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Non-muscle invasive bladder cancer (NMIBC) patients often have fewer treatment

options, and suffer the progression of disease due to mechanisms that are not clear, as

well as due to its diversity. This study was designed to explore the molecular mechanism

of bladder cancer through an RNA-seq. In addition to conventional analyses, we also

simplified the network through modularization using the WGCNA algorithm, with the

help of the topological overlapping matrix and hierarchical cluster tree, which are based

on the PPI network of STRING. Furthermore, the hub genes were confirmed through

survival analyses in the independent cohorts (n = 431). Among them, 15 genes were

significantly associated with poor prognosis. Finally, we validated the results at mRNA

and protein level using qRT-PCR, IHC and western blotting. Taken together, our research

is important for the prediction, as well as the prospective clinical development of drug

targets and biomarkers.
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INTRODUCTION

Bladder cancer is a prevalent disease among the world, which is mainly attributed to smoking (1).
Men are more likely to be affected than women, and morbidity increases with age (2). Bladder
cancer grows through two distinct pathways: non-muscle invasive type and muscle invasive type.
The majority of bladder patients are diagnosed through macroscopic hematuria, and diagnosis is
confirmed after surgical resection, which is the primary stage of treatment (3). Although the 5 years
survival rate as a result of current therapies is more than 80% for non-muscle invasive bladder
cancer (NMIBC) patients, while a recurrence rate of nearly 70% results in patients being under
lifelong surveillance and makes NMIBC the most expensive cancer from diagnosis to death (4, 5).
Therefore, new therapeutic strategies are necessary to overcome these challenges.

Recent studies of bladder cancer based on gene expression profiles have gradually elucidated
the molecular mechanism of the disease (6). Except for the transcriptional features have been
discovered through earlier traditional microarrays, many molecular characteristics have been
identified through integrative analyses (7, 8). Indeed, a lot of putative biomarkers and drug targets,
including FGFR3, VEGF, CEBPA, and CCNE1, have been identified in different investigations
(9–12). However, none of them have probed the regulation of their expression and of their
associated genes, which could provide an extra perspective into the molecular mechanisms of
disease progression.
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In this study, we performed an RNA-seq on non-muscle
bladder cancer patients who were subjected to surgical resection.
After data processing, the reads were aligned with hg38 using
STAR, and DESeq was used to filter the differentially expressed
genes (DEGs). Then, we used these DEGs to execute functional
annotation, including GO and KEGG enrichment analyses,
which were further validated using GSEA. In order to simplify
the network and identify functional clusters, modularization
analysis was established through WGCNA and integrated with
the PPI network from STRING, in order to model the dynamics
of proteome changes. Afterwards, survival analysis was used to
assess the clinical outcomes of hub genes, which are located as
connections in each module. Finally, the results were confirmed
through experiments, and it is hoped that they may be used as a
reference for gene therapy for bladder cancer.

RESULTS

Identification of Differentially Expressed
Genes (DEGs) and Functional Variation
DEGs were screened out using the DESeq package depending on
read counts at transcription level, which were identified using
an absolute log2FC value >1 and adjusted p-value of <105 as
the statistical conditions for filtering. We obtained 885 DEGs,
including 54 significantly upregulated genes and 831 significantly
downregulated genes between the bladder cancer tissue and
adjacent tissue. A volcano plot was used to visualize the results, in
which hub genes and significantly changed genes were indicated
(Figure 1A).

In order to further analyze the DEGs, we explored functional
variation between the two groups using the clusterProfiler
package. 430 GO terms were identified with an adjusted
p-value of <0.01. The GOSemSim package was used to remove
similar terms by keeping only one representative term, which
resulted in 142 unique GO terms (13). The top 20 are
shown in Figure 1C. Even though the extracellular matrix
and organization structure were the most statistically changed
functions, many terms involved in the immune response and
activation, such as the regulation of lymphocyte activation,
regulation of humoral immune response, adaptive immune
response, and T cell activation, were also found. KEGG analysis
also revealed many DEGs related to the downstream pathways of
immune activation (Figure 1B), such as the PI3K-Akt signaling
pathway, MAPK signaling pathway, and NF-kappa B signaling
pathway. Most DEGs were downregulated in these processes.
Recently, an unsupervised clustering by cytogenetic analysis
divided NMIBC into two subtypes, no cytogenetic changes
subtype (genomic subtype1, GS1) and another subtype with loss
of 9q in chromosome (GS2). GS2 often appear in high grade
tumors, and loss some regulators of AKT/PI3K/mTOR pathway.
This may be why the dysfunction of AKT/PI3K pathway in
NMIBC (14). In order to further verify the relationship between
phenotype and functionally changed genes, we performed GSEA
on the whole genome at transcription level. The transcripts of
bladder cancer were remarkably associated with downregulated
genes related to T and B cell receptor signaling pathways and

their downstream pathways, which is in accordance with GO and
KEGG enrichment analysis (Figures 1D,E).

