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Abstract: Lipid oxidation causes food degradation and the formation of toxic compounds. Therefore,
the addition to foods of compounds able to avoid, delay or minimize this degradative process is a
commonly used strategy. Nevertheless, neither the identity of most of the formed compounds in this
complex process nor the way in which their formation is affected by the strategy used are well known.
In this context, the effect the temperature increase and the enrichment level in alpha-tocopherol on
the evolution of the walnut oil oxidation, as a model of an oil rich in polyunsaturated omega-6 acyl
groups, submitted to storage conditions, are tackled by 1H NMR. The study has allowed knowing
the degradation kinetic of both the oil acyl groups and alpha-tocopherol, the identification of a very
high number of oxylipins and the kinetic of their formation. The temperature increase accelerates
the formation of all oxylipins, favouring the formation of hydroperoxy conjugated E,E-dienes and
related derivatives versus that of the Z,E-isomers. The enrichment in alpha-tocopherol accelerates
the formation of hydroperoxy conjugated Z,E-dienes and related derivatives, and delays in relation
to the formation of the former that of the E,E-isomers and related derivatives, hindering, to a certain
extent, the formation of the latter in line with the enrichment level.

Keywords: polyunsaturated edible oils; walnut oil; alpha-tocopherol; accelerated storage; 1H NMR;
oxidative stability; oxidation process; oxylipins

1. Introduction

Lipid oxidation is one of the most important reactions that takes place in food. It is
generally known that it produces the degradation of these macronutrients, generating toxic
compounds and others with off-flavour, so this reaction has economic, nutritional and
food safety repercussions. In addition, this reaction can also occurs endogenously during
digestion and in cells and tissues, and the oxidation compounds formed are considered
to be responsible for several diseases [1–6]. Nevertheless, the oxidation process is very
complex and includes a cascade of reactions, many of which are simultaneous, giving rise
to a large number of compounds of very different nature, which makes it very difficult to
study them. Due to this, many efforts to monitor this process have been made, as well as to
understand its mechanisms and develop strategies to avoid it.

To monitor oxidation, several classical parameters are used. Among these, the per-
oxide value (PV) and conjugated dienes (CD) are employed to evaluate the approximate
concentration of the so-called primary oxidation compounds, and other parameters such
as the anisidine value (AV) and TBARs index are used to evaluate some secondary oxida-
tion compounds. However, although these parameters have been used for many years,
the first parameters do not exclusively represent primary oxidation compounds, nor is
the identity of the compounds monitored by the second parameters clear, as has been
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repeatedly commented [7–10], and this must be taken into account in the interpretation
of their values. Other methods for estimating the oxidative stability of foods or of edible
oils are based on the change in conductivity of an aqueous solution through which small
volatile compounds released during oxidation provoked at high temperature pass, formic
acid being one of the most representative. They are called oxidative stability index (OSI)
methods, which employ accelerated oxidation conditions. The results of these methods
are valid for comparisons between samples subjected to exactly the same conditions and
refer to the formation of these small molecules, but cannot be extrapolated to that of other
oxidation compounds. None of the methods mentioned above allow the identification
of the different kinds of compounds formed in lipid oxidation, nor are they useful for
providing information on oxidation mechanisms. They also have limitations for evaluating
strategies aimed at avoiding oxidation processes in foods, as will be explained later.

In this context, edible oils and fats constitute a large group of foods, with a very varied
composition in major and minor lipid components, of great nutritional and industrial
interest, which can be taken as model systems for the study of the oxidation process. In
addition to the determination of the classical parameters mentioned above, the study of
oil oxidation can be approached addressing both the degradation of oil components and
the formation of new components, following the evolution of both types of compounds
throughout the oxidative process. Among these methods are those that involve the separa-
tion of the components of the complex mixtures formed in the oxidation process and the
subsequent identification and quantification of the separated compounds. These methods
have been applied mainly in the oxidation of pure compounds [11–14]. Others are based on
different spectroscopic techniques that study these complex mixtures as a whole, without
previous separation steps. This last group includes 1H NMR spectroscopy. Using this
technique, great advances have been made since the first studies in which the estima-
tion of the degradation of acyl fatty groups in the oxidation of edible oils was carried
out [3,6,15,16]. Nowadays, this technique allows the estimation of the concentrations of any
type of lipid component either coming from oxidation processes or not, as long as they have
well-identified, non-overlapped 1H NMR signals [17,18]. Recently, taking into account 1H
NMR spectral data of different oxidation compounds from previous studies [11,19–29],
another important advance has been achieved in the study of the formation of a significant
number of oxylipins generated in corn oil subjected to accelerated storage at 70 ◦C [30].

Due to the detrimental effects that lipid oxidation has on food and health, different
strategies have been tested to prevent or hinder this degradative process. Among them,
one that has been considered of great interest consists of adding compounds capable of
acting as antioxidants to foods with the double objective of avoiding oxidation in the food
and also endogenously after its ingestion.

However, like lipid oxidation, estimating the antioxidant capacity of a compound is a
matter that requires much attention. For this purpose, several assays aimed at evaluating
the ability of a compound, or a mixture of compounds, to scavenge free radicals (ABTS
and DPPH methods) [31,32], to reduce ferric ions [33], or to absorb oxygen radicals (ORAC
assay) [34] have been used to obtain information on its antioxidant capacity. Nevertheless,
in these assays, neither the free radical to be scavenged nor the conditions under which the
experiment is carried out are similar to those that occur in real systems. It is well known
that, although these methods have been used in the past and are still currently in use, they
do not always give concordant results. Other methods to evaluate the antioxidant ability of
a compound involve its incorporation in a lipid matrix and the submission of the system
to conditions under which the lipid can oxidize. In this case, the antioxidant capacity of a
compound is usually estimated by determining some of the classic parameters mentioned
above (PV, CD, AV, TBARs, OSI) after subjecting the lipid to oxidative conditions in the
presence and absence of the compound object of study.

Among the lipid compounds to which antioxidant capacity has been attributed is
alpha-tocopherol (αT), a well-known form of vitamin E present in many foods of vegetable
and animal origin. It is perhaps for this attributed capability that the European legisla-
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tion [35] allows edible oils to be enriched with this compound under the “quantum satis”
principle, that is, without a set maximum limit. However, the antioxidant ability of this
compound at any concentration and under any conditions is not clear.

Some studies on the ability of αT to inhibit the oxidation of pure compounds, such
as linoleic acid dispersed in an aqueous media [36], or methyl linoleate in bulk [37] sub-
mitted to different oxidative conditions, have been carried out. In both cases, as the
study was performed on pure compounds, the monitoring of the oxidation was made by
high-performance liquid chromatography, estimating the concentration either of mono-
hydroperoxy conjugated Z,E- and E,E-dienes in the first study or of monohydroperoxy,
monohydroxy, and monoketo conjugated Z,E- and E,E-dienes in the second one. In the first
study, it was concluded that αT, at a concentration of 3.8% by weight, exhibited pro-oxidant
activity, whereas at lower concentrations (0.38% and 0.038% by weight), it exhibited antioxi-
dant ability. In the second study, it was found that at concentrations ranging from 0.001% to
0.1% by weight, the formation of the aforementioned oxidation compounds was inhibited.

Likewise, the antioxidant ability of αT was also studied on much more complex
substrates such as either purified [38] or almost free of tocopherols and sterols [39] soybean
oil, submitted to different oxidative conditions. To evaluate the αT antioxidant or pro-
oxidant ability in these two studies, classical methods such as peroxide values (PV) and
oxygen headspace consumption in the first, and conjugated dienes (CD) in the second,
were used. In both studies, the optimal concentration of αT to increase the oil oxidative
stability was found to be 0.01% by weight, whereas this compound shows pro-oxidant
activity at higher concentrations.

In addition, the effect of αT at various temperatures on the oxidation of complex sub-
strates has also been addressed. Thus, the effect of several concentrations of αT dissolved
in acetone, ranging from 0.02% to 0.22% by weight, on the oxidation of lard triglycerides,
at several temperatures from 25 ◦C to 100 ◦C, was evaluated by means of peroxide values
determination [40]. The results showed that αT is more effective in reducing the rate of lard
triglycerides autoxidation as the temperature increases and the rate of lard triglycerides
oxidation increased with increasing αT concentration, especially at low temperature.

Another study on purified olive oil, enriched with three different concentrations of αT,
submitted to low temperatures (25 ◦C or 40 ◦C), has concluded, from parameters such as
peroxide values and conjugated dienes, classically associated to primary oxidation com-
pounds, that this compound under these conditions acts as a pro-oxidant [41]. From data
of oxidative stability of the same samples determined by an OSI method that measures
conductivity produced by secondary or further oxidation volatile compounds formed at
100 ◦C, it was concluded that αT at the same concentrations as above, at high temperature,
acts as an antioxidant. However, the oxidation process is so complex that it could happen
that under the same temperature, high or low, αT causes the generation of a higher con-
centration of primary oxidation compounds than in the reference oil sample and a lower
concentration of those secondary or further oxidation volatile compounds responsible for
producing the conductivity in the OSI method.

Another study very closely related to the above examined the oxidation of corn oil
triglycerides, in the presence of various concentrations of αT, at 60 ◦C, for five days in
the dark. Its results showed that at an αT concentration below 0.07% by weight, this
compound inhibits the oxidation of these triglycerides, evaluated by peroxide value, and
the opposite is true at higher concentrations [42]. However, the oxidative stability of the
same corn oil triglycerides samples enriched in the same αT concentrations measured
by the OSI method at 100 ◦C showed increased values with increased αT concentrations,
although with diminishing effectiveness at concentrations higher than 0.07% by weight.
Due to this, the authors concluded that αT activity can be classified as antioxidant or
pro-oxidant depending on the method used for this evaluation. This conclusion also
shows, as above, that the qualification of the behaviour of certain compounds such as
αT as an antioxidant or pro-oxidant requires much more in-depth studies different to the
simple determination of one or two parameters associated either with primary oxidation
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compounds or with oxidative stability, the latter measured from secondary or further
oxidation compounds conductivity.

Taking into account all the aforementioned background, in this work, a real system,
walnut oil with all its components, unenriched or enriched in two different concentrations
of αT, as allowed by European legislation [35], will be subjected to storage at two different
conditions, one of them at low-temperature accelerated storage (40 ◦C), and the other
one at intermediate-temperature accelerated storage (70 ◦C), will be studied by 1H NMR
spectroscopy until very advanced stages of its oxidation process. The aim of the study is
to analyze the influence of both the degree of enrichment in αT of the oil and the storage
temperature on the oxidative stability of this polyunsaturated oil rich in omega-6 acyl
groups, which means elucidating the αT behaviour as either an antioxidant or pro-oxidant
under these conditions. This elucidation will not be based on the determination of one
or two parameters associated with certain oxidation compounds, as has been carried out
in previous studies, but on the identification and quantification throughout the oxidation
process of all kinds of compounds that can be studied by 1H NMR. This study will require
the identification of an important number of oxidation compounds, many of them identified
recently for the first time in edible oil oxidation, reinforcing in this way a previous study, and
taking a step forward [30]. In addition, it will require the estimation of their concentration
along the oxidation process by using the same method in all cases without chemical
modification of the sample or previous separation steps. In this way, this study could
contribute to shedding light on the controversy found in previous studies [42] regarding
the dependence of the qualification of αT behaviour as an antioxidant or pro-oxidant
depending on the method of study used. The interest of this work is great due to the
fact that the oxidation compounds subject to study, in addition to being formed in food
autoxidation, can also be formed endogenously during food digestion and even in cells
and tissues.

2. Materials and Methods
2.1. Subject Samples of Study

The subject samples of study are walnut oil (W), purchased in a local supermarket, and
this same oil enriched in alpha-tocopherol (αT), in proportions of 0.2% by weight (W02) and
of 2% by weight (W2). The composition of walnut oil in fatty acyl groups was estimated
by 1H NMR, as in previous works [43–45]. Their molar percentages are 11.5 ± 0.1% of
linolenic, 62.6 ± 0.5% of linoleic, 14.0 ± 1.2% of oleic and 11.8 ± 1.2% of saturated acyl
groups. It must be mentioned that, as is usual in walnut oils, the natural content of αT in
this walnut oil is very low, not detectable by 1H NMR. The αT used to enrich the walnut oil
was purchased from Sigma-Aldrich (St. Louis, MO, USA) and had a purity of 98.2%.

2.2. Storage Conditions

Aliquots of 10 g of walnut oil alone (sample W) and enriched either with 0.2% or
with 2% by weight of αT (samples W02, or W2, respectively) were poured into glass Petri
dishes of 80 mm diameter. These were kept in a convection oven either at 40 ◦C or at 70 ◦C
in the presence of air until advanced stages of their oxidation process, trying to simulate
accelerated storage conditions at low temperature in the first case and at intermediate
temperature in the second. In both cases, the experiment was carried out by duplicate. The
evolution of each sample under the aforementioned conditions was monitored by using 1H
NMR spectroscopy.

2.3. Study of the Samples Evolution by 1H NMR Spectroscopy

2.3.1. 1H NMR Spectroscopy Operating Conditions

The 1H NMR spectra of several samples, W, W02, and W2, throughout the storage at
both temperatures, were acquired in duplicate by using a Bruker Avance 400 spectrometer
(Bruker, Billerica, MA, USA) operating at 400 MHz. To this aim, approximately 175 µL
of the above-mentioned samples were mixed in a 5 mm-diameter tube with 425 µL of
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deuterated chloroform that contained 0.2% of non-deuterated chloroform and 0.03% of
tetramethylsilane (TMS) as an internal reference (Cortec, Paris, France). The acquisition
parameters were the same as those used in previous studies [15,17]: spectral width 5000 Hz,
relaxation delay 3 s, number of scans 64, acquisition time 3.744 s and pulse width 90◦, with
a total acquisition time of 8 min 55 s. The relaxation delays and acquisition times selected
allow the complete relaxation of the protons, the signal areas thus being proportional to the
number of protons that generate them, making their use for quantitative purposes possible.
The experiments were carried out at 25 ◦C. The 1H NMR spectra were plotted at a fixed
value of absolute intensity to be valid for comparative purposes using the MestreNova
program (Mestrelab Research, Santiago de Compostela, Spain).

