western blot was used to specifically detect affinity-tags or
test functionality of immune serum raised against the recombinantly produced proteins. After SDS-PAGE and
equilibration in Semi dry blotting buffer, the gel was placed between soaked Whatman paper onto a metha-
nol activated 0.45 uM PVDF-membrane. After removing air bubbles, proteins were blotted in a Trans Blot® SD
semi-dry transfer cell (Bio-Rad) with 2mA per cm? for 110 minutes. Subsequently, membranes were blocked with
TBS-T supplemented with 5% (w/v) skimmed milk powder for 1 hour, washed, primary antibody added in TBS-T
supplemented with 1% (w/v) skimmed milk powder and incubated for 1 hour at room temperature or at 4°C
overnight. After washing, a secondary antibody-HRP conjugate was added, incubated for 1 hour at room temper-
ature and washed. Washing in between incubations steps was carried out four times with TBS-T for 10 minutes.
For detection, ECL Western Blotting Substrate (Pierce Biotechnology) was prepared according to manufacturer’s
instructions and evenly spread onto the membrane. After 1-minute incubation, the signal was detected incre-
mentally by either photographic film or in the ChemoCam ECL Imager (Intas) CCD-imager at incubation times
spanning 30 seconds to 10 minutes.

ELISA. For analyzing the humoral immune response by antigen specific ELISA, the corresponding antigen
(1 pg*ml™') in PBS was coated onto a MaxiSorb™ 96-well microtiter plate (Thermo Fischer) at 4 °C overnight.
Subsequently, wells were blocked with SmartBlock (Candor), serum added in a serial dilution ranging from 1:100
to 1:100000 and incubated for 1 hour at 37 °C. Next, a secondary anti-mouse-IgG-HRP conjugate (AbD Serotec)
was added in a dilution of 1:10000 and incubated for 1 hour at 37 °C. After incubation, TMB substrate solution
was added and the enzymatic reaction stopped with 2N H,SO, after 3 minutes. Washing in between incubation
steps was carried out four times with PBS/0.05% Tween20. Absorbance was detected at 450 nm with background
correction at 620 nm in an Infinite F200 Pro (Tecan).

Flow cytometry analysis. Intracellular cytokine staining - mouse. ~Antigen-specific cellular immune
response was analyzed by intracellular cytokine staining (ICCS) of restimulated splenocytes from immunized
and control groups. Spleens were transferred into 3 ml RPMI+ medium and kept on ice until preparation was
finished. Spleen single cell suspension was prepared using a 70 uM cell strainer. For erythrocyte lysis, cells were
incubated in 3 ml ACT buffer (17 mM ammonium chloride, 153 mM Tris) for 7 minutes. After washing, cells were
resuspended in 8 ml medium. 1 ml cell suspension was restimulated with 75 ug of antigen in a 24-well plate for
2hours at 37 °C. Subsequently, GolgiPlug™ was added overnight to suppress cytokine secretion, leading to intra-
cellular cytokine accumulation. For cell staining, cells were first labeled with EMA to enable live/dead discrim-
ination. After washing, the surface marker CD4 was stained. After permeabilization with Cytofix/Cytoperm™
Plus (BD Biosciences), intracellular cytokines were stained with an antibody-panel against IFN~, TNFq, IL-2
and IL-17. Subsequently, cells were fixed with 1% PFA, filtered and analyzed by flow cytometry on a CyAN ADP
9 color analyzer (Beckman Coulter), gating on living lymphocytes positive for CD4, counting at least 100 000
events. Single color controls were used for live compensation. Data were analyzed with the FloJo X software
(Treestar).

