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Abstract

It is well known that iron overload promotes alcoholic liver injury, but the doses of iron or

alcohol used in studies are usually able to induce liver injury independently. Little attention

has been paid to the coexistence of low alcohol consumption and mild iron overload when

either of them is insufficient to cause obvious liver damage, although this situation is very

common among some people. We studied the interactive effects and the underlining mech-

anism of mild doses of iron and alcohol on liver injury in a mouse model. Forty eight male

Kunming mice were randomly divided into four groups: control, iron (300 mg/kg iron dextran,

i.p.), alcohol (2 g/kg/day ethanol for four weeks i.g.), and iron plus alcohol group. After 4

weeks of treatment, mice were sacrificed and blood and livers were collected for biochemi-

cal analysis. Protein nitration level in liver tissue was determined by immunoprecipitation

and Western blot analysis. Although neither iron overload nor alcohol consumption at our

tested doses can cause severe liver injury, it was found that co-administration of the same

doses of alcohol and iron resulted in liver injury and hepatic dysfunction, accompanied with

elevated ratio of NADH/NAD+, reduced antioxidant ability, increased oxidative stress, and

subsequent elevated protein nitration level. Further study revealed that triosephosphate

isomerase, an important glycolytic enzyme, was one of the targets to be oxidized and

nitrated, which was responsible for its inactivation. These data indicate that even under low

alcohol intake, a certain amount of iron overload can cause significant liver oxidative dam-

age, and the modification of triosephosphate isomerasemight be the important underlining

mechanism of hepatic dysfunction.
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Introduction

Alcohol consumption is prevalent in societies and long-term alcohol consumption leads to

alcoholic liver disease ranging from initial steatosis to cirrhosis. The pathogenesis of alcoholic

liver disease is a sophisticated process and iron is thought to play a key role in the progression

of alcoholic liver disease [1]. Iron is an essential trace element, which is very important in liv-

ing body. However, excessive iron and alcohol are associated with higher risk of liver disease

and hepatocellular carcinoma [2]. Interactions between moderate levels of alcohol and iron are

of great medical importance. With the improvement of living standards, alcohol consumption

often accompanies with iron overload in modern life. Firstly, alcohol is one of the most fre-

quently abused substances by humans, and age-associated iron accumulation was found in

various tissues [3]. Secondly, the process of alcohol consumption is always accompaniedwith

eating lots of red meat, which contains large amount of easily absorbed form of iron, leading

to higher risk of iron overload[4].

The research on the combined harmful effect of alcohol and iron on health has long history.

Excessive iron is found to be accumulated in alcoholic liver disease and the progression of alco-

holic liver disease is promoted by iron supplementation [5]. Moreover, people with hereditary

hemochromatosis who consume alcohol have increased risk of cirrhosis than those who don’t

[6]. There is also evidence that iron and alcohol may promote synergistic hepatic mutagenesis [7].

However, most studies are focused on the combined harmful effect on health of iron and alcohol

in extremely high range of doses which are able to individually induce liver injury, and little has

been known on combined effect of mild doses of iron and alcohol on liver damage. In fact, long

term lower alcohol intake under mild iron overload may have much epidemiologic significance.

Iron is an important attributer in alcoholic liver disease progression and the regulator pro-

teins involved in the iron metabolism are heavily influenced by alcohol [1]. It is generally

accepted that reactive oxygen species are associated with liver injury regardless of being caused

by alcohol or iron [8, 9]. It is also suggested that in the presence of iron, high levels of reduced

form of nicotinamide-adenine dinucleotid (NADH) caused by alcohol metabolism is able to pro-

mote the formation of H2O2 [10], and even worse, excess iron can promote the generation of

hydroxyl radicals through Fenton reaction. Alcohol can also induce the expression of inducible

nitric oxide synthase (iNOS), leading to the increase of nitric oxide (NO) production [11, 12].