2.3.2. Identification of Components

The identification of components present in the original oil as well as of those gener-
ated in the oxidation processes was carried out on the basis of the assignment of the 1H
NMR signals to the different kinds of hydrogen atoms of the different structures. These
signals, their chemical shifts and their assignments to the several hydrogen atoms are
given in Tables S1–S16 (Supplementary Material). These assignments were made taking
into account previous studies, as indicated in each table, or on the basis of the signals of
standard compounds acquired for this study. The latter include: 2E-hexenal, 2E-heptenal,
2E-decenal, 2E,4E-hexadienal, 2E,4E-heptadienal, 2E,4E-decadienal, 4,5-epoxy-2E-decenal,
12,13-epoxy-9Z-octadecenoic acid methyl ester (isoleukotoxin methyl ester), 2-pentylfuran,
2-ethylfuran, amylformate, and octylformate acquired from Sigma-Aldrich (St. Louis, MO,
USA); 9,10-epoxy-12Z-octadecenoic acid (leukotoxin), 12,13-E-epoxy-9Z-octadecenoic acid,
4-hydroxy-2E-nonenal, 4-hydroperoxy-2E-nonenal, 4-oxo-2E-nonenal, 9,10-dihydroxy-12Z-
octadecenoic acid (leukotoxin diol), 12,13-dihydroxy-9Z-octadecenoic acid (isoleukotoxin
diol), 9-keto-12,13-E-epoxy-10E-octadecenoic acid, 9-keto-10E,12E-octadecadienoic acid, 9-
keto-10E,12Z-octadecadienoic acid, 13-keto-9Z,11E-octadecadienoic acid and 12R-hydroxy-
9Z-octadecenoic acid methyl ester (ricinoleic acid methyl ester), purchased from Cayman
Chemical (Ann Arbor, MI, USA); 9S-hydroxy-10E,12E-octadecadienoic acid (Dimorphecolic
acid), methyl 13S-hydroxy-9S,10R-epoxy-11E-octadecenoate, 11S-hydroxy-9S,10S-epoxy-
12Z-octadecenoic acid methyl ester, 13S-hydroxy-11S,12S-epoxy-9Z-octadecenoic acid
methyl ester, 9-hydroxy-10-keto-12Z-octadecenoic acid, 9,10-Z-12,13-Z-diepoxyoctadecanoic
acid and 13-hydroxy-12-keto-9Z-octadecenoic acid acquired from Larodan (Malmö, Sweden).

2.3.3. Quantification of the Components

The estimation of the concentration of the different functional groups or groups of
compounds present in the several samples, throughout the storage, was possible because
the area of each 1H NMR spectral signal is proportional to the number of protons that
generates it, and this proportionality is constant for all kinds of proton. Taking this into
account, the estimation of the concentration of the polyunsaturated fatty acyl groups, of
the several derivatives, and of αT in relation to that of triglycerides (TG) was carried out
throughout the storage. For this, the area of the signal of the characteristic protons of the
functional groups and that of the protons of the triglycerides were used. Due to the low
level of hydrolysis that occurred during oil storage, triglycerides (TG) can be considered as
an internal reference. Taking into account all of the above, the equation used to estimate
the concentrations of the different derivatives was:

[X] = [(AX/n)/(ATG/4)] × 1000, (1)

where “AX” is the area of the signal selected for the quantification of the X functional group,
“n” is the number of protons that generate this signal and “ATG” is the area of the protons
at sn-1 and sn-3 positions in the triglyceride backbone of TG (signal H in Table S1, see
Supplementary Material). The area of the signals was determined by using the equipment
software and the integrations were performed three times to obtain average values. The
concentration thus obtained is expressed in millimole per mol of triglyceride (mmol/mol
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TG). It is worth noting that, in some cases, the signals of certain compounds overlap with
the signals of other compounds. In these cases, the corresponding corrections have to be
applied in order to avoid underestimations or overestimations of the concentration of the
functional group or derivative.

2.4. Statistical Analysis

The data represented in the different figures are average values of at least two determi-
nations and those given in tables come from the aforementioned average values. Microsoft
Office Excel 2016 (One Microsoft Way, Redmond, WA, USA) was used to carry out the
statistical analysis and for the graphical representation of the obtained values.

3. Results

As mentioned before, walnut oil samples with different alpha-tocopherol (αT) en-
richment degrees, W, W02, and W2, were stored at two different temperatures, 40 ◦C and
70 ◦C, in the presence of air, and their evolution was followed by means of 1H NMR up
to advanced stages of their oxidation process. Firstly, the attention was focused on the
evolution of the most unsaturated acyl groups, that is to say, on the evolution of their
linoleic and linolenic acyl groups.

3.1. Evolution of Polyunsaturated Acyl Groups Concentration. Influence of Both Storage
Temperature and Enrichment Degree of the Oil in αT

It is well known that under accelerated storage conditions, the degradation of the acyl
groups of oils is produced [30,46,47], the most unsaturated ones being the most affected.
This degradation can be directly observed in the 1H NMR spectra of the oil samples
submitted to storage. As an example, Figure 1 shows the 1H NMR spectra of walnut oil
sample (W) submitted to 40 ◦C at certain time-points of its degradation process.

Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 40 
 

[X] = [(AX/n)/(ATG/4)] × 1000, (1) 

where “AX” is the area of the signal selected for the quantification of the X functional 

group, “n” is the number of protons that generate this signal and “ATG” is the area of the 

protons at sn-1 and sn-3 positions in the triglyceride backbone of TG (signal H in Table S1, 

see Supplementary Material). The area of the signals was determined by using the equip-

ment software and the integrations were performed three times to obtain average values. 

The concentration thus obtained is expressed in millimole per mol of triglyceride 

(mmol/mol TG). It is worth noting that, in some cases, the signals of certain compounds 

overlap with the signals of other compounds. In these cases, the corresponding corrections 

have to be applied in order to avoid underestimations or overestimations of the concen-

tration of the functional group or derivative. 

2.4. Statistical Analysis 

The data represented in the different figures are average values of at least two deter-

minations and those given in tables come from the aforementioned average values. Mi-

crosoft Office Excel 2016 (One Microsoft Way, Redmond, WA, USA) was used to carry out 

the statistical analysis and for the graphical representation of the obtained values. 

3. Results 

As mentioned before, walnut oil samples with different alpha-tocopherol (αT) en-

richment degrees, W, W02, and W2, were stored at two different temperatures, 40 °C and 

70 °C, in the presence of air, and their evolution was followed by means of 1H NMR up to 

advanced stages of their oxidation process. Firstly, the attention was focused on the evo-

lution of the most unsaturated acyl groups, that is to say, on the evolution of their linoleic 

and linolenic acyl groups. 

3.1. Evolution of Polyunsaturated Acyl Groups Concentration. Influence of Both Storage 

Temperature and Enrichment Degree of the Oil in αT 

It is well known that under accelerated storage conditions, the degradation of the 

acyl groups of oils is produced [30,46,47], the most unsaturated ones being the most af-

fected. This degradation can be directly observed in the 1H NMR spectra of the oil samples 

submitted to storage. As an example, Figure 1 shows the 1H NMR spectra of walnut oil 

sample (W) submitted to 40 °C at certain time-points of its degradation process. 

 

Figure 1. 1H NMR spectra of the walnut oil (W) at different days (d) of its accelerated storage at 40 

°C, and the enlargement of signal G due to the bis-allylic methylene protons of their linoleic and 

linolenic acyl groups. As can be observed in this figure, the intensity of some of the walnut oil spec-

tral signals (signal assignments in Table S1) decreases through time due to the degradation of the 

most unsaturated acyl groups. Indeed, some of them had almost disappeared at the most advanced 

Figure 1. 1H NMR spectra of the walnut oil (W) at different days (d) of its accelerated storage at
40 ◦C, and the enlargement of signal G due to the bis-allylic methylene protons of their linoleic and
linolenic acyl groups. As can be observed in this figure, the intensity of some of the walnut oil spectral
signals (signal assignments in Table S1) decreases through time due to the degradation of the most
unsaturated acyl groups. Indeed, some of them had almost disappeared at the most advanced stage
of the oxidation process. This behaviour is also observed, in general terms, in the spectra of the other
samples submitted either at 40 ◦C or at 70 ◦C. However, both factors, the αT enrichment degree and
storage temperature, have an important influence on the evolution of the polyunsaturated acyl group
concentration in this oil.

The concentration of linoleic and linolenic acyl groups in relation to TG concentration
throughout the storage was estimated from the area of their bis-allylic protons [45], using
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the equation described in Section 2.3.3. The results obtained for the different oil samples
are represented in Figure 2.
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Figure 2. Evolution of the concentration, expressed as mmol/mol TG, of linoleic and linolenic acyl
groups in walnut oil with different enrichment levels of αT (W, W02, and W2), subjected either to
40 ◦C or to 70 ◦C up to advanced stages of the oxidation process.

As shown in Figure 2, the evolution of the concentration of both acyl groups follows a
linear path with two slopes in most cases, the first being smaller than the second. The slope
of these lines in each stage represents the degradation rate of the corresponding acyl group.
These are given in Table 1.

Table 1. Degradation rates (DR) of the most unsaturated acyl groups (linoleic and linolenic acyl
groups) expressed in mmol mol−1 TG day−1, in the different samples submitted to storage at both
temperatures, in each one of their stages. The degradation rates agree with the slopes of the linear
equations that relate the concentration of these acyl groups and the storage time. The correlation
coefficients of these lines are given in brackets.

Storage
Conditions

Acyl
Groups

Oil
Samples

First Stage Second Stage

Time (Days) DR
(mmol/mol TG Day) Time (Days) DR

(mmol/mol TG Day)

40 ◦C

Linoleic
W 0–45 −2.98 (0.95) 45–59 −82.98 (0.99)

W02 0–30 −8.93 (0.92) 30–45 −64.97 (0.98)
W2 0–45 −17.93 (0.97) 45–59 −43.92 (0.95)

Linolenic
W 0–45 −0.78 (0.91) 45–59 −18.34 (0.99)

W02 0–30 −3.34 (0.92) 30–45 −14.74 (0.97)
W2 0–59 −4.94 (0.99) — —

70 ◦C

Linoleic
W 0–4 −42.91(0.93) 4–8 −264.21 (0.94)

W02 0–4 −57.15 (0.93) 4–8 −247.96 (0.99)
W2 0–8 −66.61 (0.98) 8–12 −187.23 (0.99)

Linolenic
W 0–4 −3.93 (0.93) 4–7 −77.46 (0.98)

W02 0–4 −12.03 (0.93) 4–8 −58.90 (0.98)
W2 0–12 −21.11 (0.99) — —
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From the data in Table 1 and Figure 2, it is clear that αT enrichment, at any temperature,
causes an increase in the degradation rate of the acyl groups in the first stage and a decrease
in the second stage, relative to those of the non-enriched sample. Because of this, the
differences in the degradation rates of both stages in the same sample decrease as the αT
enrichment increases, and consequently, in the samples with the highest αT enrichment
degree, the degradation rate tends to be the same in both stages for linolenic group.

Increasing the storage temperature increases the degradation rate at both degrees
of αT enrichment, so that the differences between 40 ◦C and 70 ◦C are very noticeable,
significantly affecting the total duration of the degradation process, as shown in Table 1
and Figure 2. Although increasing the temperature causes an increase in the degradation
rate at both stages in all samples, it does not modify the trend caused by αT enrich-
ment. The results obtained at 70 ◦C are in agreement with those previously reported by
Martin-Rubio et al. [48,49] when studying the oxidation process of soybean oil enriched
with different levels of αT submitted to storage at 70 ◦C.

The results obtained provide evidence that the walnut oil enrichment in αT in the
assayed concentrations clearly reduces the oil oxidative stability at both temperatures, this
reduction being greater the higher the αT enrichment, showing that αT acts as a pro-oxidant.
Likewise, the higher the storage temperature, the lower the oxidative stability of the walnut
oil, as is already known.

3.2. Formation and Evolution of the Concentration of Oxidation Products. Influence of Both
Storage Temperature and Enrichment Degree of the Oil in αT

The nature and concentration of the oxidation compounds formed in the different oil
samples throughout the storage will be dependent not only of the oil composition but also
on its αT enrichment level and on the storage conditions.

3.2.1. Primary Oxidation Compounds. Long Chains Supporting Hydroperoxy Groups and
Conjugated Z,E- or E,E-dienes

It is known that in the oxidation process of lipids, the first compounds formed are
monohydroperoxides; for this reason, they are named primary oxidation compounds. The
concentrations of these increase as the oxidation advances to reach a maximum, after which
it diminishes sharply due to their degradation to give rise to the formation of secondary or
further oxidation compounds.