Intracellular cytokine staining - human. Blood samples were taken from healthy and H. pylori infected patients
after informed consent was obtained, in accordance with ethical regulations (approved by the ethical commit-
tee of the faculty of Medicine TUM # 5662/13). PBMCs were isolated by Ficoll® gradient and cryopreserved
in 10% DMSO from. Cells were quickly thawed, resuspended in pre-warmed PBS, centrifuged at 700 g for
10 minutes and resuspended in 5ml AIM-V T cell medium. After counting, cell concentration was adjusted to
approximately 1 x 107 cells per ml and 1,5 x 10° cells seeded into a round bottom 96-well plate. For restimulation,
50 ug*ml~! antigen with an endotoxin content of less than 30 EU*mg~! was added and incubated for 1 hour
at 37 °C. Subsequently, GolgiPlug™ was added (1:500) to suppress cytokine secretion, leading to intracellular
cytokine accumulation, and incubated for 3.5 hours. As controls, cells were left untreated or stimulated with
PMA/Ionomycin.

For cell staining, Fc receptors were blocked with the Fc receptor blocking reagent (Miltenyi Biotech). Then,
cells were labeled with Fixable Viability Dye eFluor® 506 (eBioscience) to enable live/dead discrimination. After
washing, the surface markers CD3, CD4 and CD8 were stained. Then, cells were fixed with 4% PFA, washed twice
in FACS buffer and stored at 4 °C overnight. On the next day, cells were permeabilized with Cytofix/Cytoperm™
Plus (BD Biosciences) and intracellular IFN~ was stained. Subsequently, cells were washed twice, filtered and
analyzed by flow cytometry on a CyAN ADP 9 color analyzer (Beckman Coulter), gating on living lymphocytes
positive for CD3, counting at least 100 000 events. Single color controls were used for post-acquisition compen-
sation. Data were analyzed with the FloJo X software (Treestar).

Surface protein staining of H. pylori. Serum from immunized mice was prepared from whole blood, further
purified by Protein A affinity chromatography and isolated polyclonal IgG antibodies adjusted to a concentration
of approximately 2mg*ml~'. H. pylori J99 were CFDA-SE labeled, washed and blocked with heat inactivated
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FCS for 15 minutes at 37 °C under shaking. Subsequently, bacteria were washed with PBS with 0.5% (w/v) BSA,
adjusted to an ODg, of 0.5 and 100 ul seeded into a round bottom 96-well cell culture plate. Purified antibodies
were diluted in PBS with 0.5% (w/v) BSA. Bacteria were pelleted by centrifugation, the supernatant discarded
and the pellet resuspended with 100 pL the corresponding primary antibody dilution and incubated for 30 min
on ice. After washing twice, the eFlour®660 labeled secondary anti-mouse I[gG1-HRP conjugate (eBioscience)
was added and incubated for 30 minutes on ice. After washing twice, bacteria were fixed with PBS with 1% PFA,
filtered and analyzed by flow cytometry on a CyAN ADP 9 color analyzer (Beckman Coulter), gating on CFSE
positive cells. The experiment was controlled by antibodies derived from the following immunizations: HPA
(UniProt ID B5Z7F9), an outer membrane protein of H. pylori; HPG (UniProt ID 025743), a protein located in
the cytoplasm and inside of outer membrane vesicles; CT without antigen. Data were analyzed with the FloJo X
software (Treestar).

ELISpot. IFN~ ELISpot analysis was performed with the human T-Track® basic IFN~ kit (Lophius Biosciences)
according to manufacturer’s instructions. In brief, PBMCs were isolated, cryopreserved and thawed as described
for human ICS. In total, 6 x 10° cells were seeded onto pre-coated 96 well stripes. For restimulation, 50 ug*ml~!
antigen with an endotoxin content of less than 30 EU*mg ™! was added. As positive control, the Staphylococcus
enterotoxin B (SEB) was used, demonstrating cell functionality. In addition, 5 ug*ml ! of an EFT-MHC Class II
control peptide pool (Cellular Technology Limited) was used to specifically stimulate CD4 memory T cells. Cells
were incubated for 20 hours at 37 °C. IFN~ was detected and quantified by a CTL-ImmunoSpot® S6 FluoroSpot
Line reader (Cellular Technology Limited). Quality control and background subtraction were done by CTL
ImmunoSpot® Academic Software.