Excessive production of NO will interact with superoxide anion to form the highly reactive spe-

cies, peroxynitrite anion [13]. NO is a major source of reactive nitrogen species (RNS). Reactive

oxygen species (ROS) and RNS can cause liver cell damage by inducing inflammation, necrosis,

apoptosis, etc.,through modification of lipids, proteins, and DNA [13].

Proteins are among the main targets for ROS and RNS assault. From this point of view, we

attempted to find out a direct link between oxidative stress and cell dysfunction. Triosepho-

sphate isomerase (TIM) is one of the most abundant cytoplasmic proteins and an important

glycolytic enzyme that catalyzes the interconversion of dihydroxyacetone phosphate and DL-

glyceraldehyde 3-phosphate. TIM is easy to be attacked by ROS and RNS [14]. Modifications

of TIM would lead to a metabolic block in the glycolytic pathway and result in elevated con-

centration of dihydroxyacetone phosphate, which are diverted towards fatty acid synthesis [15,

16]. Though oxidative/nitrative stress is well known to play an important role in liver injury,

little is known about the joint impact of low dose- iron and alcohol on the extent of posttrans-

lational modifications of hepatic proteins or the underlying mechanism linking between modi-

fications of the glycolytic enzyme and hepatic dysfunction.

This study was designed to examine the liver injury under light iron overload and mild dose of

alcohol administration, and also aimed to study the mechanisms underlying the condition. Slight-

to-severe alcoholic liver injury models were usually established by different doses (2–8 g/kg/day)
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of alcohol in murine [17, 18]. To avoid the accumulated effects of the individual toxicity on liver,

we specifically chose the low dose of alcohol (2 g/kg/day) and iron (300 mg/kg), based on our pre-

vious study [19] rather than high dose to investigate the synergistic interaction of them [20].

Materials and Methods

Materials and chemicals

Iron dextran, rabbit polyclonal antibody against 3-nitrotyrosine (anti-3-NT), 2,4-dinitrophenyl-

hydrazine, rabbit polyclonal antibody against dinitrophenol, TIM, triethanolamine hydrochlo-

ride, NADH, α-glycerophosphate dehydrogenase, DL-glyceraldehyde 3-phosphate solution, N-

ethyl-maleimide, N-acetyl-imidazole and butylated hydroxytoluene were purchased from Sigma

(St. Louis, MO, USA). Monoclonal anti-3-NT adducts IgG was obtained from Millipore Corp.

(Billerica, MA, USA). Chemiluminescence system was purchased from Pierce (Rockford, USA).

Detection kits for alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione

peroxidase (GPx), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and nitric

oxide were gained from Nanjing Jiancheng Bioengineering Research Institute (Nanjing, China).

NAD(H) kits were purchased from Suzhou Comin Biotechnology Co., Ltd. (Suzhou, China).

Rabbit polyclonal antibody against TIM and protein A/G agarose were purchased from Santa

Cruz Biotechnology (Santa Cruz, CA, USA). Horseradish peroxidase-conjugated goat anti-rabbit

IgG and anti-mouse IgG was obtained from Thermo Fisher (Rockford, USA). All other reagents

and chemicals were of analytical grade and purchased from a local reagent retailer.

Animals and reatments

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Institutional Animal Care and Use Committee of Huazhong University of Sci-

ence and Technology. Forty-eight male Kunming mice (18–22 g, 4 weeks old) were purchased

from Hubei Research Center for Laboratory Animals (Permit Number: SCXK2008-0005). The

mice were acclimatized at 23±2˚C with a 12-h light/dark cycle for 1 week, and then randomly

assigned to four groups: control group (C); iron overload group (I) which were administrated

by intraperitoneal injection of 5 doses of 60 mg/kg iron-dextran-saline every other day; alcohol

group (A) which were given 2 g/kg/day ethanol by intragastric administration for 4 weeks;

iron plus alcohol group (IA) which were treated with alcohol as group A after administrating

with last dose of iron dextran as group I.

