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A B S T R A C T

Despite the benefits of bacterial endophytes, recent studies on the mostly Gram-negative bacteria lack of
regard for formulation strategies. The encapsulation into biopolymeric materials such as amidated
pectins hydrogels is a suitable alternative. Here, this research aimed at supporting the capability of the
plant growth-promoting bacteria Kosakonia radicincitans DSM16656T to endophytically colonize plant
seedlings. In this approach, the pre-conditioned cells through osmoadaptation and hydroxyectoine
accumulation were used. In general, pre-osmoadapted and hydroxyectoine-supplemented bacteria cells
formulated in amidated pectin dried beads increased the endophytic activity by 10-fold. Moreover, plant
promotion in radish plants enhanced by 18.9% and 20.7% for a dry matter of tuber and leaves. Confocal
microscopy studies with GFP-tagged bacteria revealed that bacterial aggregates formed during the
activation of beads play an essential role in early colonization stages. This research encourages the
integration of fermentation and formulation strategies in a bioprocess engineering approach for
exploiting endophytic bacteria.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Plant growth-promoting endophytic bacteria (PGPEB)-based
formulations are considered a suitable alternative to overcome
issues caused by chemical fertilizer usage [1]. These bacteria offer
substantial advantages for their interaction with hosts [2,3], in
comparison to native superficially occurring bacteria that persist
mainly in soil and root plants neighborhood. Bacterial endophytes
are isolated from surface-disinfested plant tissue or extracted from
the plant endosphere [4,5]. Since bacterial endophytes can enter
and persist into plant tissue, giving to the host physiological
advantages against biotic and abiotic stresses, research attention
has surged during the last years [2,6].

Regular application targets for PGPEB such as soil or phyllo-
sphere, represent harsh environments, where conditions can
fluctuate significantly at nanometer and micrometer levels [7,8].
These alterations include microbial interaction, temperature, UV
radiation, free moisture, pH, organic matter content and nutrients
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supply. Gram-negative bacteria are generally less tolerant facing
disturbing surroundings than Gram-positive bacteria, yeasts or
filamentous fungi. The lower sensitivity to environmental changes
owing to mainly the chemical composition of outer cellular layers
[9–11]. Thus, shortly after bacteria inoculation into the soil without
a proper carrier, the population declines rapidly for most PGPB
species [12]. For Gram-negative bacteria, the ability to withstand
abiotic stresses during technical formulation processing is a central
problem that requires research efforts. More challenging is to
conserve the biological activity and further ability to colonize the
plant endosphere.

The potential of PGPBE has primarily been acknowledged and
well documented across the globe in the last few decades [1,13].
Hence, plant growth stimulation and yield improvements by
endophytic bacteria were evident in laboratory, greenhouse and
field levels in several host species [14,15]. Some of these studies
carried out even under drought stress, nitrogen deficiency and
excessive salinity [16].

A well-studied PGPBE is Kosakonia radicincitans (syn. Enter-
obacter radicincitans) [17], which endophytic preferences in plant
tissue were demonstrated [18]. K. radicincitans can stimulate
growth in a range of plant hosts [18–20], solubilize inorganic
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Psychochemical properties of selected pectin references used for screening in
microfermentation at BioLector1

Pectin Reference DE DA Galacturonic acid content

Pectin Classic CU 902 5.7% - 75%
Pectin Classic AU-L 061/10 40% - 85%
Pectin Classic AU-L 062/10 30% - 84%
Pectin Amid AU-L 063/10 33% 15% 83%
Pectin Amid CU-L 065/10 44% 11% 89%
Pectin Amid CU-L 066/10 24% 24% 91%

Degree of esterification (DE); Degree of amidation (DA)
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phosphate [21], fix atmospheric nitrogen and to produce
phytohormones such as auxins and cytokinins [22,23]. However,
despite the reported benefits, most of the investigations regarding
PGPBE, including K. radicincitans, used fresh cultivated cells
previously to reveal beneficial effects on plants, without formula-
tion proceedings, which could guarantee a long shelf life of the
product and further reproducibility [19,24,25].