Surfome preparation and quantitative mass spectrometry. Design of experiments. In experi-
ments, the measured outcome typically depends on multiple variables. To measure their impact, scientists usu-
ally employ the one factor at a time (OFAT) approach, changing one variable at a time while holding all others
constant. But this approach requires a lot of experiments, and does not quantify intervariable and higher-order
dependencies. Here, the Design of Experiments (DoE) approach offers a solution*’. Experiments are mathemat-
ically planned and evaluated, reducing the number of experiments while quantifying the impact of all variables
and their dependencies on the readout. In the last decade, DoE has become increasingly popular in the field of
chromatography".

Here, DoE was employed to assess the impact of buffer components and time of incubation on autolysis by
the CFDA-SE labeling assay. The software MODDE (Umetrics, Malmo, SE) was used for experimental planning,
analysis and subsequent visualization. For response surface optimization (RSM) the suggested experimental
design central composite face centered (CCF) with a star distance of 1 was chosen. The experiment included 19
conditions, including 5 center points, and was executed in the randomized order as suggested by the software. For
evaluation, insignificant terms were removed until the model was not further improved. The experiment was valid
for interpretation when R?, Q% model validity and reproducibility were greater than 0.5, 0.2, 0.25 and 0.6, respec-
tively. In case of very high reproducibility, a negative value for the model validity was accepted, as this represents
an artefact if all other values match the criteria®.

CFDA-SE labeling and autolysis assay. E. coli. E. coli DH5c were transformed with pET30b to confer
kanamycin resistance, plated on LB-kanamycin plates and incubated overnight at 37 °C. A single colony was
picked and grown in 5ml LB-kanamycin overnight. The preculture was inoculated 1:200 and expanded in 11
LB-kanamycin under shaking at 200 rpm at 37 °C until reaching an ODyy, of 1.0. Cells were harvested by centrif-
ugation at 4400 g for 15 minutes at room temperature, washed twice and resuspended in PBS, adjusting an ODgg,
of 20.

CFDA-SE labeling was performed as described previously with minor modifications (Logan et al. 1998). In
brief, a 10 mM stock of CFDA-SE dissolved in DMSO was added to a final concentration of 5 uM. As background
control, only DMSO was added. Then, bacteria were incubated at 37 °C for 20 minutes at 200 rpm protected from
light, washed once in PBS, split into 1 ml aliquots and transferred into 1.5 ml reaction tubes.

For DoE experiments, buffers were prepared in the meantime. The bacteria were centrifuged at 5000 g for
5 minutes. The pellets were treated according to the DoE worksheet, providing the experimental conditions for
the resuspension buffer, resuspension sequence and time of incubation. Afterwards, bacteria were pelleted by
repeated centrifugation and the supernatant withdrawn, taking care not to disturb the pellet. The supernatant was
transferred into white 96 well assay plates. Finally, the fluorescence of the supernatant was measured using the
FITC filters with excitation and emission passband window at 485 and 530 nm, respectively. Before DoE analysis,
the fluorescence of the CFDA-SE labeled samples was background-corrected by subtraction of the fluorescence
from control samples and buffers.

H. pylori labeling. For CFDA-SE labeling of H. pylori, the strain J99 was plated on WC-dent plates, expanded
once and harvested by scraping. All subsequent steps were performed as described for E. coli.

H. pylori PFA fixation. A PFA solution was freshly prepared by adding 1% PFA to PBS and heating to 70°C in
a water bath until dissolved. After cooling to room temperature, the solution was used to resuspend a bacterial
pellet at room temperature adjusting the ODy, to 30 and incubated for 5 minutes. Fixed bacteria were washed
twice with PBS before further treatment.