Tissue collection and preparation

Mice were fasted for 12 h, and then anesthetized with ethyl ether, and blood was collected

from postcava. The liver was quickly removed and some liver tissue was cut off and used for

pathological examination, and the remaining sample was perfused with 4˚C saline to exclude

blood cells and snap-frozen in liquid nitrogen, and then stored at -80˚C for other biochemical

tests. Liver tissue was homogenized manually with 9 vol. of 50 mM Tris-HCl (pH 7.4) contain-

ing 150 mM NaCl, 1% Triton X-100 and protease inhibitor cocktail. The homogenate was cen-

trifuged at 10000 g at 4˚C and the supernatant was used for subsequent biochemical analyses.

The protein content was measured by the Bradford method [21].

Histological analysis

Pathological examination was processed according to our previous study [22]. Briefly, liver tis-

sues were fixed with 4% buffered paraformaldehyde, and embedded in paraffin. Tissue sections
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were cut and stained with hematoxylin and eosin (H&E). Then these sections were observed

by light microscopy and images were collected by Nikon DS-U3 at magnification 400×.

Biochemical analysis of serum markers and measurement of serum

nitric oxide

Blood samples were kept at 4˚C for 1 h to coagulate and then serum was collected by centrifu-

gation at 3500 g for 15 min at 4˚C. Serum AST, ALT and nitric oxide concentrations were

measured using commercial kits.

Measurement of hepatic iron contents and NADH/NAD+ levels

An appropriate amount of liver was digested by the wet method with a mixture of nitric acid

and perchloric acid according to our previous study [22], and hepatic iron concentrations

were determined by atomic absorption spectroscopy (AAnalyst300; PerkinElmer, USA). Liver

NADH and NAD+ were estimated by commercially available kits. Hepatic NADH and NAD+

were extracted with the appropriate extraction buffer and mixed with assay buffer, and the

absorbance was read at 570 nm. The ratio of NADH/NAD+ was calculated based on results of

NADH and NAD+ concentrations.

Oxidative stress evaluation

Malondialdehyde (MDA), as the end product of lipid peroxidation, was determined as previ-

ously described [23]. The liver MDA concentration was expressed as nmol/mg protein. The

total reduced glutathione in the liver tissue were evaluated using a commercial assay kit. Data

were expressed as μg/mg protein.

The enzyme activities of glutathione peroxidase and catalase as well as superoxide dismut-

ase were measured using commercial kits. Enzyme activities were expressed as U/mg protein.

Determination of hepatic TIM activity

Hepatic TIM activity was measured as described previously with slight modifications [24].

Liver was homogenated with 9 vol.of 10 mM Tris-HCl buffer (pH 7.4) containing 150 mM

KCl, 1 mM EDTA and 10 mM 2-mercaptoethanol. The reaction mixture contained 100 mM

triethanolamine buffer (pH 7.6), 4 mM DL-glyceraldehyde 3-phosphate, 0.2 mM NADH and

1.8 U/mL α-glycerophosphate dehydrogenase and liver homogenate. The catalytic activity of

TIM was measured at 25˚C by monitoring the changes in absorbance at 340 nm.

Western blot analysis and immunoprecipitation

The detection of protein oxidation or nitration was performed as we described previously [25].

Briefly, for protein oxidation analysis, one volume of liver homogenate was first treated with 3

volume of 2, 4-dinitrophenylhydrazine (10 mM in 2 M HCl). Then an equal volume of neutral-

ization solution was used to terminate the reaction, which followed by loading buffer. Samples

were electrophoresed on SDS-polyacrylamide gel (SDS-PAGE). Direct SDS-PAGE was used to

detect protein expression or protein nitration. After being transferred to nitrocellulose mem-

branes and blocked, proteins were incubated with primary antibodies against TIM (1:200),

iNOS (1:200), 3-nitrotyrosine (1:1000), actin (1:500), or dinitrophenol (DNP, 1:4000) and fol-

lowed by a secondary antibody. Specific proteins were identified with enhanced Chemilumi-

nescence (Pierce).