Integrative Network Analysis Reveals New
Functional Modules
An integrative analysis method was used to model the dynamics
of proteome changes upon cancer progression, as described
previously (15). In brief, we applied WGCNA to all DEGs
in order to cluster the correlative proteins that had similar
molecular functions or biological processes (16). Later, these
proteins were superimposed onto the PPI network in order
to identify functional modules. As a result, we identified
132 modules, with the number of proteins ranging from 17
to 2 (Figure 2B), and 117 out of the 132 modules were
highly interconnected through their members (Figure 2A).
Each module was annotated by known functional terms or
signaling pathways. For instance, the modules were remarkably
enriched in the immune reaction system including the T cell-
mediated immune response (module 1, 13, 26, and 34), B cell-
mediated immune response (module 11, 28, 34, and 38), mast
cell activation (Module 6, 10, and 51) and natural killer cell
mediated immunity (Module 39, 41, 47, and 75). Furthermore,
some of the modules involved in cell invasion and migration
processes also contributed to the progression of tumorigenesis,
as commonly known, through mechanisms such as extracellular
matrix organization (Module 4, 72) and the integrin-mediated
signaling pathway (Module 32, 51). In summary, progression of
bladder cancer is through the rebalanced regulation and extensive
reprogramming of mutually connected functional modules.

Survival Analysis of Hub Genes
Based on the expression profile and clinical data of 431 bladder
cancer samples from TCGA database, the clinical outcomes of
hub genes that are indicated in Figures 1, 2 were evaluated
through survival analysis. 15 out of the 62 hub genes were
significantly associated with poor prognosis, and were either
positively or negatively correlated with a higher risk and
were either upregulated or downregulated with bladder cancer
(Figure 3). Among the hub genes, CD3D was the core factor
of the network, which was involved in the T cell receptor
signaling pathway and was connected to T cell and mast cell
activation. We computed the Pearson correlation of CD3D using
26,483 transcripts of 431 bladder cancer patients. CD2, CD6,
and UBASH3A were the most positively correlated genes, while
CD3D, and SCAMP1, MARVELD2, and KDM5B were the most
negatively correlated. These genes might also be involved in
the regulation of bladder cancer progression, and might also be
candidate biomarkers or drug targets for the disease.

Initial Validation of Transcriptome Results
Using qRT-PCR and IHC
In order to confirm the DEGs found through the experiment,
total RNA of 24 paired tumor tissues were isolated for qRT-PCR
validation. Twenty six target DEGs were selected as shown in
Figure 4. Moreover, IHC was also performed to further validate
the five target genes of patients who underwent surgical resection
(Figure 5). In brief, the DEGs were successfully validated and
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FIGURE 1 | Functional annotation. (A) Volcano plot of DEGs in bladder cancer compared with adjacent tissue. P-value were counted by the Wald test. Candidate hub

genes were shown with different colors. (B) Bubble plot of top 30 enrichment of KEGG pathways. P-values were shown by different color, the size of bubble indicate

the gene count of each pathway. (C) GO enrichments were arranged by top 20 significantly p values. (D,E) GSEA of whole transcription from RNA-seq, p-value was

made by Kolmogorov-Smirnov test.

showed good correspondence with the analysis of transcriptome,
indicating that the RNA-seq results were precise and reliable.

Signaling Pathway Validation Using
Western Blotting
Finally, we wanted to confirm the signaling pathways at protein
level. MAPKs are evolutionarily conserved kinases, ubiquitously
expressed and regulate a wide range of biological processes,
such as cell growth, differentiation and death (17, 18). In
cancer, the MAPK signaling pathway can play a double role by
either maintaining cell survival or impelling cell death, through
different mechanisms (19). In this study, we found that Fibroblast
growth factor receptor 1 (FGFR1), which is amplified in lung
and breast cancer, was downregulated in bladder cancer samples
compared with that of the controls (20, 21). FGFR1 genes are
fused to TACC1 through interstitial deletions, which were also
downregulated in our results (log2FC = −0.91). The other three
genes of the MAKP signaling pathway, PKCα, p21 Ras, and c-
Fos, followed the same trend as that of FGFR1. More strikingly,
protein phosphatase HePTP, which is a negative regulatory factor,
also performed a similar action (Figure 6).

DISCUSSION

It is well-known that bladder cancer is the 11th most malignant
tumor worldwide, and 70% of patients present with NMIBC.