Surface shaving with trypsin. The H. pylori strain J99 was grown on WC dent agar plates. Then, bacteria
were harvested by scraping and split with regard to unfixed and PFA fixed conditions. Subsequently, bacteria
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were washed twice with PBS and resuspended in shaving buffer (1x PBS, 20% (w/v) sucrose, 10mM DTT) to a
final ODgy, 30. 1 ml of the bacterial solution was distributed into 1.5 ml reaction tubes on ice. 10 ug sequencing
grade Trypsin was added to one half, and the trypsin’s formulation buffer (50 mM acetic acid) added to the other
half. Subsequently, bacteria were incubated at 37 °C under shaking in a Thermomixer (Eppendorf) at 500 rpm.
After 10, 20 and 30 minutes, shaving was stopped by placing the corresponding tube on ice. Bacteria were pelleted
by centrifugation and the supernatant filtered through a 0.22 uM syringe filter (sterilized by gamma irradiation,
Millex®, Millipore). The supernatant was shock frozen in liquid nitrogen and stored at —20 °C until preparing the
samples for MS analysis.

After each step viability was measured by counting CFU in triplicates and at the end morphology analyzed by
microscopy. The experiment was performed independently in biological quadruplicates.

Surface protein biotinylation. The biotinylation was performed with the Pierce™ Cell Surface Protein
Isolation Kit according to manufacturer’s instructions and with the manufacturer’s proprietary buffers. Briefly,
the H. pylori strain J99 was prepared unfixed and PFA fixed from the same batch of bacteria for the shaving
experiment. After washing, bacteria were resuspended in PBS to a final ODg, of 30. The content of one vial
Sulfo-NHS-SS-Biotin was dissolved in 48 ml ice-cold PBS. For biotinylation, 1 ml of bacterial suspension was
added and incubated for 30 minutes at 4°C under gentle agitation on an orbital rocking platform. Controls were
treated similarly without the crosslinking reagent. To stop the reaction, 500 pl of the isolation kit’s quenching
solution was added. Subsequently, cells were washed with TBS and lysed by addition of 750 ul of the isolation kit’s
biotinylation lysis buffer with sonication for 4 x 1 minute on ice. Subsequently, the lysate was cleared by centrif-
ugation and the clarified supernatant filtered through a 0.22 uM syringe filter (sterilized by gamma irradiation,
Millex, Millipore). The supernatant was shock frozen in liquid nitrogen and stored at —20 °C. Afterwards, bioti-
nylated proteins were affinity-enriched by NeutrAvidin Agarose Resin. The slurry was added to a centrifuge col-
umn assembly and washed three times with 500 ul of wash buffer by centrifugation for 1 minute at 1000g. Then,
the supernatant was added and incubated for 60 minutes at room temperature with end-over-end mixing. After
removing the supernatant by centrifugation, the slurry was washed four times. Bound proteins were eluted by
adding 400 pl the isolation kit’s elution buffer containing 50 mM DTT, incubating the suspension for 60 minutes
at room temperature and collecting the supernatant by centrifugation. The samples were shock frozen in liquid
nitrogen and stored at —20 °C until preparing the samples for MS analysis.

Viability and morphology were analyzed as described for surface shaving. The experiment was performed
independently in biological quadruplicates alongside the surface shaving.

Full proteome analysis. To analyze the H. pylori proteome, bacterial lysates were prepared with minor
adaptations as described for cell lines (Hornburg et al. 2014). Briefly, an ODy, of 5 was taken from the harvested
bacteria, washed twice in ice-cold PBS containing proteinase inhibitors and lysed in lysis buffer (4% SDS, 100 mM
Tris, pH 8.0) with 4 x 1 minute sonication. Subsequently, the lysate was sterile filtered and protein concentration
was approximated by measuring the absorption at 280 nm with 1 AU=1mg*ml~".