Protein extracts was applied for the immunoprecipitation with rabbit polyclonal antibody

against 3-nitrotyrosine and TIM as previously described [26]. Briefly, 500 μg liver homogenate

Light Alcohol and Iron Induce Nitration of Mouse Liver Triosephosphate Isomerase

PLOS ONE | DOI:10.1371/journal.pone.0170350 January 19, 2017 4 / 16



was probed with 2 μg anti-3-NT or anti-TIM antibody for 6 h at 4˚C. Protein A/G agarose was

used to obtain immune complexes at 4˚C for 2 h by centrifugation at 10,000 g for 30 seconds.

Immunoprecipitated proteins were dissolved by loading buffer and then analyzed by immuno-

blotting as described above. The densitometric analysis of blots was performed with Tanon5200

software.

Reaction of TIM with chemical reagents

To assay the effects of thiols or tyrosine modification on TIM activity, baker’s yeast TIM

(0.2 mg/mL; Sigma) was pre-incubated with various concentrations of N-ethyl-maleimide

or N-acetylimidazole in 50 mM Tris-HCl buffer (pH 7.6) at 37˚C for 30 min and then TIM

activity was examined as described above.

Statistical analysis

All data shown were obtained from at least three experiments.Results were expressed as the

mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) followed

by Tukey’s test was used for analysis of 4 groups with normal distribution; if samples were not

normally distributed, data were analyzed by Kruskal–Wallis test (SPSS 19.0 software package).

A probability value of 0.05 was considered to be statistically significant.

Results

Liver function and histological analysis

Liver injury was evaluated by serum AST and ALT activities. Compared with the controls,

there was significant increase in both enzyme activities in group IA but no significant differ-

ences in group I or group A, as shown in Fig 1A and 1B. Liver damage was further confirmed

by histological examination (Fig 1C). Control mice livers exhibited no abnormal morphologi-

cal change. The liver cell of group I mice showed slight edema and few vacuoles. In group A,

except for mild edema, the hepatic structures were completely normal. The livers of group IA

showed significant lesion, characterized by obvious cell edema, steatosis, karyorrhexis and

focal cytolysis necrosis in liver.

Hepatic iron contents and NADH/NAD+ ratios of different treated mice

Iron is a prooxidative hepatotoxicity factor. In comparison with the controls, liver iron con-

tents were greatly increased in group A and especially in group I. Hepatic iron levels were fur-

ther promoted in group IA compared with each single group (Fig 2A). Meanwhile, the ratio of

NADH/NAD+, reflecting the levels of glycolysis and lipid metabolism, was increased in the

liver of different treated groups. The greatest increase of NADH/NAD+ ratio was found in

group IA (Fig 2B).

Oxidative stress in the livers of different treated mice

Oxidative stress results from an imbalance between the generations of oxygen derived radicals

and the organism’s antioxidant potential. Results of hepatic MDA levels, thiol contents, and

antioxidant enzyme activities as well as protein oxidation status were shown in Table 1 and Fig

3. Both group I and group A showed elevated levels of liver MDA and protein carbonyl. Group

IA exhibited the most prominent increase in the levels of MDA and protein oxidation. The

antioxidant enzyme activity, such as SOD, CAT and GPx were decreased with different degrees

regardless of in group I or in group A, and they all showed the most dramatic drops in group
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PLOS ONE | DOI:10.1371/journal.pone.0170350 January 19, 2017 5 / 16



Fig 1. Biochemical indicators of liver function in serum and histological changes in the liver. (a) Serum aspartate aminotransferase

(AST) activity, (b) alanine aminotransferase (ALT) activity, and (c) the arrows showed karyorrhexis and cytolysis necrosis in fixed liver tissue

sections stained with H&E (magnification 400×). Group C, control; group I, iron 300 mg/kg; group A, ethanol 2 g/kg/day; group IA, iron 300

mg/kg + ethanol 2 g/kg/day. Values are expressed as means±SEM, ##p<0.01, ###p<0.001 vs. groupC; *p<0.05, ***p<0.001 vs. groupIA.

doi:10.1371/journal.pone.0170350.g001
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IA. One paradoxical result was that the thiol contents increased rather than decreased with the

decrease in activity of antioxidant enzymes.