Figure 3A shows some 1H NMR regions of walnut oil spectra enriched with different
concentrations of αT throughout their storage at 40 ◦C. In these regions, some signals of
the compounds formed in the oxidation of this oil appear. Thus, in the region between
8.20 ppm and 8.90 ppm, the signals of the protons of hydroperoxy groups associated to
conjugated Z,E- and E,E-dienic systems (mHPO-c(Z,E)-dEs and mHPO-c(E,E)-dEs), (signals
a and b, respectively) derived from the linoleic group are the first ones becoming visible, in
agreement with previous studies [50,51]. Furthermore, in the same region, another signal
(signal c) appears due to the protons of the hydroperoxy groups supported on triene chains
with two of the double bonds forming a conjugated Z,E-dienic system (mHPO-c(Z,E)-tEs),
the latter being hydroperoxides derived from the linolenic group.
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Figure 3. (A) 1H NMR regions of the spectra of walnut oil samples with different αT enrichment
degrees (W, W02 and W2), at different days (d) of their accelerated storage at 40 ◦C, in which signals
of hydroperoxy protons in chains supporting conjugated dienic systems derived from linoleic and
linolenic appear. Signals a and b are due to protons of mHPO-c(Z,E)-dEs and mHPO-c(E,E)-dEs
respectively, derived from linoleic acyl group. Signals c are due to protons of mHPO-c(Z,E)-tEs
derived from linolenic acyl group. (B) Evolution of the concentration of each kind of hydroperoxides
throughout the storage up to advanced stages of the oxidation process.

In addition, in Figure 3A, the 1H NMR region between 6.20 ppm and 6.65 ppm of the
same spectra is also shown. In it, some of the signals of the protons of the conjugated dienic
systems mentioned above (named with the same letters a, b and c) appear, in agreement
with previous studies [50–52], the assignments of which are given in Tables S2 and S3. It is
worth mentioning that the multiplet signal of the protons of the c(Z,E)-dienic system of the
hydroperoxides derived from linoleic group (signal a) partially overlaps with that of the
same kinds of conjugated dienic system protons derived from linolenic group (signal c),
the reason for which being that the latter signal is only partially visible.

From the observation of these signals, it is evident that the first compounds formed
during storage are monohydroperoxides conjugated Z,E-dienic systems (mHPO-c(Z,E)-dEs
and mHPO-c(Z,E)-tEs), coming from both omega-6 and omega-3 acyl groups, respectively
(signals a and c). In addition, the formation of these kinds of compounds occurs earlier
the higher the enrichment degree in αT is. Likewise, it is also evident that the formation
of monohydroperoxides with conjugated E,E-dienic systems (mHPO-c(E,E)-dEs) derived
from linoleic group (signal b) is delayed in relation to that of the monohydroperoxides
with conjugated Z,E-dienic systems (mHPO-c(Z,E)-dEs) to a greater extent the higher the
enrichment in αT is. However, the formation of both kinds of hydroperoxides occurs almost
simultaneously in the walnut oil sample non-enriched in αT.
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As indicated in the experimental section, from the area of the conjugated dienic
proton signals, the concentration of the aforementioned hydroperoxides in the different
oil samples during storage at 40 ◦C was estimated by using the area of the proton signals
in the region between 6.2 and 6.6 ppm and plotted versus time in Figure 3B. It can be
observed that, in accordance with the above, the higher the enrichment level of the oil
in αT, the earlier the formation of hydroperoxy conjugated Z,E-dienes coming from both
linoleic (mHPO-c(Z,E)-dEs) and linolenic (mHPO-c(Z,E)-tEs), and the opposite occurs with
hydroperoxy conjugated E,E-dienes coming from linoleic (mHPO-c(E,E)-dEs). Furthermore,
it is noticeable that the concentration of both kinds of Z,E-isomers, either coming from
linoleic or from linolenic, increases when increasing the degree of enrichment in αT.

These results suggest that the presence of αT not only accelerates the formation of
hydroperoxy conjugated Z,E-dienes derived from the two above-cited acyl groups but also
increases their stability retarding their degradation, which could explain their increase in
concentration, in agreement with some previous studies [36,53–55]. Simultaneously a great
delay is produced in the formation of the hydroperoxy conjugated E,E-dienes, occurring
when the concentration of their Z,E-counterparts has diminished significantly due to their
degradation. The inhibitory effect of αT delaying the isomerization from Z,E to E,E has
also been observed in previous studies [36,37,48,49,55–57]. Some of these studies have
attributed this inhibitory effect to the strong H-donating capacity of αT to the peroxyl
radical, which could inhibit the rearrangement of hydroperoxy conjugated Z,E-dienes to
the more thermodynamically stable hydroperoxy conjugated E,E-dienes.

Figure 4A shows the same spectral regions as those shown in Figure 3A of the 1H
NMR spectra of the same walnut oil samples W, W02 and W2 throughout their storage
at 70 ◦C in the presence of air. It can be observed that in the regions between 8.20 and
8.90 ppm and between 6.20 and 6.65 ppm, the same signals (a, b and c) present in the spectra
of the samples submitted at 40 ◦C appear. The appearance of these signals occurs much
earlier in the experiment at 70 ◦C than at 40 ◦C. However, the effect that the enrichment of
walnut oil with αT provokes the evolution of the oxidation process during storage at 70 ◦C
is in line with that observed in the oxidation process during storage at 40 ◦C. From these
results, it is also clear that in the oxidation process of walnut oil at 70 ◦C, the higher the
degree of αT enrichment, the earlier the formation of hydroperoxy conjugated Z,E-dienes
derived from both linoleic and linolenic groups and the later the formation of hydroperoxy
conjugated E,E-dienes derived from linoleic groups. However, the rate of both formation
and degradation of all types of hydroperoxides occurs much more rapidly at 70 ◦C than
at 40 ◦C, while maintaining the effect caused by the presence of αT. In fact, as shown in
Figures 3B and 4B, the total oxidation process at 70 ◦C takes between 8 and 12 days, while
at 40 ◦C, it takes between 45 and 59 days.

In addition to the abovementioned, it should be highlighted that in the oxidation
process at 70 ◦C (see Figure 4B), the maximum concentration reached by all kinds of hy-
droperoxides in all samples is much smaller than that reached at 40 ◦C (see Figure 3B). This
could be due to a lower stability of these intermediate oxidation compounds at high rather
than at low temperature. It is also noticeable that, at 70 ◦C, both in the non-enriched sample
and in the sample with the lowest αT enrichment degree, the concentration of hydroperoxy
conjugated E,E-dienes is higher than that of their Z,E-counterparts coming from linoleic,
during a variable period of time. This can be explained because the isomerization from
Z,E to E,E is favoured by the temperature increase since the latter isomers are more stable
thermodynamically than the former [57–59].
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Figure 4. (A) 1H NMR regions of the spectra of walnut oil samples with different αT enrichment
degrees (W, W02 and W2), at different days (d) of their accelerated storage at 70 ◦C, in which signals
of hydroperoxy protons in chains supporting conjugated dienic systems derived from linoleic and
linolenic appear. Signals a and b are due to protons of mHPO-c(Z,E)-dEs and mHPO-c(E,E)-dEs
respectively, derived from linoleic acyl group. Signals c are due to protons of mHPO-c(Z,E)-tEs
derived from linolenic acyl group. (B) Evolution of the concentration of each kind of hydroperoxides
throughout the storage up to advanced stages of the oxidation process.

The results obtained show that the enrichment of walnut oil with αT reduces its
oxidative stability under the conditions of this study at both temperatures, since the
presence of αT to a greater extent accelerates the formation of hydroperoxy conjugated Z,E-
dienes the higher the degree of enrichment [10,38,48,49]. This acceleration in the formation
of hydroperoxy conjugated Z,E-dienes by the presence of αT could be considered as a
pro-oxidant effect of this compound and has been attributed to the possible participation of
the tocopheryl radical in different propagative reactions [60]. Furthermore, it is also evident
that αT enrichment increases the stability of the formed hydroperoxy conjugated Z,E-dienes,
so that they reach higher concentrations in the more enriched samples. Moreover, as already
mentioned, αT hinders the isomerisation of linoleic-derived hydroperoxy conjugated Z,E-
dienes to the corresponding more thermodynamically stable E,E-counterparts, delaying
the formation of the latter hydroperoxides with respect to the former, even at 70 ◦C.

It is worth noting in all samples in the first oxidation stage, the parallelism between
the degradation rates of linoleic and linolenic acyl groups, shown in Figure 2 and given
in Table 1, and the rate of concentration increase of primary oxidation compounds, rep-
resented mainly by that of hydroperoxy conjugated Z,E-dienes (see Figures 3B and 4B).
The large difference in the concentration of Z,E-hydroperoxides derived from linoleic and
linolenic groups achieved in the different walnut oil samples subjected to storage, shown
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in Figures 3B and 4B, is due to the former acyl group in walnut oil being in a much higher
concentration than the latter.

Finally, it only remains to add that the total area of the 1H NMR signals of the protons
of the hydroperoxy groups match, during an initial period of time, with the sum of the
area of the signals of the hydroperoxy conjugated Z,E- and E,E-dienic protons, as shown in
Figure 5. This means that the only hydroperoxy groups present in the oil during an initial
period of time are of the aforementioned hydroperoxy conjugated dienes.
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Figure 5. Evolution of the concentration of both primary oxidation compounds and total hydroperoxy
groups, in the different walnut oil samples throughout the storage, at either 40 ◦C or 70 ◦C, up to
advanced stages of the oxidation process.

However, after a certain time under storage conditions, as Figure 5 shows, the concen-
tration of total hydroperoxy groups is higher than the sum of the concentrations of primary
oxidation compounds (mHPO-c(Z,E)-dEs, mHPO-c(Z,E)-tEs and mHPO-c(E,E)-dEs), sug-
gesting that the formation of secondary oxidation compounds also having hydroperoxy
groups has taken place.

3.2.2. Long-Chain Secondary Oxidation Compounds Supporting Hydroperoxy Groups

In a previous study on the oxidation undergone by corn oil submitted to storage con-
ditions at 70 ◦C, the formation of secondary oxidation compounds supporting hydroperoxy
groups was observed [30]. For this reason, it could be expected that these compounds
could also be formed in the samples in this study and that their formation could be af-
fected by both the αT enrichment level of walnut oil and the storage temperature. The
detailed observation of the 1H NMR spectra of these samples permitted the detection of sig-
nals attributable to dihydroperoxy non-conjugated dienes (dHPO-nc-dEs) and non-vicinal
monohydroperoxy monoepoxy monoenes (non-vicinal mHPO-mEPO-mEs).

(a) Dihydroperoxy non-conjugated E,E-dienes (dHPO-nc(E,E)-dEs). The formation
of these compounds is evidenced by the appearance of a multiplet signal centred near
4.82 ppm (Table S4) in the 1H NMR spectra of the different walnut oil samples. This
signal is attributable to the carbinol methine protons of the hydroperoxy groups of 9,12-
dihydroperoxy-10E,13E-octadecadienoate (see Figure 6A) and/or of 10,13-dihydroperoxy-
8E,11E-octadecadienoate [61]. Furthermore, the spectra of these compounds have other
signals common with those present in the spectra of other oxidation compounds (see
Table S4). The integration of the area of the first cited signal allows one to estimate the
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evolution of the concentration of dHPO-nc(E,E)-dEs in the samples throughout the storage
time. These data are depicted versus the storage time in Figure 6B.
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Figure 6. (A) Structure of 9,12-dihydroperoxy-10E,13E-octadecadienoate as an example of a dHPO-
nc(E,E)-dE. (B) Evolution of the concentration, expressed as mmol/mol TG, of dHPO-nc(E,E)-dEs in
walnut oil samples with different enrichment levels of αT (W, W02 and W2), subjected to either 40 ◦C
or 70 ◦C, up to advanced stages of the oxidation process.

Data represented in Figures 3B, 4B and 6B suggest that the formation of these com-
pounds begins, at both temperatures in the samples, when the concentration of their precur-
sor mHPO-c(Z,E)-dEs [62] reaches a certain level and always after the mHPO-c(E,E)-dEs
formation. The concentration of the precursor at the onset of the formation of dHPO-
nc(E,E)-dEs is different in each sample, being greater the higher the enrichment in αT and
smaller the higher the storage temperature; that is to say, it depends on both enrichment
degree in αT and storage temperature.

Two factors appear to govern the rate of formation of these compounds, namely the
stability of their precursor in each sample and the difficulty of isomerization from Z,E
to E,E possibly required for their formation. Both factors are directly related to the αT
concentration in the oil and inversely related to the storage temperature. It is well known
that the increase in temperature facilitates isomerization from Z,E to E,E because the latter
isomers are more thermodynamically stable than the first. It seems that the previously
mentioned factors monitor not only the time at which the formation of these compounds
begins in each sample but also their rate of formation and the maximum concentration that
they reach. The different inhibition capacity for the isomerisation from Z,E to E,E in the
various samples, due to their different degree of enrichment in αT, is a decisive factor for
the formation of these compounds and in fact dHPO-nc(E,E)-dEs reach their maximum
concentration at the same time as mHPO-c(E,E)-dEs.

Finally, it only remains to be added that the evolution of the concentration of these
compounds proves their role as intermediate compounds because their concentration
reaches a maximum, indicating that after this time point, their rate of formation is lower
than that of their degradation. In agreement with this, previous studies have described that
dHPO-nc(E,E)-dEs are intermediate compounds in the formation of aldehydes [27,57,62,63].