Previous studies with promising bacteria in agriculture
suggested that salt-stressed cells and compatible solutes inclusion
could potentiate their biological activity. For Staphylococcus
saprophyticus (ST1), the biofilm formation and exopolysaccharides
(EPS) production increased along with NaCl concentration,
enhancing its plant growth-promoting abilities [26]. A similar
strategy was extended to endophytic bacterial, which studies
revealed that pre-conditioning at high salinities and the accumu-
lation of selected compatible solutes could drive the strengthening
of bacterial phenotypes [27]. Recently, K. radicincitans upon
osmoadaptation and hydroxyectoine accumulation increased its
phosphorous solubilization ability, and interestingly plant tissue
colonization [28]. Hydroxyectoine also provided benefits on drying
survival and endogenous metabolome shifting [29]. As outlined
above, salt stress pre-conditioning mechanism along with an
intracellular compatible solutes accumulation is a feasible
alternative to strengthen endophytic bacteria cells, previously
encapsulation processing and application.

Encapsulation/immobilization within hydrogels is a sizeable
emerging field in the pharmaceutics, nanotechnology, medi-
cine, aquaculture, and cosmetics industries [12]. The strategy
focuses on increasing the microorganism tolerance against
unfavorable surroundings caused by biotic and abiotic factors,
such as antagonists or dryness [30–32]. Indeed, the immobili-
zation of microorganisms in polymeric materials provides them
with several significant advantages over free-living suspen-
sions. Thereby, this approach may offer an uninterrupted
supply of nutrients without competing with other microbes,
protection against environmental stress and longer shelf life in
storage [33–35].

Pectins are a diverse family of biopolymers extracted from the
plant cell wall, with an anionic polysaccharide backbone of α-1,4-
linked ᴅ-galacturonic acids. Uronic acids integrate into the
backbone carboxyl groups arepartially substituted by methyl
esters and/or carboxamide groups. Pectins differ according to their
degree of esterification (DE) and/or degree of amidation (DA). Both
parameters represent the percentage of carboxyl groups esterified
and/or amidated, respectively [36]. Due to differences in DE and
DA, the viscosity, gelling, mechanical properties, and stability of
pectin are affected [37,38]. Pectins operate widely as emulsifiers,
gelling agents, glazing agents, stabilizers, and/or thickeners in
food, pharmaceutical and personal care products [39].

Amidated pectins can serve as scaffolding drug delivery
systems, owing to their versatility targeting specific sites and
releasing rates [40–42]. Nevertheless, considering the entrapment
of microbes, the amidated pectin-based hydrogels as a biologicals
carrier remain relatively unexplored. However, some studies
suggested the advantages of this biopolymer for entrapping
microbial cells. Indeed, amidated pectins provided favorable
characteristics for encapsulating live bacteria, such as Lactobacillus
casei supporting protection to gastric acids [43,44]. This biopoly-
mer is also cytocompatible with B-16 melanoma cells and human
blood [45]. Krell et al, (2018) co-encapsulated the fungal
endophyte Metarhizium brunneum CB15 and cellulase in amidated
pectin beads, increasing the endophytic capacity in potato plants.
For bacteria immobilization, the incorporation of calcium salts to
pectin matrices can enhance polysaccharides reactivity to the
bacterial enzymatic arsenal, since many pectinases require calcium
ions or are stimulated by their presence [46,47]. Regardless of
these benefits, a detailed investigation on amidated pectin as an
advantageous carrier for PGPBE is so far missing.

This research aimed at determining the capability of amidated
pectin dried beads as a delivery system for the bacterium
endophyte K. radicincitans. Moreover, the ability of encapsulated
pre-osmoadapted and hydroxyectoine-added cells to colonize the
endosphere in radish plants was assessed.

2. Materials and methods

Hydroxyectoine was acquired from Sigma Aldrich (Cat: 70709,
Sigma Aldrich Corporation, Germany). Amidated pectin references
were provided by Herbstreith & Fox KG (Neuenbuerg/Wuertt,
Germany). Details are given in Table 1. All other materials
corresponded to analytical reagent grade and were used as
received.

2.1. Bacterial endophyte and growth conditions

Bacterial endophyte Kosakonia radicincitansDSM16656T[Ref:
6554: Leibnitz-Institut DSMZ] was provided by the Leibnitz
Institute of Vegetable and Ornamental Crops in Grossbeeren,
Germany. Bacterial cells were maintained on glycerol (50% w/v)
and ENDO agar (Merck, Darmstadt, Germany) stocks at �80 �C.
Liquid starter cultures were produced in standard nutrient broth
(Merck, Darmstadt, Germany) at 30 �C and 190 rpm for 24 h.