Nitrative stress in the livers of different treated mice

To further study the possible role of nitrative stress in liver lesion, we measured serum NO,

hepatic iNOS expression and nitrotyrosine levels in different treated groups. As shown in Fig

4A, there was gradual elevation of iNOS expression in group I, and group IA. However, the

serum NO levels were declined sharply in group I and group A, particularly in group IA (Fig

4B). Consistent with the results of iNOS expression, marked increase of total level of protein

tyrosine nitration was found in groupI and group A, especially in group IA (Fig 4C, 4D and 4E).

Hepatic TIM catalytic activity, expression, oxidation and nitration in

different treated mice

Immunoprecipitation and immunoblotting were used to measure the expression and modifi-

cations of hepatic TIM under the administration of iron and alcohol. We found that TIM

Fig 2. Hepatic iron contents and NADH/NAD+ ratio in different treated mice. (a) Liver iron contents were determined by atomic

absorption spectroscopy. (b) NADH/NAD+ ratios were determined as the total NADH contents divided by total NAD+ levels. Group C,

control; group I, iron 300 mg/kg; group A, ethanol 2 g/kg/day; group IA, iron 300 mg/kg + ethanol 2 g/kg/day. Values are expressed as

means±SEM, #p<0.05, ##p<0.01, ###p<0.001 vs. groupC; *p<0.05,**p<0.01, ***p<0.001 vs. groupIA.

doi:10.1371/journal.pone.0170350.g002

Table 1. Lipid peroxidation, total GSH content and antioxidant enzymes activities in the liver of different groups.

C I A IA

MDA (nmol/mg protein) 0.407±0.013 0.573±0.015###,*** 0.461±0.009##,*** 0.695±0.019###

GSH (μg/ mg protein) 4.8±0.3 6.8±0.4## 8.4±0.6###,* 6.7±0.3##

CAT (U/mg protein) 103.1±6 95.2±2.5*** 92.9±4*** 68.6±5###

SOD (U/mg protein) 304.3±16.9 247.4±5.2## 256.4±7.1# 241.7±6###

GPx (U/mg protein) 239.3.6±6.9 220.2±6.1*** 229.2±6.7*** 164.4±3.7###

Group C, control; group I, iron 300 mg/kg; groupA, ethanol 2 g/kg/day; groupIA, iron 300 mg/kg + ethanol 2 g/kg/day. Values are expressed as means±SEM
#p<0.05
##p<0.01
###p<0.001 vs. groupC

*p<0.05

***p<0.001 vs. groupIA.

doi:10.1371/journal.pone.0170350.t001
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expression was decreased in group I and group A, especially in group IA (Fig 5A and 5B).

Compared with control group, carbonyl levels and tyrosine nitration levels of TIM were

slightly increased in group I and A, but significantly increased in group IA (Fig 5C to 5G); the

ratio of oxidized or nitrated TIM to total TIM was even more significantly enhanced in all

treated groups, particularly in group IA (Fig 5F and 5G). TIM activities of different treated

group were also measured. As expected, the activity of TIM was decreased with the decreasing

of TIM expression and the increasing of its oxidation and nitration in group I, A and IA, and

the activity of TIM in group IA was the lowest (Fig 5C–5H).