(b) Non-vicinal monohydroperoxy monoepoxy E-monoenes (non-vicinal mHPO-
mEPO-E-mEs). It has been described that mHPO-c(Z,E)-dEs are also the precursors of
these compounds. Thus, 13-HPO-c(11E,9Z)-dE is considered the precursor of both 9-HPO-
(12,13)-E-EPO-10E-mE (see Figure 7A) [20] and 13-HPO-(9,10)-Z-EPO-11E-mE [64]. The
formation of the first involves an epoxidation and the formation of an E-double bond,
whereas that of the second could occur by a simple epoxidation of the Z-double bond. In
the same way, it could be expected that the oxidation of 9-HPO-c(10E,12Z)-dE could yield
13-HPO-(9,10)-E-EPO-11E-mE or to 9-HPO-(12,13)-Z-EPO-10E-mE. All these compounds
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show, in their 1H NMR spectra, a clear double doublet signal centred near 5.85 ppm (see
Table S5), which is visible in the spectra of all walnut oil samples after a certain storage
time. Furthermore, the spectra of these non-vicinal mHPO-mEPO-E-mEs have other signals
common with those of other oxidation compounds (see Table S5). From the area of the
signal mentioned above, the concentration of all non-vicinal mHPO-mEPO-E-mEs has been
estimated jointly throughout the storage time and has been depicted in Figure 7B.
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Figure 7. (A) Structure of 9-hydroperoxy-(12,13)-E-epoxy-10E-octadecenoate as an example of
non-vicinal mHPO-mEPO-E-mE. (B) Evolution of the concentration expressed as mmol/mol TG,
of all non-vicinal mHPO-mEPO-E-mEs present in walnut oil samples with different enrichment
levels of αT (W, W02 and W2), submitted to either 40 ◦C or 70 ◦C, up to advanced stages of the
oxidation process.

The observation of Figures 6B and 7B proves that the formation of these compounds
always starts after that of mHPO-c(E,E)-dEs, and only slightly later than that of dHPO-
nc(E,E)-dEs, although they are generated in higher concentrations than the latter. The
parallelism in the formation of non-vicinal mHPO-mEPO-E-mEs and dHPO-nc(E,E)-dEs
suggests that the same factors influence and govern their formation. The role of non-
vicinal mHPO-E-mEPO-E-mEs as intermediate compounds in the formation of 4,5-EPO-2E-
alkenals [65] is also noteworthy.

Finally, it is noteworthy that there is a strong temporal agreement between the onset of
formation of dHPO-nc(E,E)-dEs and non-vicinal mHPO-mEPO-mEs (see Figures 6B and 7B),
and the time at which the concentration of total hydroperoxides and that of the sum of
primary oxidation compounds becomes different (See Figure 5). Likewise, these figures
also show that there is a good agreement between the time at which this difference reaches
the highest value and the time at which the concentration of these two kinds of compounds
reaches the maximum value. There is also agreement in that the smallest differences be-
tween the concentration of total hydroperoxides and that of primary oxidation compounds
occurs in the oil samples with the highest αT enrichment degree at both temperatures,
which are those generating the lowest concentration of dHPO-nc(E,E)-dEs and non-vicinal
mHPO-mEPO-E-mEs. These agreements reinforce both the obtained results and the inter-
pretations made.

3.2.3. Long-Chain Secondary or Further Oxidation Compounds Supporting a
Hydroxy Group

The formation of monohydroxy conjugated dienic derivatives as well as that of non-
vicinal monohydroxy monoepoxy derivatives has been previously reported in the oxidation
of polyunsaturated oils [30,48,49]. Therefore, it could be thought that both types of com-
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pounds could also be formed in the samples under study here, and it is to be expected that
both the storage temperature and the level of αT enrichment affect their formation.

(a) Monohydroxy conjugated dienes (mHO-c-dEs) give characteristic 1H NMR signals
(see Table S6) in the region of conjugated dienic protons, the reason for which being that
their detection and quantification could be carried out. In the samples studied here, only
mHO-c(Z,E)-dEs (see Figure 8A) have been detected and the evolution of their concentra-
tion throughout the storage has been represented in Figure 8B.
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Figure 8. (A) Structure of 9-hydroxy-10E,12Z-octadecadienoate as an example of mHO-c(Z,E)-dE.
(B) Evolution of the concentration expressed as mmol/mol TG, of mHO-c(Z,E)-dEs in walnut oil
with different enrichment levels of αT (W, W02 and W2), submitted to either 40 ◦C or 70 ◦C up to
advanced stages of the oxidation process.

The onset of formation of these derivatives occurs when the concentration of the
precursors, which are mHPO-c(Z,E)-dEs [26], has reached a certain level, which is different
for each sample, being higher the greater the degree of enrichment of walnut oil in αT. This
occurs at both temperatures, but the concentration of the precursor at the onset formation of
these compounds is smaller at 70 ◦C than at 40 ◦C. Furthermore, the highest concentration of
mHO-c(Z,E)-dEs is reached in the sample most enriched in αT at both temperatures, being
somewhat higher at 40 ◦C than at 70 ◦C. In summary, the formation of these derivatives
begins earlier and they reach higher concentrations in the oil samples enriched in αT than
in the non-enriched sample. The role of these compounds as intermediate compounds is
evidenced because in all cases, their concentration increases until it reaches a maximum,
after which it decreases. In fact, the role of these kinds of compounds as precursors in the
formation of 4-HO-2E-alkenals has been described [66].

The results obtained here are in agreement with the ones described in a previous paper
of soybean oil enriched with αT submitted to 70 ◦C, where higher concentrations of mHO-
c-dEs were detected the higher the concentration of αT was [48,49]. Likewise, these results
are also in agreement with those obtained from methyl linoleate Z,E-hydroperoxides [55].

(b) Non-vicinal monohydroxy monoepoxy E-monoenes (non-vicinal mHO-mEPO-E-
mEs). These compounds could be formed from mHPO-c(Z,E)-dEs [20,67], or they can be
generated either from mHO-c(Z,E)-dEs or from non-vicinal mHPO-mEPO-E-mEs, both
derived from the first one. Their concentration in the sample can be expected to be very
low, taking into account the concentration of some of their precursors. In the 1H NMR
spectra of the samples under study, signals attributable to 9-HO-(12,13)-E-EPO-10E-mE
(structure shown in Figure 9A) and/or 13-HO-(9,10)-E-EPO-11E-mE on one side or to
13-HO-(9,10)-Z-EPO-11E-mE and/or 9-HO-(12,13)-Z-EPO-10E-mE on the other appear.
All these non-vicinal mHO-mEPO-E-mEs have protons giving a common double doublet
spectral signal centred at 5.94–5.95 ppm (see Table S7), which has very low intensity, and
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other signals that are common with those of other compounds such as non-vicinal mHPO-
mEPO-E-mEs (see Tables S5 and S7). From the area of the signal previously mentioned, the
concentration of all non-vicinal mHO-mEPO-E-mEs was estimated jointly in the samples,
and its evolution throughout the storage time is represented in Figure 9B.
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Figure 9. (A) Structure of 9-hydroxy-(12,13)-E-epoxy-10E-octadecenoate as an example of non-vicinal
mHO-mEPO-E-mE. (B) Evolution of the concentration expressed as mmol/mol TG, of the non-vicinal
mHO-mEPO-E-mEs in walnut oil with different enrichment levels in αT (W, W02 and W2), submitted
to either 40 ◦C or 70 ◦C up to advanced stages of the oxidation process.

It is noteworthy, as Figures 6B, 7B and 9B show, that the formation path of non-vicinal
mHO-mEPO-E-mEs is similar to that of dHPO-nc(E,E)-dEs and non-vicinal mHPO-mEPO-
E-mEs in the same samples, and this suggests that the factors that govern the formation
of all of them are the same. These can be resumed in the stability of the precursor and the
inhibitory power of the system for the isomerization from Z,E to E,E, both factors being
directly related to the concentration of αT.

3.2.4. Long-Chain Secondary or Further Oxidation Compounds Supporting a Keto Group

Oxidation derivatives such as monoketo conjugated dienes (mKO-c-dEs), non-vicinal
and vicinal monoketo monoepoxy monoenes (non-vicinal and vicinal mKO-mEPO-mEs)
and non-vicinal monoketo monohydroxy monoenes (non-vicinal mKO-mHO-mEs) have
been described as being formed in the oxidation of oils rich in the linoleic acyl group [30,48,49].
For this reason, it is to be expected that they could also be formed in the oxidation un-
dergone by walnut oil submitted to the storage conditions here applied and that these
conditions will influence their formation. However, only the first two kinds of compounds
have been clearly detected in the samples here studied.

(a) Monoketo conjugated dienes (mKO-c-dEs). These derivatives are well-known
oxidation compounds. Figures 10A and 11A show the structure of two of them. It has been
described that they come from mHPO-c-dEs, keeping either the Z,E or the E,E configuration
of their corresponding precursor [26]. However, the formation of both kinds of isomers
has also been described as coming from only mHPO-c(Z,E)-dEs [19]. However, these two
studies were carried out using pure precursor compounds submitted to very different
conditions to those employed here.
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Figure 10. (A) Structure of 9-keto-10E,12Z-octadecadienoate as an example of mKO-c(Z,E)-dE.
(B) Evolution of the concentration expressed as mmol/mol TG, of mKO-c(Z,E)-dEs in walnut oil,
with different enrichment levels of αT (W, W02 and W2), submitted to either 40 ◦C or 70 ◦C, up to
advanced stages of the oxidation process.
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Figure 11. (A) Structure of 9-keto-10E,12E-octadecadienoate as an example of mKO-c(E,E)-dE. (B) Evo-
lution of the concentration expressed as mmol/mol TG, of mKO-c(E,E)-dEs in walnut oil with different
enrichment levels of αT (W, W02 and W2), submitted to either 40 ◦C or 70 ◦C, up to advanced stages
of the oxidation process.

Both kinds of mKO-c-dEs have protons giving specific 1H NMR non-overlapped
signals, as can be seen in Table S8, which are present in the spectra of the different samples
in this study after a certain storage time. From the intensity of these specific signals, the
concentration of both kinds of derivative, mKO-c(Z,E)-dEs and mKO-c(E,E)-dEs, was
estimated in each sample throughout the storage time at both temperatures, and the results
are represented in Figures 10B and 11B.

From Figures 8B and 10B, it can be observed that although both mKO-c(Z,E)-dEs
and mHO-c(Z,E)-dEs come presumably from the same precursors (mHPO-c-(Z,E)-dEs),
the onset of formation of the former is delayed in relation to that of the latter, at both
temperatures and at any enrichment in αT level. Furthermore, the concentration reached
by mKO-c(Z,E)-dEs in the most αT enriched sample (W2), at both temperatures, is between
that of the other two samples (W02 and W), except at the most advanced oxidation stage,
where this sample (W2) reaches the highest concentration. Nevertheless, the maximum
concentration reached in all cases can be considered low.

As mentioned above, mKO-c(E,E)-dEs are also formed. Figure 11A shows the structure
of one of these compounds and Figure 11B the evolution of their concentrations in all
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samples at both temperatures. It is noteworthy that the formation onset of these compounds
in sample W, as Figures 10B and 11B show, occurs simultaneously to that of their isomers
mKO-c(Z,E)-dEs at both temperatures, as it occurs with the onset of formation of both
kinds of mHPO-c-dEs in the same sample (see Figures 3B and 4B).

However, in the W02 and W2 samples, the formation of mKO-c(E,E)-dEs is retarded
in relation to that of mKO-c(Z,E)-dEs. This delay is greater the higher the αT level is, as
was also observed in the case of both kinds of mHPO-c-dEs (see Figures 3B and 4B). This
occurs at both temperatures, but it is much more noticeable at 40 ◦C than at 70 ◦C. This
delay is associated with the ability of αT to inhibit the isomerization from Z,E to E,E as
previously mentioned. Finally, it only remains to add that the higher concentration reached
by mKO-c(E,E)-dEs in the samples submitted to 70 ◦C than in those submitted at 40 ◦C can
be explained by the fact that the increase in temperature favours the isomerization from
Z,E to E,E, which is required for the formation to these compounds.

(b) Monoketo monoepoxy monoenes (mKO-mEPO-mEs). Both, mKO-E-mEPO-E-mEs
and mKO-Z-mEPO-E-mEs, with their oxygenated groups in position either vicinal or non-
vicinal, have been described as coming from mHPO-c(Z,E)-dEs [19]. More recently, their
synthesis and 1H NMR characterization have also been carried out [68]. Moreover, some of
them have been found among the oxidation compounds of corn oil submitted to accelerated
storage at 70 ◦C [30]. Therefore, it is expected that they can also be formed in the walnut oil
oxidation subject to study here.

(b1) Non-vicinal monoketo monoepoxy E-monoenes. Those described are 9-KO-
(12,13)-E-EPO-10E-mE (see Figure 12A2 for the structure) and 13-KO-(9,10)-E-EPO-11E-
mE and their corresponding isomers 13-KO-(9,10)-Z-EPO-11E-mE and 9-KO-(12,13)-Z-
EPO-10E-mE (see in Figure 12A1 the structure of this latter compound). All of them are
derived from mHPO-c(Z,E)-dEs. The 1H NMR proton signals of these derivatives are
given in Table S9, according to Gardner el al., [19], Lin et al., [68], Hidalgo et al., [69] and
Ramsden et al. [70]. It can be observed that the spectra of both mKO-E-mEPO-E-mEs and
mKO-Z-mEPO-E-mEs have a common signal at 3.20 ppm, whereas mKO-Z-mEPO-E-mEs
have two other specific signals at 3.53 ppm and 6.66 ppm, which are absent in the spectrum
of mKO-E-mEPO-E-mEs.
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Figure 12. (A) Structure of: (A1) 9-keto-(12,13)-Z-epoxy-10E-octadecenoate as an example of non-
vicinal mKO-Z-mEPO-E-mE; (A2) 9-keto-(12,13)-E-epoxy-10E-octadecenoate as an example of non-
vicinal mKO-E-mEPO-E-mE; (A3) 11-keto-(9,10)-E-epoxy-12E-octadecenoate as an example of vicinal
mKO-E-mEPO-E-mEs. (B) Evolution of the concentration expressed as mmol/mol TG, of: (B1) non-
vicinal mKO-Z-mEPO-E-mEs, (B2) of non-vicinal mKO-E-mEPO-E-mEs, and (B3) and of vicinal
mKO-E-EPO-E-mEs, in walnut oil samples having different enrichment level in αT (W, W02 and W2),
submitted to 70 ◦C up to advanced stages of the oxidation process.