However, the exact biological functional variation during the
progression of bladder cancer is still obscure. In order to
provide deeper insights into the molecular mechanism involved
in this process, we performed an RNA-seq on three paired
bladder cancer patients who underwent surgical resection at
China-Japan Union Hospital of Jilin University, and made a
comprehensive analysis of the results, together with data from
TCGA database. We identified core DEGs, significant biological
processes, pathways, and validated our results using qRT-
PCR, IHC and western blotting. In general, our work revealed
an interlaced network presented by central modules that are
involved in bladder cancer development, in which hub genes may
play an indispensable role.

We sought for the expression patterns of transcripts and
functional variations between bladder cancer tissue and adjacent
tissues using RNA-seq, which produced a massive amount of
data. In order to extract useful information from the large
amount of data to explain the molecular mechanism of bladder
cancer, in our study, we focused on two concepts. First, the
DEGs were annotated by GO and KEGG pathway analyses,
and the results involved functions related with immunity, cell
adhesion and cancer. Furthermore, GSEA provided a good
method of validating the functional annotations of the whole
genome at transcription level rather than the DEGs. We also
deciphered the complex network through modularization using
WGCNA superimposed onto the PPI database of STRING. Each
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FIGURE 2 | Expression profiling of whole proteome reveals co-expression clusters and functional modules in bladder cancer. (A) Allocation of 132 modules. Each

node represents the individual module and their interactions by the module size. Edges connect modules that share PPIs. Boxed modules are further enlarged in (C).

(B) Distribution of modules size, modules were identified by superimposition of proteins in bladder cancer onto the PPI network. The numbers of members from each

module are exhibited in the figure. (C) Seven interconnected modules of immune reaction system derived from bladder cancer, with showing the protein names and

representative functional terms.

module was facilitated through the hierarchical cluster tree and
topological overlapping matrix, which echoed the annotated
functions of GO and KEGG. Overall, the complicated network
was simplified by modularization into modules, which made it
easier for it to be learned by hub genes that were the connections
among the modules. Second, the bladder cancer dataset obtained
from TCGA was used to evaluate the clinical significance of
the hub genes. Fifteen hub genes, including five upregulated
and 10 downregulated, were associated with overall survival
of patients, which indicates poor prognosis of bladder cancer.
Among the hub genes, CD3D attracted our attention due to
its location on the most important module. Pearson correlation
was used to find the co-expression of CD3D and the expression
pattern was assessed. Finally, partial hub genes were validated
using qRT-PCR and IHC on specimens from the bladder
cancer patients.

Along with the development and application of NGS
technologies, a large number of sequencing data has been
accumulated. However, we should be conscious of an analytical
system that is so sophisticated that it is above our initial
cognition. Fortunately, modern methodologies have provided
us with a good way of simplifying complex networks, which
include thousands of proteins that can be disassembled into
several independent and correlated modules, and the hub genes
of each module can be probed in detail. The active application
of public databases promotes the elucidation of gene functions.
As mentioned above, our study clearly presents the significant
biological modules, pathways and hub genes involved in the
progression of bladder cancer. However, some core genes might

be shut out if they fail to be positioned in the modules, or have
not been filtered out as DEGs, which may play an important
role even though their expression does not greatly change
during cancer progression. Therefore, we may have missed these
genes in our analysis. Taken together, we systematically analyzed
the molecular mechanism of functional variation in bladder
cancer through biological modules and hub genes, which were
confirmed using qRT-PCR, IHC, and western blotting. The
revelation that they are involved in tumor progression could be
used to design new strategies to treat aggressive carcinoma. For
example, the downregulation of CD3D in bladder cancer samples
and the T-cell receptors that are essential for the activation
of T cell signaling, indicate a new therapeutic approach for
bladder cancer. In addition, similarly, other hub genes may
also prove to be useful drug targets and prognostic markers in
gene therapies.

METHODS

Patients and Samples
All specimens were obtained from bladder cancer patients
between April 2016 and December 2017 at China-Japan Union
Hospital of Jilin University (Changchun, China), with the
approval of the Ethics Committee. The samples were surgically
resected followed by being treated with liquid nitrogen, and
were then stored at −80◦C. According to routine procedure, all
samples were assessed using HE staining and diagnosis was made
by three independent pathologists.
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FIGURE 3 | Survival curve for hub genes of 433 TCGA bladder cancer samples and analysis of Pearson’s correlation of CD3D (A) Five up-regulated hub genes with

poor prognosis in bladder cancer, p-value, Hazard ration, and 95% CI are shown. (B) Ten down-regulated hub genes with poor prognosis in bladder cancer, p value,

Hazard ration and 95% CI are shown. (C) Pearson’s correlation of CD3D with top 3 positive and negative genes in bladder cancer from TCGA database, relevant gene

expression versus change upon CD3D, p-value and correlation are shown.

FIGURE 4 | Validation of DEGs by qRT-PCR. (A,B) Boxplots indicate the medians and dispersions of 24 bladder cancer and their adjacent tissue samples. P-values

are counted by student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5 | Immunohistochemistry. Five hub genes expression in 12 pairs of bladder cancer and adjacent tissues (magnification 200×).