Modification of TIM in vitro

To further investigate the potential contribution of thiol oxidation and nitrative modification

on TIM activity, N-ethyl-maleimide and N-acetyl-imidazole were used to modify cysteine resi-

dues and tyrosine residues, respectively. As shown in Fig 6A and 6B, N-ethyl-maleimide caused

the decrease of TIM activity at high concentration, whereas N-acetyl-imidazolein inactivated

TIM in a dose-dependent manner. It meant that, besides oxidation, nitration of TIM was also

responsible for the enzyme inactivation.

Discussion

There are many animal models to study the synergistic effect of iron and alcohol. Simultaneous

administration of iron and large dosage ethanol to establish rat models of hepatic fibrosis or

cirrhosis has been reported [27, 28]. Tan et al. found mild iron overload could enhance

Fig 3. Total oxidative status of hepatic protein in different treated groups. (a) Protein carbonylation of

liver, and (b) the corresponding densitometric analysis. Normal values were set to 100%, with which other

values were compared. Group C, control; group I, iron 300 mg/kg; group A, ethanol 2 g/kg/day; group IA, iron

300 mg/kg + ethanol 2 g/kg/day. Values are expressed as means±SEM, obtained from nine mice of each

group. All visible bands were quantified. ##p<0.01, ###p<0.001 vs. groupC; **p<0.01 vs. groupIA.

doi:10.1371/journal.pone.0170350.g003
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alcoholand obesityinduced liver injury in mice [29]. In this study, we established the animal

model specifically using mild levels of iron and alcohol: one is for avoiding the additive effect

of individual toxicity at high doses, and the other is for closely mimicking the physiological

conditions commonly seen in some people’s daily life. Under such circumstance, we could

find out whether a combination of the two safe-seeming doses is harmful. Administrating alco-

hol with different doses, duration and times to mice would cause different degrees of liver

injury. Low dose of alcohol (2 g/kg/day) showed no histopathological difference compared

with control rats [30]. In our previous studies, we found different amount of iron (150, 300,

Fig 4. Nitrative stress in the liver of different treated groups. (a) Hepatic iNOS expression, (b) serum NO content, and (c)

hepatic protein nitration level. (d) and (e) the corresponding densitometric analysis of iNOS expression and total nitration status of

liver protein. The respective control values were set to 100%, to which the other groups’ values were compared. Group C, control;

group I, iron 300 mg/kg; group A, ethanol 2 g/kg/day; group IA, iron 300 mg/kg + ethanol 2 g/kg/day. Values are expressed as

means±SEM, #p<0.05, ##p<0.01, ###p<0.001 vs.groupC; *p<0.05, **p<0.01, ***p<0.001 vs. groupIA.

doi:10.1371/journal.pone.0170350.g004

Light Alcohol and Iron Induce Nitration of Mouse Liver Triosephosphate Isomerase

PLOS ONE | DOI:10.1371/journal.pone.0170350 January 19, 2017 9 / 16



Fig 5. TIM expression, oxidation, nitration and catalytic activity in livers of different treated groups. (a) Hepatic TIM expression and

(b) the corresponding densitometric analysis. (c) Oxidation and nitration status of hepatic TIM. (d) The corresponding densitometric analysis

of TIM oxidation. (e) The corresponding densitometric analysis of nitration. (f) The ratio of TIM oxidation to total TIM expression. (g) The ratio

of TIM nitration to total TIM expression. (h) TIM activity. Equal amounts of protein were immunoprecipitated by anti-TIM antibody, and

Light Alcohol and Iron Induce Nitration of Mouse Liver Triosephosphate Isomerase
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500 mg/kg) caused slight-to-severe rat liver injury [19]. To embody the interaction of iron and

alcohol, we specially chose 300 mg/kg iron and 2 g/kg/day alcohol to establish the animal

model in the present study. Histopathology examination showed that only co-exposure group

led to liver steatosis and necrosis, suggesting the liver injury is intensified by the combination

use of alcohol and iron, even each separateseems to be safe.Usually, researchers used higher

doses of iron or alcohol to investigate the synergic toxicities [27–29]. Our established animal

model is a complement to the previous studies on the synergistic effect of iron and alcohol.