Non-vicinal monoketo Z-monoepoxy E-monoenes (non-vicinal mKO-Z-mEPO-E-mEs).
The study of the spectra of the different walnut oil samples subjected to 40 ◦C showed that
although the non-vicinal mKO-Z-mEPO-E-mEs signals centred at 6.66 ppm and 3.53 ppm
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are distinguishable, after 24 and 26 days of storage onwards in samples W02 and W2,
respectively, and after 43 days onwards in sample W, they have very weak intensity. For
this reason, the concentration of these derivatives was not estimated due to the inaccuracy
that their estimation involves.

However, as the intensity of the above-mentioned signals is somewhat higher in the
spectra of the same samples stored at 70 ◦C, the estimation of the concentration of these
compounds could be carried out and is plotted against the storage time in Figure 12B1. It
can be observed that the formation onset of these derivatives occurs at the same time in
W and W02 samples and somewhat later in the W2 sample. The evolution paths of non-
vicinal mKO-Z-mEPO-E-mEs are, to a certain extent, similar to those of mKO-c(E,E)-dEs
(see Figures 11B and 12B1), with a small delay in the formation onset and with a lower
formation rate, which is why the concentration reached by non-vicinal mKO-Z-mEPO-E-
mEs is very low in all the samples, as Figure 12B1 shows.

Non-vicinal monoketo E-monoepoxy E-monoenes (non-vicinal mKO-E-mEPO-E-mEs).
These compounds were not formed in samples stored at 40 ◦C, as could be inferred from
their 1H NMR spectra. Nevertheless, they are formed in all the samples submitted to storage
at 70 ◦C, evidencing that the increase in temperature favours their formation. Figure 12A2
shows the structure of one of these compounds, whereas in Figure 12B2, the evolution of
the joint concentration of all these compounds versus storage time is represented. It can be
observed that although the concentration is very low in all cases, the highest concentration
was reached in the W sample, and the lowest in the W2 sample, as could be expected.

(b2) Vicinal monoketo monoepoxy E-monoenes (vicinal mKO-mEPO-E-mEs). These
derivatives have only been found in concentrations high enough to be detected by 1H NMR
in samples submitted to 70 ◦C. The spectral signals of these compounds are given in Table S9.
The intensity of the double triplet signal centred near 7.02 ppm was used for the estimation
of their concentration throughout the storage time. Figure 12A3 shows the structure of one
of these compounds, whereas in Figure 12B3, the evolution of the concentration of all these
compounds jointly versus storage time is depicted. It can be observed that the evolutions
of their paths are, to a certain extent, similar to those of non-vicinal mKO-E-mEPO-E-mEs
(Figure 12B2), although their formation rate is somewhat higher.

In summary, and referring to all mKO-mEPO-E-mEs, it has been found that the lower
the storage temperature, the more their formation is hindered, and this is also true the
higher the enrichment level in αT. Both factors are associated with the inhibition of the
isomerization from Z,E to E,E, as has been repeatedly noted throughout this discussion.
Finally, it only remains to add that the concentration reached by these kinds of compounds
is very low compared to that of their precursors mHPO-c(Z,E)-dEs.

3.2.5. Aldehyde Groups, Furan Rings, and Acid Groups Joined Either to Small Molecules
or to Truncated Acyl Groups

Simultaneously with the formation of the previously mentioned long chains having
several perfectly structured functional groups and responding to specific patterns derived
from mHPO-c(Z,E)-dEs, some other functional groups joined to small molecules, and possi-
bly also to truncated acyl groups, are also formed deriving from some of the previously
mentioned long chains. Compounds of small size have been detected as volatile oil compo-
nents in studies on the evolution of the headspace of edible oils rich in polyunsaturated
acyl groups submitted to 70 ◦C, as is the case here [71]. Among these, there are acids,
alcohols, ketones, alkyl furan derivatives, furanones, and aldehydes, some of them having
two oxygenated functional groups, and it could be expected that both the αT enrichment
degree of walnut oil and storage temperature can influence their formation. Nevertheless,
only those compounds detected by 1H NMR will be discussed below.

(a) Aldehydes. Several routes have been proposed for the formation of the different
types of aldehydes, mHPO-c(Z,E)-dEs being considered as their precursors that can evolve
through different pathways. In some of these pathways, intermediate derivatives such
as dHPO-nc(E,E)-dEs, dHPO-c(Z,E)-dEs [27,62,72], mHPO-mEPO-E-mEs [65] and mHO-
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c(Z,E)-dEs [66] have been postulated. It is usually described that two different aldehydes
are formed from each long-chain precursor. The identification and quantification of several
kinds of aldehydes can be made from the 1H NMR spectral signals of their aldehydic
protons (see Table S10), as in previous studies [15]. The aldehydes identified include
alkanals, aldehydes in unsaturated chains with E-double bonds, oxygenated alpha,beta-E-
unsaturated aldehydes, and Z-unsaturated aldehydes. The evolution of the concentration
of all of them throughout the storage time in all samples at both temperatures will be
discussed below.

(a1) Alkanals, 2E-alkenals and 2E,4E-alkadienals. Figure 13 depicts the evolution of
the concentration of these aldehydes. It can be observed that upon storage at 40 ◦C (see
Figure 13A), the generation of these aldehydes occurs much earlier in sample W02 than in
samples W and W2.
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Figure 13. (A) Evolution of the concentration expressed as mmol/mol TG, of n-alkanals, 2E-alkenals,
and 2E,4E-alkadienals in walnut oil with different enrichment levels of αT (W, W02 and W2) submitted
to 40 ◦C up to advanced stages of the oxidation process; (B) the same at 70 ◦C.

Regarding the maximum concentrations reached, there are no great differences among
these aldehydes in the different samples, even though 2E,4E-alkadienals reach lower
concentrations than the other two. From the observation of Figures 3B, 11B and 13A, it
seems evident that the factors governing the formation of these derivatives at 40 ◦C are the
same as those mentioned in the formation of mHPO-c(E,E)-dEs and of mKO-c(E,E)-dEs.
Once the parent precursors, mHPO-c(Z,E)-dEs, are formed, their stability and the inhibitory
capacity of the system for the isomerization from Z,E to E,E appear to be determining
factors in the formation of these aldehydes, both being dependent on the enrichment level
in αT.

These same factors also influence the formation of these aldehydes at 70 ◦C (see
Figures 4B, 11B and 13B). In addition, their formation is also affected by the temperature
increase from 40 ◦C to 70 ◦C. This temperature increase accelerates the formation of the
precursors, especially in the W sample, reduces their stability and favours the isomerization
from Z,E to E,E, the latter two effects being contrary to those caused by αT enrichment.

As a consequence, the formation onset of these three types of aldehydes at 70 ◦C occurs
at almost the same storage time in samples W02 and W and somewhat later in sample W2,
similarly to what occurred in the formation at this temperature of mHPO-c(E,E)-dEs, non-
vicinal mHPO-mEPO-mEs, mKO-c(E,E)-dEs and mKO-mEPO-E-mEs. Moreover, the rates
of formation of these aldehydes are of a similar order in samples W and W02 and somewhat
lower in W2, showing that, although the increase in temperature favours isomerization
from Z,E to E,E, the inhibitory effect of αT against this isomerization has a clear influence
in the most enriched sample. Furthermore, it is noticeable that at this temperature, the
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three kinds of aldehydes are formed in higher concentration than at 40 ◦C, this effect being
more pronounced in 2E-alkenals and in the W sample.

(a2) Oxygenated alpha,beta-E-unsaturated aldehydes. This group includes 4,5-EPO-2E-
alkenals, 4-HPO-2E-alkenals and 4-HO-2E-alkenals. As shown in Figures 13A,B and 14A,B,
the evolution of the concentration of 4,5-EPO-2E-alkenals, at both temperatures in all the
samples, resembles that of the non-oxygenated aldehydes mentioned above, especially that
of the 2E,4E-alkadienals. It should be remembered that these latter aldehydes have been
described as the main intermediate compounds in the formation of 4,5-EPO-2E-alkenals by
epoxidation [65,73].
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Figure 14. (A) Evolution of the concentration expressed as mmol/mol TG, of 4,5-EPO-2E-alkenals,
4-HPO-2E-alkenals and 4-HO-2E-alkenals in walnut oil with different enrichment levels of αT (W,
W02 and W2) submitted to 40 ◦C up to advanced stages of the oxidation process. (B) The same at
70 ◦C.

The onset of formation of the other two types of aldehydes, 4-HPO- and 4-HO-2E-
alkenals, at 40 ◦C occurs almost at the same time in samples W2 and W02, and later in the W
sample. However, their concentration in the W2 sample remains very low for an extended
period of time, showing an evolution similar to that dHPO-nc(E,E)-dEs and non-vicinal
mHPO-mEPO-E-mEs (see Figures 6B, 7B and 14A), which increases significantly in the
later stages of the oxidation process. The similarity might suggest that either the latter
are intermediate precursors of the former, or the formation of all of them is influenced in
the same direction by the same factors. It should be mentioned that dHPO-nc(E,E)-dEs
have been proposed, in previous studies, as intermediate derivatives in the formation of
these aldehydes [27,62,72]. The fact that the formation of these aldehydes occurs earlier
in the sample most enriched in αT is of great relevance due to the toxicity attributed to
them [5,74]. Nevertheless, it has been described that some of them, such as 4-HO-2E-
nonenal at low concentration, are not considered toxic, but they display several physiologi-
cal activities [75–81].

In the storage at 70 ◦C, the onset of the formation of these three kinds of aldehydes is
almost coincident. However, their formation rate in sample W2 is much slower than in the
other two, as occurs in the formation of dHPO-nc(E,E)-dEs and non-vicinal mHPO-mEPO-
E-mEs at this temperature.

(a3) Aldehydes having Z-unsaturated bonds. Two kinds of aldehydes have been
included in this group. One of them is constituted by 2Z-alkenals giving a doublet signal
around 10.05–10.07 ppm (see Table S10) [82]. In previous studies, 2Z-alkenals have been
found as small molecules, among the volatile oxidation compounds formed from 9-HPO-
10E,12Z-dEs or 13-HPO-9Z,11E-dEs submitted to different conditions, so their formation in
the samples studied here is to be expected [73,83,84]. The evolution of the concentration
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of these aldehydes over the storage time, at both temperatures, has been estimated from
the intensity of the signal mentioned above and is depicted in Figure 15A,B. The fact that
the onset of formation of 2Z-alkenals is similar to that of 2E-alkenals in all samples at both
temperatures, as Figures 13A,B and 15A,B show, suggests that their formation could be
related. In fact, as Figure 13A,B show, the maximum concentration reached by 2E-alkenals
is approximately double at 70 ◦C than at 40 ◦C, whereas the opposite is true for 2Z-alkenals,
as Figure 15A,B show. This agrees with the higher thermodynamic stability of the first in
relation to the second ones and with the higher kinetic stability of the seconds with respect
to the first ones.
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Figure 15. (A) Evolution of the concentration expressed as mmol/mol TG, of 2Z-alkenals giving 1H
NMR signals near 10.05–10.07 ppm and 2E,4Z-alkadienals in walnut oil with different enrichment
levels of αT (W, W02 and W2) submitted to 40 ◦C up to advanced stages of the oxidation process.
(B) The same at 70 ◦C.

The other kind of aldehydes included in this group are 2E,4Z-alkadienals, which
possibly come directly from mHPO-c(Z,E)-dEs, as 2Z-alkenals. Those that are not attached
to long-chain molecules have been detected among the volatile components of edible oils
rich in polyunsaturated groups submitted to oxidation [71]. The concentration of these
aldehydes over the storage time was estimated from the intensity of their aldehydic proton
signal (see Table S10) and has been depicted versus the storage time in Figure 15A,B. It is
worth noting that in the storage at 40 ◦C, these aldehydes are only detected by 1H NMR
in the sample most enriched in αT (W2). However, at 70 ◦C, they are detected in the three
samples, W, W02 and W2, although in the first two samples at very low concentrations. It is
also worth noting that, as mentioned previously, 2E,4Z-alkadienals together with 4-HPO-
and 4-HO-2E-alkenals are the first aldehydes formed in the sample most enriched in αT,
W2, at both temperatures.

(b) Furan derivatives. As mentioned above, alkyl-furans and 5-alkyl-2(5H)-furanones
have been detected in the headspace of edible oils submitted to oxidative conditions [71,85,86].
However, only when their concentration in the sample is enough to be detected by 1H
NMR can they be identified and quantified by this technique.

(b1) Alkyl furans. Within this group of compounds, the main are 5-alkyl furans, such
as 5-pentyl furan [71], whose protons give a characteristic non-overlapped 1H NMR signal
(see Table S11). They have been described to be formed in the oxidation of mHPO-c(Z,E)-
dEs [73] or of mHO-c(Z,E)-dEs [69]. However, in the samples studied here, due to their
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characteristic signal only is detected at the end of the storage in all cases and with very low
intensity, they were not quantified. However, it is worth noting that these compounds are
very well known among the edible oil volatile oxidation compounds [71].

(b2) Alkyl furanones. These are also compounds well known among the volatile
derivatives coming from edible oil oxidation, the main ones being 5-alkyl-2(5H)-furanones
(see Figure 16A) [85,86]. The evolution of their concentration throughout the storage time
has been estimated in all samples at both temperatures from the intensity of the 1H NMR
signal centred at 7.46 ppm, as shown in Table S11. The results obtained are depicted in
Figure 16B.
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as mmol/mol TG, of 5-alkyl-5H-furan-2-ones in walnut oil with different enrichment levels of αT (W,
W02 and W2), submitted to either 40 ◦C or 70 ◦C up to advanced stages of the oxidation process.