Sample preparation for mass spectrometry. 100 ug protein sample was reduced with 10mM DTT for
30 minutes and alkylated with 55 mM iodoacetamide for 45 minutes in an ultrasound water bath. To remove the
detergent, proteins were precipitated. Therefore, 80% (v/v) acetone was added at —20°C, incubated for 2h and
the resulting precipitate was pelleted by centrifugation and washed twice with 80% (v/v) acetone. Afterwards, the
precipitated proteins are dissolved in 6 M Urea/2 M Thiourea, 10 mM Hepes, pH 8.0 and digested by addition of
1 g LysC for 3 h. Subsequently, samples were diluted 1:5 in 50 mM sodium bicarbonate and digested by addition
of 2 ug trypsin overnight. Finally, the resulting peptide mixtures are desalted by C18 StageTips and directly ana-
lyzed by MS.

Mass spectrometry analysis with an Orbitrap mass spectrometer. Mass spectrometry analysis and
data evaluation were carried utilizing a Thermo Scientific EASY nLC 1000 HPLC system directly coupled to an
Orbitrap Elite™ quadrupole Orbitrap mass analyzer via a nano-electro spray source (Thermo Fischer Scientific)
(Michalski et al. 2012), with the software Xcalibur acquiring the data. Peptides were loaded onto in-house packed
columns (75uM inner diameter, 20-cm length, 1.8 uM C18 particles) in MS Buffer A and separated for 70 min
within a linear gradient from 5% MS buffer B to 60% MS buffer B at a flow rate of 250 nl/min with a column
temperature set to 40 °C. The mass analyzer was operated in a data-dependent top15 mode with a survey scan
range set to 300 to 1650 m/z and a resolution of 240,000 at 400 m/z. Selected peptides were subjected to collision
induced dissociation with a normalized collision energy of 35. Repeated sequencing was limited by dynamically
excluding sequences features for 30 seconds.

Data analysis. We processed the raw data with MaxQuant* (v. 1.5.3.14) and used the integrated search
engine Andromeda® to search MS/MS spectra against the H. pylori J99 UniprotKB Fasta database (1,488 for-
ward entries; version from October 2015). The enzyme specificity was set to trypsin while allowing up to two
miss cleavages and cleavage N-terminal to proline. We set the minimum length of peptides to be considered for
identification to seven assuming carbamidomethyl of cysteines as fixed and methionine Oxidation (M) as well as
acetylation of N-termini as variable modifications. A false discovery rate (FDR) cutoff of 1% was applied for both,
the peptides and proteins.

We performed nonlinear retention time alignment of all measured samples in MaxQuant which allows us to
transfer of peptide identifications in the absence of sequencing (MS1 only), within a maximum retention time
window of 0.7 min (“Match between runs”). Protein intensities were normalized within MaxQuant (MaxLFQ,?!)
based on normalized extracted ion currents. We stringently filtered our data requiring at least two peptide ratios
for protein quantification. In addition, common contaminants (n =247) as well as proteins only identified with
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side modifications were strictly excluded from the analysis. Data analysis was performed within the PERSEUS
framework*. Missing values were imputed based on distribution of all quantified proteins in the respective exper-
iment (downshift 1.8, width 0.3).

Quantified proteins (Fig. 2A): The Maxquant protein groups intensity output was filtered for common con-
taminants, proteins only identified with side modification and reverse identifications. The bar denotes the median
number of identified proteins for each group (quadruplicates), error bars show the standard deviation of the
number of quantified proteins.

Annotation coverage (Fig. 2B): Annotations were matched the majority protein column for all quantified
proteins (see quantified proteins). In addition, a gene list was created for all 1488 H. pylori proteins and similar
and annotations (GOMF name, GOBP slim name, GOCC slim name, KEGG name, and Uniprot Keywords) were
loaded for the Uniprot identifier in Perseus. All quantified proteins (see quantified proteins) were matched to this
data frame according to the Uniprot identifier and percentage of coverage was calculated (see Supplementary
Table coverage).

Venn diagram (Fig. 2C): Quantified proteins (see quantified proteins) were grouped accordingly requiring at
least 3 valid values for a protein group to be counted.