As the main organ of medicines transformation metabolism, liver is the inevitable target for

iron or alcohol toxicity. Ethanol is metabolized mainly by alcoholic dehydrogenase and cyto-

chrome P4502E1 [31]. Alcohol dehydrogenase and acetaldehyde dehydrogenase are responsi-

ble for complete metabolism of mild dose of ethanol [32]. NAD+ is the coenzyme of both

alcohol dehydrogenase and acetaldehyde dehydrogenase. There are also evidences that chronic

and acute ethanol consumption increases the NADH/NAD+ ratio [33–36]. The elevated

NADH/NAD+ ratio results in an imbalance in the redox state of the cell contributing to

increased ROS production [37]. In addition, increased ratio of NADH/NAD+ is also suggested

to contribute to the pathogenesis of fatty liver in part by modulating fatty acid metabolism

[38]. In our experiment, NADH/NAD+ ratio were increased in alcohol group consistent with

other studies [35, 36], besides, we found iron overload further facilitated the NADH/NAD+

ratio. High level of NADH was found to facilitate the formation of H2O2, and the existence of

iron would catalyze the generation of free radicals through Fenton reaction [10].Taken

together, the results could have implications for better understanding of how a strong synergy

of ROS was generated by iron and alcohol.

In view of the differential effects of iron and alcohol on ROS production, combined expo-

sure of ethanol and iron would greatly expedite the generation of ROS. As expected, group IA

showed the greatest increase of MDA levels among all groups (Table 1). Antioxidant system

was suggested to be impacted by overproduction of lipid peroxidation [39, 40]. We also found

that the three antioxidant enzymes (SOD, CAT, and GPx) were decreased more significantly

in group IA than other two treated groups (Table 1), indicating the most severe oxidative stress

in group IA. However, total hepatic GSH contents were increased instead of being reduced in

other three groups in contrast with the control group, which was suggested to be an adaptive

immunoprecipitates were analyzed for oxidation and nitration status of TIM by Western blot. The respective control values were set to 100%,

to which the other groups’ values were compared. Group C, control; group I, iron 300 mg/kg; group A, ethanol 2 g/kg/day; group IA, iron 300

mg/kg + ethanol 2 g/kg/day. Values are expressed as means±SEM, #p<0.05, ##p<0.01, ###p<0.001 vs. group C; **p<0.01, ***p<0.001 vs.

group IA.

doi:10.1371/journal.pone.0170350.g005

Fig 6. Effects of chemical regents on TIM activity. (a) Effects of N-ethyl-maleimide on TIM activity. (b)

Effects of 1-acetyl-imidazole on TIM activity. #P< 0.05, ##P< 0.01, ###p < 0.001.

doi:10.1371/journal.pone.0170350.g006
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response mechanism that counteracted overproduction of ROS [41]. Compared with group I

and group A, the increase of GSH level in group IA is slower (Table 1). In addition, we found

the highest protein carbonyl level in group IA (Fig 3). Together, our results indicated that even

under seemingly safe doses of alcohol, iron overload would cause amplified liver oxidative stress.

Inducible nitric oxide synthase expression is increased and thought to be required in alco-

holic liver disease [11, 42]. Nitric oxide catalyzed by iNOS plays an important role in the devel-

opment of liver injury [11, 12]. NO can interact with superoxide anion or other ROS to form

peroxynitrite or other reactive nitrogen species even at low concentration, leading to irrevers-

ible modification of proteins, lipids and nucleic acids [12]. By means of immunoprecipitation

and immunoblotting, we found that proteins nitration level wassignificantly enhanced in

group IA, and the molecular weight of nitrated proteins were in the range of 25 to 55 kDa (Fig

4C). This result was consistent with the result of iNOS expression (Fig 4A). However, the con-

tent of NO was decreased in group IA(Fig 4B). The increased nitrated proteins by RNS proba-

bly reflects the consumption of NO by superoxide anion, which then contributed to the up-

regulation of iNOS in group IA by negative feedback [43].Protein tyrosine nitration is a kind

of posttranslational modification when tissues under nitrative stress. It was reported that nitra-

tion of mitochondrial proteins led to their inactivation and mitochondrial dysfunction[44],

and a recent report revealed that nitration of Y257 in sirtuin 6 inhibited its function [45].