It can be observed in Figures 14A,B and 16B that the evolution of their concentration
is, to a certain extent, similar to that of several aldehydes, although in some cases, the onset
of the formation of 5-alkyl-2(5H)-furanones occurs later.

(c) Short-chain acids. Formic acid. As already mentioned, in addition to aldehydes
and furan derivatives, among the components of the headspace of edible oils subjected to
oxidative conditions [71,86,87], acids, alcohols and even esters of small size have also been
found. Their formation can occur by different pathways [62,88].

Among the various acids of small size that can be formed, one that stands out by
its concentration at advanced stages of the oxidation process is formic acid [71,86,88,89].
Although the 1H NMR singlet signal of its carbinol methine proton was detected long
ago [90], it was not until recently that it was correctly assigned [30]. Surprisingly, this 1H
NMR singlet signal does not appear in any of the spectra of the walnut oil samples studied
here. However, this cannot be attributed to formic acid not being formed during oxidation
of this oil, but to other reasons. The absence of this signal in oxidized walnut oil spectra
could be due to possible interactions between formic acid and pyrazine, pyridine and some
of their derivatives, which are present in this walnut oil due to the roasting of the nuts prior
to oil extraction [87], which could prevent the appearance of this signal. In fact, studies
carried out in our laboratory by means of 1H NMR about the oxidation of nut oils in which
their previous processing included roasting or not have shown that the singlet signal of
formic acid only appears in the oxidized oils coming from walnuts that were not roasted.
Furthermore, the fact that formic acid derivatives are present in the different oxidized
walnut oil samples studied here, as will be explained below, is evidence of the presence of
formic acid in the several oxidized walnut oil samples.
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The importance of the formation of acids and alcohols in outstanding concentration at
advanced stages of the oxidation process lies in the fact that they may react with other oil
components, thereby influencing the course of the oxidation process.

Finally, it only remains to add that the formation pathways of the structures described
in Sections 3.2.1–3.2.5, supposedly derived from mHPO-c(Z,E)-dEs, could be similar to
those occurring in the enzymatic oxidation provoked by the action of lipoxygenases on
the same substrate [91]. However, to the best of our knowledge, in enzymatic oxidation
processes, which can also occur endogenously, no such high number of oxylipins has
been identified until now. Furthermore, it is worth noting that some of the oxylipins
mentioned above, such as dihydroperoxy non-conjugated dienes, non-vicinal monohy-
droperoxy monoepoxy monoenes, non-vicinal monohydro monoepoxy monoenes and
vicinal and non-vicinal monoketo monoepoxy monoenes, which were recently detected
for the first time in the oxidation process of vegetable oils [30], have also been formed in
the oxidation process undergone by the W, W02 and W2 samples during storage at both
temperatures. Furthermore, this study not only reinforces and gives soundness to the
previous results, but it has also addressed, for the first time, both separately and jointly,
the effect of the storage temperature and αT enrichment degree in the formation of these
oxylipins in an oil rich in polyunsaturated acyl groups.

3.2.6. Other Oxygenated Functional Groups Attached to Long Chains Formed in Advanced
Stages of the Oxidation Process

Figures 2 and 5 show that when the concentration of hydroperoxy groups decreases,
the degradation rate of polyunsaturated acyl groups remains high, which could suggest
that at this stage of the oxidation process, there are other routes of degradation of acyl
groups different to those based on the formation of mHPO-c(Z,E)-dEs mentioned previously.
Furthermore, when hydroperoxy groups are present in a significant concentration, the
oil also contains a certain concentration of acids, such as formic, acetic, and hexanoic, as
well as of alcohols, among other compounds [71] which can favour certain reactions in the
polyunsaturated acyl groups, generating epoxy, vicinal dihydroxy, ester or ether groups.

(a) Long-chain derivatives supporting epoxy groups (EPOs). The possibility of epox-
idation reactions occurring directly on the unmodified acyl groups could be envisaged
because there are conditions for this in advanced stages of the storage process. These con-
ditions are the presence of strong oxidants, in this case hydroperoxides, and the presence
of acids such as formic acid, among others [92–94]. In addition, it should be noted that
even after a long period of storage under oxidative conditions, a certain percentage of
unmodified polyunsaturated acyl groups remains in the walnut oil samples. Among the
long-chain derivatives having epoxy groups that can be formed, are Z-EPOs and E-EPOs.

(a1) Long-chain derivatives supporting Z-epoxy groups (Z-mEPOs). Although in
the oxidation process of walnut oil, the formation of Z-mono, Z-di, or even Z-triEPOs
groups in long chains could be expected due to its content in linoleic and linolenic groups,
these possibilities are reduced to only Z-mEPOs. This is proved by the absence of the
1H NMR signals, from 1.70 ppm to 1.85 ppm, due to methylene protons in the alpha
position regarding two EPO groups (see Tables S12 and S13), and near 3.0 ppm, of the
external oxirane ring protons of Z-di or Z-triEPOs. This shows that only long-chain
derivatives with Z-mEPOs groups are formed in enough concentration to be detected by
1H NMR spectroscopy [29,93]. Among these compounds, there are the well-known (9,10)-
Z-EPO-12Z-octadecenoate and (12,13)-Z-EPO-9Z-octadecenoate, also named leukotoxin
and isoleukotoxin, respectively, the latter being shown in Figure 17A.



Antioxidants 2022, 11, 604 25 of 40

Antioxidants 2022, 11, x FOR PEER REVIEW 25 of 40 
 

spectroscopy [29,93]. Among these compounds, there are the well-known (9,10)-Z-EPO-

12Z-octadecenoate and (12,13)-Z-EPO-9Z-octadecenoate, also named leukotoxin and iso-

leukotoxin, respectively, the latter being shown in Figure 17A. 

 

Figure 17. (A) Structure of (12,13)-Z-epoxy-9Z-octadecenoate as an example of Z-mEPO-Z-mE. (B) 

Evolution of the concentration expressed as mmol/mol TG, of Z-mEPO-Z-mEs plus Z-mEPO-Z-dEs 

present in walnut oil having different enrichment levels in αT (W, W02 and W2), submitted to either 

40 °C or 70 °C up to advanced stages of the oxidation process. 

The estimation of the concentration of Z-mEPOs long-chain derivatives is not 

straightforward because several compounds give signals that overlap with that of these 

epoxy protons (see Tables S3, S9 and S10) and these contributions have to be subtracted. 

The signals that overlap with that of the epoxydic protons of Z-mEPOs long-chain deriv-

atives belong to some mKO-mEPO-mEs (see Table S9), to 4,5-EPO-2E-alkenals (see Table 

S10), and to mHPO-c(Z,E)-tEs (see Table S3). Furthermore, the side bands of the bis-allylic 

methylene protons of linolenic and linoleic acyl groups also overlap with this signal. Tak-

ing all these considerations into account, the approached estimation of the concentration, 

throughout the storage time, mainly of Z-mEPO-Z-mEs, was carried out and the results 

are depicted in Figure 17B. It can be observed that the formation of these derivatives is 

more favoured at 70 °C than at 40 °C. 

(a2) Long-chain derivatives supporting E-epoxy groups (E-mEPOs). In addition to the 

formation of Z-mEPOs long-chain derivatives, the formation of the E-mEPOs counterparts 

is also possible. Thus, the spectra of some walnut oil samples show a multiplet signal cen-

tred near 2.70 ppm attributable to the E-EPOs protons of (9,10)-E-EPO-12Z-octadecenoate, 

in agreement with that of the corresponding standard compound and with data provided 

by Nilewski et al. [95] for the same compounds. 

Figure 18A gives the structure of one of these compounds, and Figure 18B shows the 

evolution of the concentration of this kind of derivative in the samples submitted to 70 °C. 

This signal has not been found in the spectra of any of the samples stored at 40 °C, which 

indicates the important role of the temperature in its formation. 

 

Figure 17. (A) Structure of (12,13)-Z-epoxy-9Z-octadecenoate as an example of Z-mEPO-Z-mE.
(B) Evolution of the concentration expressed as mmol/mol TG, of Z-mEPO-Z-mEs plus Z-mEPO-Z-
dEs present in walnut oil having different enrichment levels in αT (W, W02 and W2), submitted to
either 40 ◦C or 70 ◦C up to advanced stages of the oxidation process.

The estimation of the concentration of Z-mEPOs long-chain derivatives is not straight-
forward because several compounds give signals that overlap with that of these epoxy
protons (see Tables S3, S9 and S10) and these contributions have to be subtracted. The
signals that overlap with that of the epoxydic protons of Z-mEPOs long-chain derivatives
belong to some mKO-mEPO-mEs (see Table S9), to 4,5-EPO-2E-alkenals (see Table S10), and
to mHPO-c(Z,E)-tEs (see Table S3). Furthermore, the side bands of the bis-allylic methylene
protons of linolenic and linoleic acyl groups also overlap with this signal. Taking all these
considerations into account, the approached estimation of the concentration, throughout
the storage time, mainly of Z-mEPO-Z-mEs, was carried out and the results are depicted in
Figure 17B. It can be observed that the formation of these derivatives is more favoured at
70 ◦C than at 40 ◦C.

(a2) Long-chain derivatives supporting E-epoxy groups (E-mEPOs). In addition to the
formation of Z-mEPOs long-chain derivatives, the formation of the E-mEPOs counterparts
is also possible. Thus, the spectra of some walnut oil samples show a multiplet signal cen-
tred near 2.70 ppm attributable to the E-EPOs protons of (9,10)-E-EPO-12Z-octadecenoate,
in agreement with that of the corresponding standard compound and with data provided
by Nilewski et al. [95] for the same compounds.

Figure 18A gives the structure of one of these compounds, and Figure 18B shows the
evolution of the concentration of this kind of derivative in the samples submitted to 70 ◦C.
This signal has not been found in the spectra of any of the samples stored at 40 ◦C, which
indicates the important role of the temperature in its formation.

Finally, it only remains to be added that it has been reported that mEPOs long-
chain derivatives can yield, after oxirane ring opening and chain breaking, two aldehyde
molecules, contributing to the formation of these derivatives, and which have been de-
scribed extensively in Section 3.2.4 [96–98]. Furthermore, it has also been described that
mEPOs long-chain derivatives after oxirane ring opening are the starting point for the for-
mation of other long-chain derivatives, some of which are responsible for oil polymerization
and will be addressed below [93,99].
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Figure 18. (A) Structure of (12,13)-E-epoxy-9Z-octadecenoate as an example of E-mEPO-Z-mE.
(B) Evolution of the concentration expressed as mmol/mol TG, of E-mEPO-Z-mEs in walnut oil with
different enrichment levels of αT (W, W02 and W2), submitted to 70 ◦C up to advanced stages of the
oxidation process.

(b) Long-chain derivatives supporting oxygenated functional groups formed in the
oxirane ring opening. The opening of the oxirane ring by simple hydrolysis or by reaction
with acids or with alcohols yields new functional groups.

(b1) Long-chain derivatives supporting vicinal dihydroxy groups (vicinal dHO). The
opening of the oxirane ring caused by hydrolysis produces two vicinal hydroxy groups for
each hydrolyzed oxirane ring [100]. This reaction leads to the formation of polyols in highly
epoxidised oils, and it is the starting point for the formation of polymers of industrial
interest from vegetable origin [101,102]. Taking into account that, in the samples under
study here, only mEPOs in long chains have been found, only the formation of long-chain
derivatives with two vicinal hydroxy groups could be expected. In Figure 19A, an example
of a vicinal dHO long-chain derivative is represented. The well-known toxic diols coming
from either leukotoxin or isoleukotoxin mentioned previously belong to this group.
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Figure 19. (A) Structure of 9,10-dihydroxy-12Z-octadecenoate as an example of a long-chain deriva-
tive supporting a vicinal dHO group. (B) Evolution of the concentration expressed as mmol/mol TG,
of vicinal dHO supported in long chains in walnut oil with different enrichment levels of αT (W, W02

and W2) submitted to either 40 ◦C or 70 ◦C, up to advanced stages of the oxidation process.

These derivatives, in addition to other 1H NMR signals common to many other
compounds, have a characteristic signal due to the secondary alcohol carbinol methine
proton. This signal, which is broad in the spectrum of methyl 12,13-dHO-9Z-octadenoate,
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is centred around 3.42 ppm, while in that of methyl 9,10-dHO-12Z-octadecenoate, it is
centred around 3.45 ppm [103]. Very similar chemical shifts and multiplicities to the above
have been reported in other studies for the signals of the same type of protons of the
corresponding fatty acids [95].

In the spectra of the samples studied here, a broad signal centred near 3.43 ppm
that could be attributed to these derivatives appears. However, epoxidic protons of non-
vicinal mHPO- and of non-vicinal mHO-Z-mEPO-E-mEs also contribute to this signal, as
Tables S5 and S7 show. Taking into account these contributions, an approximate estimation
of the concentration of long-chain derivatives supporting vicinal dOH groups along the
storage time was made and is depicted in Figure 19B.

It can be observed that these vicinal dOH derivatives are only formed, in enough
concentration to be detected by 1H NMR, in the walnut oil samples most enriched in αT
at both temperatures, the concentration reached at 70 ◦C being higher than at 40 ◦C, in
agreement with that happening in the formation of their precursors Z-mEPOs. Finally, it
only remains to recall that vicinal dOH derivatives have been postulated as intermediate
compounds in the formation of aldehydes from epoxides under certain conditions [98].