Annotation enrichment in Cluster 1 and 2 (Fig. 2F): Enriched annotations for protein in Cluster 1 and
Cluster 2 were calculated compared to all surfome samples (C10, C20, C30, T10, T20, T30, for both, PFA+
and PFA-) with a fisher exact test in Perseus. The results are plotted in an annotation volcano plot showing
de-enriched and enriched annotations (see supplementary tab cluster C1 C2 enrichment).

PCA: The orthogonal component 1 and 2 differentiated between these two effects. For identifying groups
of protein profiles that are release by secretion and proteins on the bacterial surface, we employed an unsuper-
vised K-means hierarchical clustering (300 clusters) on ANOVA significant (S0: 1, FDR: 5%) profiles. Absolute
abundances in the entire total proteome were calculated based on the size normalized protein intensities (iBAQ,
(Schwanhdusser et al. 2011)) and plotted against their respective rank. Density distributions were calculated with
R*” and scaled to similar intensities in order to improve comparison of distribution shifts along the dynamic range
of the total proteome.

Biotinylation: We first assessed similarity of the samples in an unsupervised hierarchical k-means clustering.
For both groups, biotinylation and control, we identified one sample of the quadruplicate to exhibit a very differ-
ent protein pattern and removed these for further analysis. We next performed a Welch’s t- test and applied a 5%
permutation based false discovery cut-off with an SO correction of 1 on proteins that were detected with at least
2 valid values in at least one group. To benchmark the biotinylation approach against our trypsinization strategy
we performed a 2D annotation enrichment on the T-test difference of biotinylation vs biotinylation control and
trypsin treatment (4trypsin, 10 min, PFA positive) vs control (—trypsin, 10 min, PFA positive). Supplementary
Table biotinylation 2D and Supplementary Fig. 2C shows all categorical annotations with a p-value <0.05.

Candidate selection. Correlation analysis.  To identify surface associated proteins from the 1153 quan-
tified proteins of H. pylori, individual experiments were first numerically annotated according to the trypsin
treatment and incubation time (10, 20 or 30). Since for control samples (no trypsin treatment) no surface shaving
is expected irrespective of the time point, these samples were numerically annotated with 0. Missing values were
imputed and replicates were aggregated to the median. Next, we performed a Spearman rank correlation analysis
employing a permutation based FDR of 5% (250 randomizations) of protein abundance profiles to the numerical
annotation (0, 10, 20 or 30). 146 proteins that significantly correlated with a coefficient of greater than 0.75 were
kept. The replicates for these 146 profiles were averaged (median) and z-scored. We next employed an unsuper-
vised k-means clustering to further filter the data for expected surface shaving profiles. We identified two clusters
(c1, c2) containing 54 and 19 proteins (73 in sum), respectively.

Homology analysis.  The first Uniprot identifier of the protein groups in c1 and c2 were extracted. With this
Uniprot identifiers a blast search (“blastp”, non-redundant database, hit list size 2000, e-value threshold 10) was
performed interrogating NCBI via a BioPython http://www.biopython.org/ (Bio.Blast, NCBIWWW)*%_Uniprot
identifier was searched (a) against all bacteria (taxonomy ID 2) excluding H. pylori (taxonomy ID 210), (b) Homo
sapiens (taxonomy ID 9606) and (c) H. pylori (taxonomy ID 210). The search against H. pylori returned 72 of the
submitted 73 identifiers missing Q9ZLC5.

The identity was calculated by dividing the hsp.identities by alignment.length. Filter: (a) compared to other
bacterial proteins, identities >33% were excluded (excluding 37 candidates). (b) When compared to human pro-
teins, identities >5% and e-value >1 —log10 were excluded (excluding 46 candidates). Both filters were applied
reducing our candidate list to 22. To visualize the identity within H. pylori we extracted the best identity scores of
remaining candidates compared to the proteomes of 264 H. pylori strains.

Data resources. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE*** partner repository with the dataset identifier PXD012566 (http://proteomecen-
tral.proteomexchange.org).
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