RNA-Seq and Data Processing
Total RNA of the three bladder cancer tissues and their paired
adjacent tissues were isolated using Trizol reagent (Sangon
Biotech, Shanghai, China), as described in other studies. The
cDNA libraries were constructed using a custom protocol,
which were sequenced using the Illumina Hiseq 2500 sequencer
(Sangon Biotech, Shanghai, China). Raw data were uploaded to
Sequence Read Archive (SRA) (PRJNA525544).

The adaptor sequences of raw reads were removed using
cutadapt (22), then the clean reads were aligned to the human
genome (hg38) using STAR (23). Prior to the next analysis,

the R package, DESeq (24), was used to remove bad counts
and filter the differential expression according to the conditions
of an absolute log2FC value of >1 and an adjusted p-value
of <105.

Functional Analysis
The DEGs were used to perform GO and KEGG analyses using
the clusterProfiler package (25), and an adjusted p-value of<0.01
was considered as a significant event. Moreover, in order to
deeply analyze functional variations between the bladder cancer
tissue and their adjacent tissue, GSEA was utilized to discover the
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FIGURE 6 | Western blotting detection of MAPK signaling pathway. Lysates

from three pairs of bladder cancer and adjacent tissues were subjected to

western blotting with antibody to HePTP, FGFR1, c-Fos, PKCα, p21 ras, and

Erk2. GAPDH is a reference gene.

molecular mechanism of the whole genome at transcription level,
rather than the DEGs.

Network Analysis
All DEGs were used for the co-expression analysis using the
WGCNA package (26) and were superimposed onto the PPI
database of STRING (27). The co-expression analysis clusters
were delineated using the dynamic tree cut package, with the
minimum height for each module set to 0.2 (28). The overall
trend of each module was based upon the eigengene, and
the members of each module were collected through Pearson
correlation from among DEGs and their interactors. Moreover,
a topological overlapping matrix was also utilized to filter the
PPI network (29). In the end, individual modules were annotated
using clusterProfiler (25) and were visualized in Cytoscape (30).

Survival Analysis
The survival analysis was used to reveal the clinical outcomes of
the hub genes in cancer prognosis. The expression profiles and
clinical data of 431 bladder cancer patients were obtained from
TCGA database using TCGAbiolinks (31). The 431 samples were
split into a high expression group and a low expression group,
according to the hub genes, using the survminer package for the
best separation. A p-value of <0.05 was considered statistically
significant and is shown in the results.

Quantitative Real-Time PCR (qRT-PCR)
qRT-PCR was used to verify the results of RNA-seq. The total
RNA of 24 paired bladder tumors and their adjacent tissues were
extracted using TRIzol. The genes of interest were then quantified
through qRT-PCR using a One-Step qPCR Kit (Invitrogen,
USA) and executed with a CFX ConnectTM Real-Time System

(BIO-RAD, USA), according to the manufacturer’s instructions.
The results were analyzed through the 2−11CT method (32), with
GAPDH as a reference gene.

Immunohistochemistry (IHC)
The specimens from the bladder patients who underwent
surgical resection were cut to 4µm thick sections, were then
formalin-fixed and paraffin-embedded for IHC, as described
previously (33). The primary antibodies used are as follows:
CD48 (No.133506, Abcam), MAP4K1 (No.33910, Abcam), IL16
(No.184161, Abcam), CYTIP (No.154847, Abcam), and PTPRC
(No.40763, Abcam). Image Pro Plus 6.0 (Media Cybernetics,
Bethesda, MD, United States) was employed to measure the
positive area of hub genes for quantitative analysis.

Western Blotting
The tissue samples were stored at −80◦C for 16 h and lysed with
Tissue Extraction Reagent I (Invitrogen, USA) supplemented
with protease and phosphatase inhibitors. The BCA assay kit
(Thermo Scientific, USA) was then used to measure protein
concentration. In brief, the lysate proteins were separated
using SDS-PAGE, followed by being transferred into PVDF
membranes (Invitrogen, USA), then subjected to the general
process of western blotting, according to the instructions of the
manufacturers of the antibodies, purchased from CST and Santa
Cruz: PKCα (#59754, CST), FGFR1 (#9740, CST), c-Fos (#2250,
CST), HePTP (sc-271245, Santa Cruz), p21 Ras (#3965, CST),
Erk2 (#9108, CST) and GAPDH (#5174, CST).

Statistical Analysis
All experiments were performed in triplicate, at least. For the
analysis between two groups, the student’s t-test was leveraged
for comparison between tumor tissue and its adjacent tissue. Data
are presented as mean ± SDs, except when indicated otherwise.
A p-value of <0.05 is considered to be statistically significant.
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