Nitration of TIM at Y165 and Y209 has been demonstrated to induce a decrease in its activity

[46]. Based on measured results, we tended to study a direct link between posttranslational

modifications and the function of this glycolytic enzyme involved in the pathology of liver

injury.

As a key enzyme in cell metabolism, TIM is one of the most abundant cytoplasmic proteins

accounting for approximately 1.5% of total soluble protein [47]. Documented evidence dem-

onstrated TIM was also one of the proteins most nitrotyrosinated in neurodegenerative disease

[14, 48, 49]. According to the comparison and analysis from previous proteomics studies [48,

50–52], we speculated that TIM was the susceptive target for oxidative and nitrative modifica-

tion under the treatment of mild doses of iron and alcohol. Thus, TIM was immunoprecipi-

tated and then detected by Western blot with anti-3-nitrotyrosine and anti-DNP antibodies.

We observed that elevated levels of carbonyl and 3-nitrotyrosine of TIM in group IA accompa-

nied with its decreased expression and activity (Fig 5). The decrease in TIM expression proba-

bly results from oxidative stress, sinceMorel and Barouki reported that moderate (i.e. non-

cytotoxic) oxidative stress specifically down-regulates the expression of various genes [53]. We

further demonstrated that tyrosine modification or thiol modification of TIM would cause

TIM inactivation (Fig 6A and 6B).

There were evidences that TIM deficiency would lead to deviant lipid metabolism [54, 55].

TIM catalyzes the interconversion of dihydroxyacetone phosphate and DL-glyceraldehyde

3-phosphate which is interconnected to lipid metabolism via triosephosphates. The decrease of

TIM activity leads tothe increase of dihydroxyacetone phosphate level [54, 55]. The reduction

of dihydroxyacetone phosphate toα-glycerophosphate is coupled with NADH to NAD+ con-

version andα-glycerophosphate is a substrate for the biosynthesis of glycerolipids [54]. Thus,

the increase of NADH/NAD+ ratio and the decreased activity of TIM will help promote the

diversion toward the synthesis ofα-glycerophosphate, which might lead to lipid abnormalities

of pathogenetic significance.

In our animal study, we found that when the mice were co-administrated with mild dose of

alcohol and iron, thatwould cause significant liver injury, although eachseparatetreatment-

seemed relatively safe. The plausible mechanism of liver injury induced by low doses of alcohol

under mild iron overload was described in Fig 7. The differential effects of iron and alcohol on

generation of ROS as well as NADH made the production of ROS and then RNS overwhelm
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the antioxidant system, resulting in hepatic protein modification and expression disorder.

Both the decrease in the expression and the oxidative/nitrative modifications of TIM resulted

in enzyme inactivation, leading to a metabolic block in the glycolytic pathway and disturbance

of lipid metabolism, especially when in high level of NADH.

This study has some limitations. For our experiment period was not very long, no severe

histological damage was observed. A more severe hepatic injury and more findings would be

obtained by prolong the time of combined action of iron and alcohol. Only TIM was investi-

gated in this study, and in fact a number of proteins were modified under oxidative stress that

might involve in hepatic injury. Follow up work will more carefully decipher the mechanisms

linking between modifications of hepatic proteins and liver injury.

In conclusion, this study provided evidence for the increased risk of liver injury by combi-

nation intake of alcohol and iron, even each separate seems to be safe. TIM is one of the sus-

ceptible enzymes to be nitrated and oxidized, and the oxidative/nitrative modification of TIM

is partially contributing to liver dysfunction.
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