(b2) Long-chain derivatives supporting either two vicinal ester groups (vicinal dEst)
or vicinal monoester monohydroxy groups (vicinal mEst-mHO). Formates (F). The oxirane
ring opening mediated by acids can result in the formation of structures such as those
shown in Figure 20A, either with two vicinal dEst groups or with vicinal mEst-mHO groups
per disappeared epoxy group. This reaction is well known and has been widely used as a
first step to obtain polymers from highly epoxidized vegetable oils, giving rise to different
types of polyesters or polyformates. The formation of one or the other depends on the
nature of the unsaturated acyl groups of the starting oil and on the acids used in the process,
the use of formic acid being very common [104–107].
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Figure 20. (A) Structure of an example of long-chain derivatives supporting vicinal dF and vicinal
mF-mOH groups. (B) Evolution of the concentration expressed as mmol/mol TG, of total formate
groups in walnut oil samples having different enrichment level in αT (W, W02 and W2), submitted to
either 40 ◦C or 70 ◦C up to advanced stages of the oxidation process.

The occurrence of this type of reaction in the oxidation process undergone by the
samples studied here is proved by the presence in their spectra of both the typical signals
between 8.00 ppm and 8.17 ppm due to the carbinol methine protons of the formate group,
and the signals between 3.80 ppm and 4.04 ppm (at 3.85 ppm, 3.93 ppm, 3.98 ppm and
4.04 ppm) attributed to the carbinol methine protons of the secondary alcohol group vicinal
to the formate or ester group [104,106]. Signals from this second region appear in the
spectra of the walnut samples simultaneously with those of the first region. From the
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intensity of the signals between 8.05 ppm and 8.17 ppm, the concentration of total formate
groups throughout the storage process in the different samples has been estimated and is
represented in Figure 20B.

The formation onset of these derivatives, as shown in Figure 20B, occurs in all cases
at advanced stages of the oxidation process, close to that n-alkanals and 2E-alkenals and
with similar paths but with a much higher formation rate. For this reason, they reach
much higher concentrations, these always being greater at 70 ◦C than at 40 ◦C. It must
be remembered that both aldehydes and formates can come from long-chain derivatives
supporting epoxy groups [98].

This type of reaction can also take place with other acids present in the oil at advanced
stages of the oxidation process, giving rise to ester-type bonds and generating branching in
the long chains which contributes to an increase in the oil viscosity.

(b3) Long chains supporting either two vicinal ether groups (vicinal dEt) or vicinal
monoether monohydroxy groups (vicinal mEt-mHO). The formation of these structures
(see Figure 21A) occurs when alcohols provoke the oxirane ring opening. This kind of
hydrolysis is possible because it is known that primary alcohols of small size are also
present in edible oils submitted to storage as here [71]. Furthermore, as has been shown in
this study, different secondary alcohols are present in many of the derivatives detected in
all walnut oil samples studied here.
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Figure 21. (A) Structure of an example of vicinal mEt-mHO derivatives. (B) Evolution of the
concentration of protons generating the signal at 3.62 ppm attributable to methine protons of ether
bonds and of secondary alcohols expressed as mmol/mol TG in walnut oil samples with different
enrichment levels in αT (W, W02 and W2), submitted to either 40 ◦C or 70 ◦C up to advanced stages
of the oxidation process.

This opening of the oxirane ring can yield, as shown in Figure 21A, a secondary alcohol
and the branching of the fatty acyl group by the formation of an ether bond with the alcohol
chain. However, when the opening of the oxirane ring is produced by a secondary alcohol
attached to a fatty acyl group, this will produce ether linkages between different fatty acyl
groups of the same or of different triglycerides, thus contributing to the oil polymerization.

Although the 1H NMR signal near 3.62 ppm can be associated with primary alco-
hols [50], and in vegetable oils submitted to these conditions, small-sized primary alcohols
are present, their concentration is much smaller than that of acids [71]. For this reason,
and assuming that this signal is mainly due to methine protons of ether bonds of potential
oligoether backbones [108,109] and to methine protons of certain secondary alcohols [110],
their joint concentration has been determined and represented in Figure 21B in order to
have an approximate idea about the evolution of the concentration of these groups. As
can be observed, these derivatives are formed in higher concentrations at 70 ◦C than at
40 ◦C, as occurs in other derivatives coming from the oxirane ring opening, and the be-
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ginning of their formation onset is similar to that of other derivatives coming from the
same precursors.

Finally, it should be mentioned that all oxylipins described in Section 3.2.6 could
also be formed enzymatically in the oxidation pathway initiated by cytochrome P450
epoxygenase, on either polyunsaturated fatty acids or fatty acyl groups, mEPO-mEs being
the parent structure [91,111]. It is known that epoxyde hydrolases are able to open the
oxirane ring of mEPO-mEs, yielding the well-known diols. Therefore, it could also occur
that the enzymatically formed oxirane ring could be opened by acids or alcohols, giving
rise to ester or ether bonds, capable of producing polymerizations between fatty acids or
between chains of fatty acyl groups that would confer rigidity to the system involved, as
has been observed in this study. The formation of these oxylipins was recently described
for the first time in the oxidation of edible oils [30] and their detection in all samples
studied here at both temperatures reinforces and gives soundness to the previous results.
In addition, the influence of the temperature and of the enrichment degree in αT of the oil
in the formation of these oxylipins is shown here for the first time.

3.3. Evolution of αT Concentration in the Enriched Walnut Oil Samples throughout the Storage
and Effect

As is to be expected, as the walnut oil oxidation advances, the added αT is degraded,
and it is also to be expected that this degradation goes parallel to the oil degradation.

Thus, in the W02 sample, as Figure 2 and Table 1 show, both linoleic and linolenic
groups have two clearly differentiated degradation rates throughout storage, the first being
smaller than the second one. The time at which the degradation rate of both acyl groups
changes coincides with the time at which αT is totally degraded (see Figure 22). This
occurs in sample W02 near day 26 at 40 ◦C and near day 3 at 70 ◦C. The same is true for the
degradation rate of linoleic groups in the W2 sample. In this case, as Figure 2 and Table 1
show, the changes in the degradation rates of linoleic groups occur from day 45 onwards
at 40 ◦C, and from day 8 onwards at 70 ◦C, and they coincide with the extinction of αT
in the system (see Figure 22). Likewise, in the oil sample W, not enriched in αT, linoleic
and linolenic groups have two clearly differentiated degradation rates (see Figure 2 and
Table 1), the former being much smaller than the latter. Nevertheless, the degradation
rates of the abovementioned acyl groups in W02 and W2, in the first stage (up to αT total
disappearance) is greater the higher the αT enrichment degree and always higher than in
the W sample. In contrast, the opposite is true in the second stage, the degradation rate in
the W sample being higher than in the other two samples (see Figures 2 and 22 and Table 1).
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Figure 22. Evolution of the concentration of αT in the several walnut oil samples, initially having two
different enrichment levels in αT (W02 and W2) submitted either to 40 ◦C or to 70 ◦C up to advanced
stages of the oxidation process.

These results suggest that αT accelerates oil degradation to a greater extent the higher
the αT level, showing a clear pro-oxidant behaviour. However, after the disappearance of
αT, a delay in the oil degradation occurs to a greater extent the higher the initial concentra-
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tion of αT in the sample. This suggest that the intermediate compounds formed have more
stability the higher the initial concentration of αT in the sample.

3.4. Final Considerations Regarding the Factors That Govern the Walnut Oil Oxidation Process
and Their Complex Effects

From the results discussed above, it is clear that both the αT concentration and
temperature jointly govern the oxidation process of walnut oil with very different effects.
Both reduce the oxidative stability of the oil by favouring oxidation but in very different
ways. While αT lengthens the duration of the oxidation process, the increase in temperature
causes the oxidation process to be shortened. This is commented on below.

In the sample not enriched in αT, W, submitted at 40 ◦C, in a first stage, the oxidation
process advances very slowly for a prolonged period of time, showing a very broad
induction period. However, after this induction period, the process evolves very quickly,
forming mHPO-c(Z,E)-dEs and mHPO-c(E,E)-dEs almost simultaneously. Both kinds of
hydroperoxides reach the maximum concentration simultaneously, that of the second being
slightly higher than that of the first, both types of primary oxidation compounds showing
similar degradation rates. However, the oxidation process during storage at 70 ◦C is very
fast, having a very short induction period. At this temperature, both mHPO-c(Z,E)-dEs
and mHPO-c(E,E)-dEs also reach the maximum concentration simultaneously, that of the
latter being higher than that of the former, both degrading simultaneously. Thus, as is well
known, it follows that the higher the temperature, the higher the oxidation rate and the
easier the isomerization from Z,E to E,E.

In the sample less enriched in αT, W02, submitted at 40 ◦C, the evolution of the
oxidation process is very different from that occurring in W. Enrichment inαT causes several
effects, among which the following are noteworthy: reduction in the induction period to
the minimum expression in relation to that observed in W; formation exclusively of mHPO-
c(Z,E)-dEs during an extended period of time, reaching a significant concentration before
the onset of mHPO-c(E,E)-dEs formation; and maintenance of the concentration of the
former higher than that of the latter at all times. The evolution of the oxidation process
in W02 submitted at 70 ◦C is also very quick, almost without an induction period. At
this temperature, mHPO-c(Z,E)-dEs are also the only hydroperoxides present during a
certain period of time, after which mHPO-c(E,E)-dEs are formed, these reaching even
higher concentrations than their previously mentioned counterparts. The temperature
increase provokes the acceleration of the oxidation process of W02, as in the case of W, and
in addition, an easier isomerization from Z,E to E,E.

In the sample most enriched in αT, W2, submitted to 40 ◦C, the induction period is
almost absent, generating from the beginning important concentrations of mHPO-c(Z,E)-
dEs which reach very high concentration compared with that reached in W and W02
samples. Furthermore, the formation of mHPO-c(E,E)-dEs is delayed up to the degradation
onset of their Z,E counterparts. The effect provoked on the three aspects previously
mentioned by αT enrichment is especially noteworthy in this case. The increase in the
temperature in this oil sample also causes a significant acceleration of the oxidation process,
and although it favours the isomerization from Z,E to E,E, the formation of the latter
isomers does not begin until at an advanced stage of the oxidation process.

The effects that a temperature increase and αT enrichment provoke in the formation of
primary oxidation compounds are also transferred to the formation of secondary or further
oxidation derivatives. Due to this, in some cases, there are similarities in the formation
paths of certain derivatives in very different oil samples. Thus, in the process at 40 ◦C, there
is coincidence in the formation onset of certain derivatives in W02 and W2 samples, in some
cases this even being something occurring earlier in W2 than in W02, and always earlier
than in W. These derivatives are mHPO-c(Z,E)-dEs, mHPO-c(Z,E)-tEs, mHO-c(Z,E)-dEs,
and mKO-c(Z,E)-dEs, which reach higher concentrations in W2 than in W02, although
in the case of the last derivative with a much lower formation rate in W2 than in W02.
dHPO-nc(E,E)-dEs, non-vicinal mHPO-mEPO-mEs, Z-mEPO-mEs, 4-HPO-2E-alkenals and
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4-HO-2E-alkenals also belong to this group but reach much smaller concentrations in most
cases in W2 than in W02. In the oxidation process at 40 ◦C, there is also agreement in the
formation onset of other structures in W and W2 samples, which is delayed in relation
to that found in W02. mHPO-c(E,E)-dEs, non-vicinal mHO-mEPO-mEs, mKO-c(E,E)-dEs,
n-alkanals, 2E-alkenals, 2E,4E-alkadienals, 4,5-EPO-2E-alkenals, 2Z-alkenals, 5-alkyl-5H-
furan-2-ones, and formats belong to this group. The rate of formation of these structures is
in most cases of a similar order in W and W2 samples.

In the processes at 70 ◦C, there is also certain concordance in the formation paths of
some derivatives in W02 and W2 samples. Thus, the formation onset of mHPO-c(Z,E)-dEs,
mHPO-c(Z,E)-tEs, mHO-c(Z,E)-dEs, mKO-c(Z,E)-dEs, and 2E,4Z-alkadienals is similar in
W2 and W02, although in some cases, earlier in W2 than in W02, and always earlier than in
W. These derivatives, as in the storage at 40 ◦C, in most cases reach higher concentrations in
W2 than in W02 and W. There is another group of derivatives exhibiting similar formation
onset in the three samples but with a much lower formation rate in W2. Non-vicinal
mHO-mEPO-mEs, n-alkanals, 2E,4E-alkadienals, 4-HPO-2E-alkenals, 4-HO-2E-alkenals
and 4,5-EPO-2E-alkenals belong to this group. Finally, there is a third group of derivatives
that shows a similar formation onset in W and W02, always earlier than in W2, with a higher
formation rate than in the latter sample. mHPO-c(E,E)-dEs, dHPO-nc(E,E)-dEs, non-vicinal
mHPO-mEPO-mEs, mKO-c(E,E)-dEs, mEPO-mEs and formats belong to this group.

In summary, at both temperatures, the αT enrichment accelerates the oxidation of fatty
acyl groups by the early formation of oxygenated Z,E-conjugated dienic structures and
related, and delays, regarding the formation of the former, the formation of oxygenated E,E-
conjugated dienic structures and of some related structures. This way, the oxidation process
is more extended the greater the degree of enrichment in αT. Moreover, αT enrichment
causes an increase in the maximum concentration reached only by oxygenated conjugated
Z,E-diene structures, but not in that of related structures, nor in that reached by oxygenated
E,E-conjugated diene and related structures, which in most cases is even lower. These
results prove that αT leads the oxidation process of this unsaturated oil, favouring the
formation of some oxylipins and hindering the formation of other ones.

Furthermore, these results also show that the elucidation of the behaviour of certain
compounds such as αT, as antioxidant or pro-oxidant, due to the complexity of its effect,
requires an in-depth study of the oxidation process. It has been proved that αT enrichment
can accelerate the formation of some oxidation compounds, including some primary
oxidation compounds, and delay, with respect to the formation of the former, that of some
secondary or further oxidation compounds. For this reason, the use of only one or two
classical parameters cannot be sufficient to elucidate the behaviour of this compound and
perhaps of others able to act as antioxidants.

3.5. Importance of Oxylipins Detection and Quantification to Evaluate Biological Activities

The abovementioned oxylipins can be present in oxidized foods, and consequently,
they can be absorbed after digestion, but as mentioned before, they can also be formed
endogenously by the action of several enzymatic systems. In fact, it has been reported that
some oxylipins play important roles in living organisms, and others show varied biological
activities, although many remain to be elucidated [91,112].

In the early studies about this subject, the toxic effects provoked by the mixture of
lipid oxidation compounds was called oxygen toxicity, and it was attributed to the mixture
of unidentified compounds coming from oxidation, including hydroperoxides [113].

Watanabe and Nakamura [114] and Shiotani et al. [115] showed that purified methyl
linoleate monohydroperoxide, without specifying the kind of hydroperoxide, has no ef-
fect on respiratory or phosphorylating activities of rat heart and liver mitochondria in a
certain concentration range. More recently, 13-HPO-9Z,11E-octadecadienoic acid has been
attributed to the ability to relax canine circumflex and splenic arteries [116] and also to
promote intestinal inflammation [117]. The ability to activate the peroxisome proliferator-
activated receptor α (PPARα) has also been attributed to this same hydroperoxide, leading
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to a reduction in triglyceride concentrations in liver, plasma and very low-density pro-
teins in rats, but not in human HepG2 hepatoma cells [118]. Nevertheless, although this
hydroperoxide was indeed present in the aforementioned assays, the presence of other
oxylipins could not be discarded in these experiments, the compound or compounds
responsible for the observed biological effect remaining unclear up to a certain point. How-
ever, recent studies carried out with pure 9-HPO-10E,12Z-octadecadienoic acid have shown
that this compound plays an effector role in cellular oxidative reactions [119].

Likewise, mHPO-mEPO-mE has shown inhibitory and uncoupling effects on respira-
tory and phosphorylating activities of rat heart and liver mitochondria [120]. In addition, a
great number of bioactive effects have been attributed to some mHO-c-dEs, such as 9-HO-
10E,12Z-dE and 13-HO-9Z,11E-dE, among which cytotoxic activity and the development
and progression of rheumatoid arthritis can be cited [91,121,122]. It is worth noting that,
although some of the attributed bioactive effects are produced by both isomers mentioned
above, others are caused by only one of them.

In the same way, several biological activities have been attributed to 9-KO- and 13-KO-
c-dEs [91], without specifying isomerism, including for the latter compounds the ability
to reduce inflammation in human colonic epithelial cells [123]. Furthermore, it is worth
noting that it has also been described that 9-KO-10E,12E-dE induces apoptotic cell death in
human ovarian cancer to a greater degree than 9-KO-10E,12Z-dE [124,125].

Recently, it has been proved that several vicinal and non-vicinal mKO- and mHO-
mEPO-mEs fatty acids and their corresponding esterified counterparts are present in normal
and psoriatic human skin, the concentration of the modified fatty acids being much higher
in psoriatic skin than that of the modified fatty esters [70]. Likewise, potential relationships
between the presence of this kind of compound and itchiness, chronic headaches and
facial pain have been subject of study [126]. Although these studies constitute outstanding
contributions to this issue, it must not be forgotten that, in addition to these oxylipins,
many others can also be present in the system, and perhaps the effects are not only due
to one group of compounds but to all of them. Finally, regarding mKO-mEPO-mEs, it
should be pointed out that 9-KO-12,13-E-EPO-10E-mE has been considered responsible
for the excessive production of aldosterone in visceral obesity and for hypertension in
humans [127].

Other important oxidation compounds that can be formed in foods, as has been
shown in this study, and also endogenously, are different types of aldehydes. Among
them, oxygenated alpha, beta unsaturated aldehydes are considered to be causal agents
for different types of degenerative diseases such as Alzheimer, Parkinson, chronic inflam-
mation, adult respiratory distress syndrome, atherogenesis, diabetes, and different types
of cancer [80,128–130]. Nevertheless, some of them, such as 4-HO-2E-nonenal at low con-
centrations, display several activities referring to cell multiplication and differentiation,
stimulation of neutrophil chemotaxis, or activation of membranes, among others [75–80].

Likewise, the toxicity of mEPO-mEs that can be formed either in foods or endoge-
nously, in the absence of enzymes or in the presence of cytochrome P450 and epoxygenase,
is well known. These compounds, also named leukotoxin and isoleukotoxin, have been
considered responsible for acute respiratory distress (ARDS) [131] as well as for circula-
tory shock and disseminal intravascular coagulation [132]. Furthermore, the oxirane ring
opening of these compounds in the presence or absence of epoxide hydrolase leads to the
formation of the well-known leukotoxindiol and isoleukotoxindiol. These compounds
have been associated with multi-organ failure [100,133], as well as with the development or
aggravation of some diseases such as acute respiratory distress syndrome (ARDS) [100,134]
and to breast and prostate cancer cell proliferation (in vitro and in vivo) [135].

Lastly, the opening of the epoxide ring in the presence of acids gives rise, as mentioned
above, to the formation of additional ester groups that generate branching in modified
fatty acyl group chains, which increases the viscosity of the system. When the oxirane ring
is opened by alcohol groups, if these are on modified fatty acyl groups, the formed ether
bonds could provoke the polymerization of the system.
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Lipid oxidation, regardless of whether it is produced enzymatically or not, either
in foods or endogenously in humans, is very complex, and many different oxidation
derivatives are present in the lipid systems in any oxidation stage, except in the very early
oxidation stages. Although the study of biological activity of pure oxidation compounds
is very important, the biological activity of mixtures cannot always be deduced from the
individual biological activity of their components due either to synergic or antagonist
effects. Therefore, it is very important, as some authors [136] already point out, to have
techniques and methods that allow the detection and quantification of the largest possible
number of oxylipins present in a system in the simplest possible way, in order to establish
solid relationships between their composition and concentration and the biological effects
they provoke. This study provides both the technique and the methodology to carry out
these types of determinations. To do so, one only requires the extraction of the lipid system
subject of study, acquiring the 1H NMR spectrum and identifying and quantifying the
detected oxylipins in the same way as has been reported here. The association of the identity
and concentrations of all oxylipins detected in a sample with their overall biological activity
observed could contribute to a deeper understanding of this important issue, related to
human health.

4. Conclusions
1H NMR spectroscopy has proven to be a very valuable tool, providing information

on oxidative stability, polyunsaturated acyl groups degradation kinetics and kinetics of the
formation of a very large number of oxylipins, throughout the oxidation process of walnut
oil, alone or enriched with two different concentrations of alpha-tocopherol (αT), submitted
to accelerated storage conditions at two different temperatures. Additionally, throughout
storage, the degradation kinetic of the added αT has also been addressed. With all this
information, it has been possible to elucidate the effects that both the degree of enrichment
in αT and the storage temperature provoke in all the aforementioned aspects of the walnut
oil oxidation process, which could be extrapolated to any oil rich in polyunsaturated
omega-6 groups.

It has been shown that αT in the concentrations tested and at both temperatures
acts as a pro-oxidant, reducing the oxidative stability of walnut oil. This is demonstrated
by the greater and earlier degradation rate of the polyunsaturated acyl groups of the oil
samples enriched with both αT concentrations at both temperatures compared to those of
the unenriched sample and by the greater and earlier formation rate of monohydroperoxy
conjugated Z,E-dienes. From the results obtained here, it can be inferred that the enrichment
of edible oils with αT under the “quantum satis” principle, as is allowed by European
legislation [35], can negatively affect the oil oxidative stability if the αT enrichment level is
not adequately selected.

In the oxidation undergone during storage by walnut oil without being enriched in αT
at low temperature, a very broad induction period occurs, after which the oxidation evolves
very quickly, always simultaneously maintaining the formation of monohydroperoxy con-
jugated Z,E-dienes and monohydroperoxy conjugated E,E-dienes, the latter always being
of higher concentration than the former. With increasing temperature, the induction period
is sharply shortened, but the evolution of the oxidation is similar to at low temperature,
although primary oxidation compounds reach lower concentrations.

In the walnut oil enriched with the lowest concentration of αT submitted to low
temperature, both primary and secondary or further oxidation compounds are formed
earlier than in the non-enriched walnut oil sample subjected to the same storage conditions.
Furthermore, unlike in the latter sample, monohydroperoxy conjugated Z,E-dienes are
formed earlier and reach a much higher concentration than their E,E counterparts. In
walnut oil enriched with the highest concentration of αT submitted to low temperature,
monohydroperoxy conjugated Z,E-dienes and secondary or further oxidation compounds
with Z,E isomerism are formed earlier and reach much higher concentrations than in the
other two walnut oil samples. In this case, there is also an important delay in the formation
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of monohydroperoxy conjugated E,E-dienes compared to that of their Z,E counterparts
that carries over to the formation of most of the oxylipins throughout the storage.

The temperature increase on the walnut oil samples enriched in αT accelerates the
oxidation process as expected, although the formation of monohydroperoxide conjugated
Z,E-dienes is earlier in both samples than in the non-enriched sample. In addition, a small
delay in the formation of monohydroperoxide conjugated E,E-dienes with respect to their
Z,E counterparts is observed in the sample less enriched in αT, this delay being more
important in the more enriched sample. As consequence, in the latter sample, the formation
of most of the secondary or further oxidation compounds occurs later than in the other
two samples, and moreover, they reach lower concentrations. It has been shown for the
first time that although both αT enrichment and temperature increase, accelerating the
oxidation of walnut oil, the former leads to the formation of oxylipins in a very different
way to the latter. From the results obtained, it is clear that, due to the complex effect that
αT enrichment provokes on the oil oxidation during accelerated storage conditions, the
use of classical parameters based on the concentration of secondary or further oxidation
compounds can lead to erroneous conclusions on the qualification of the behaviour of the
compound tested as an antioxidant or pro-oxidant.

The results obtained have shown that the ingestion of oxidized foods can lead to the
absorption of a large number of oxylipins, many of which are the same as those formed
endogenously by the action of lipooxygenases, cytochrome P450, epoxygenases or epoxy
hydrolases on the same substrates, and as reported, can provoke a large number of negative
biological effects of great importance from the point of view of human health.

The method used and described in this study, based on 1H NMR spectroscopy, has
proven to be very valuable for delving into the oxidation processes of lipids rich in polyun-
saturated omega-6 groups occurring under any type of conditions, and consequently to
analyze the factors governing the process, which determine the type and the concentrations
of the oxylipins present in a lipid system at each stage of an oxidation process. Therefore,
this technique can also be considered essential both for a proper evaluation of antioxidant
strategies in food systems and for identifying the oxylipins responsible for the negative
effects or, where appropriate, for physiological functions in biological systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11040604/s1, Table S1: 1H NMR signals, obtained in CDCl3,
of protons of main walnut oil components shown in Figure 1, their chemical shifts, multiplicities and
assignments to protons of different functional groups present in edible oils. The signal letters agree
with those given in the Figure 1; Table S2: Chemical shift assignments and multiplicities of 1H NMR
signals in CDCl3 of protons of monohydroperoxy conjugated octadecadienes (mHPO-c-dEs) coming
from linoleic groups; Table S3: Chemical shift assignments of 1H NMR signals in CDCl3 of protons
of monohydroperoxy conjugated octadecatrienes (mHPO-c(Z,E)-tEs) coming from linolenic groups;
Table S4: Chemical shift assignments and multiplicities of 1H NMR signals in CDCl3 of protons
of dihydroperoxy non-conjugated E,E-octadecadienes (dHPO-nc(E,E)-dEs); Table S5: Chemical
shift assignments and multiplicities of 1H NMR signals in CDCl3 of protons of monohydroperoxy
monoepoxy E-octadecamonoenes (mHPO-mEPO-E-mEs); Table S6: Chemical shift assignments and
multiplicities of 1H NMR signals in CDCl3 of protons of monohydroxy conjugated Z,E-octadecadienes
(mHO-c(Z,E)-dEs); Table S7: Chemical shift assignments and multiplicities of 1H NMR signals in
CDCl3 of protons of monohydroxy monoepoxy E-octadecamonoenes (mHO-mEPO-E-mEs); Table S8:
Chemical shift assignments and multiplicities of 1H NMR signals in CDCl3 of protons of monoketo
conjugated octadecadienes (mKO-c-dEs); Table S9: Chemical shift assignments and multiplicities of
1H NMR signals in CDCl3 of protons of monoketo monoepoxy E-octadecamonoenes (mKO-mEPO-E-
mEs); Table S10: Chemical shift assignments and multiplicities of 1H NMR signals in CDCl3 of protons
of different types of aldehydes; Table S11: Chemical shift assignments and multiplicities of 1H NMR
signals in CDCl3 of protons of furan groups; Table S12: Chemical shift assignments and multiplicities
of 1H NMR signals in CDCl3 of protons of epoxy derivatives coming from linoleic acyl groups;
Table S13: Chemical shift assignments and multiplicities of 1H NMR signals in CDCl3 of protons
of epoxy derivatives coming from linolenic acyl groups; Table S14: Chemical shift assignments and
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multiplicities of 1H NMR signals in CDCl3 of protons of different types of dihydroxy groups (dHO);
Table S15: Chemical shift assignments and multiplicities of 1H NMR signals in CDCl3 of protons of
formats; Table S16: Chemical shift assignments and multiplicities of 1H NMR signals in CDCl3 of
protons of alpha-tocopherol.
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