Chemically growth medium (DM) was used composed by
(g L-1): glycerol (15), yeast extract (8), K2HPO4 (2.74), KH2PO4

(1.31), MgSO4.7H2O (0.5), FeSO4H20 (0.06), MnSO4 (0.01) at pH 7.4.
Pre-conditioning of bacteria before the formulation step was
ensured by amending DM with NaCl [1, 4%] to obtain water
activities (aw) at 0.96 and 0.95, respectively (LabMaster-aw,
Novasina AG, Lachen, Switzerland) [29,48].

Bacterial suspensions for encapsulation procedures were
prepared as follows: DM (100 ml) was poured into 250 ml baffled
Erlenmeyer flasks that were autoclaved at 121 �C, 1.5 atm, for 30
min. The initial inoculum concentration in the media was adjusted
at 106 cells ml-1. Cultivation was carried out at 190 rpm in a rotary
incubator at 30 �C (IKA KS 4000 ic control, Staufen, Germany).
Hydroxyectoine was sterilized separately by filtration through a
0.2 mm membrane filter (Durapore1 0.2 mm PVDF, Millipore,
Ireland). Afterward, cells harvesting was conducted at the
exponential phase after 21 h (OD600 0.7-0.9) by centrifugation at
2352 g for 15 min (Mikro HT 200R, Hettich GmbH & Co. KG,
Tuttlingen, Germany). To prevent osmotic imbalance, the obtained
pellet of bacteria was washed and centrifuged twice with a
corresponded NaCl solution [1, 4%]. The bacterial cells were stored
in the same NaCl solution adjusted at OD600 at 1.5 until use in the
formulation assays. Previously to encapsulate the bacteria cells, the
intracellular uptake of hydroxyectoine was confirmed. Briefly, 50 m
l of concentrated biomass was extracted for quantitative evalua-
tions with 570 ml of an extraction solution (methanol/chloroform/
water 10:4:4, v/v) by intense shaking for 5 min followed by the
inclusion of equal volumes (170 ml) of chloroform and water [29].
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The hydrophilic top layer was analyzed by HPLC, using an EC 150/
4.6 NUCLEODUR1 100-5 NH2-RP column and a UV-detector at 215
nm. The chromatographic separation was performed at a flow rate
of 1 ml min-1 at 30 �C, accompanied by a column heater and using a
solvent gradient established between eluents A and B (80% ACN in
HPLC water) [29,49].

2.2. Screening of pectin materials references as a nutrient source

Several pectin references with a range of galacturonic acid
contents, esterification and amidation degrees were selected
(Table 1). The pectins were screened by their compatibility and
potential for serving as a nutrient source for K. radicincitans cells.
Briefly, 1 ml of 2% pectin material supplemented with 1% yeast
extract were placed in a microtiter plate (MTP) for conducting
cultivation (RoboLector-BioLector system, m2p-labs, Baesweiler,
Germany). The dissolved oxygen tension and GFP signal intensity
as parameters for detecting bacterial growth activity were
selected. All BioLector tests were monitored online with a pO2-
optode (filter DO [Pst3] Ex (nm) = 520; Em = 600) and GFP filter
(filter GFP Gemini [Pst3], Gain = 5, Ex (nm) = 470; Em = 525). The
experiments were performed at 30 �C under constant agitation
(1200 rpm, shaking diameter = 3 mm, orbital) in 48-well MTP-48-
BO flower- plates, Lot No: 1711 (mp2-labs, Baesweiler, Germany)
with a working volume of 1000 ml DM. Each treatment was
replicated three times.

2.3. Encapsulation

Calcium amidated pectin hydrogel beads as immobilization
support were investigated. Briefly, an encapsulation suspension
was obtained by mixing ALM pectin solution [4% w/v Amid CU-L
066/10 (DE 24% and DA 24%)] in ultrapure water (Elix Advantage
Water Purification System, Merck Millipore, Darmstadt, Germany)
at 50% w/w. The pectin solution was supplemented with 14% w/w
maltodextrin, 1% w/w sorbitol and 1% w/w monosodium gluta-
mate. Amyloglucosidase (Panzym1 HT 300, Novozymes A/S,
Bagsværd, Denmark) was used as amylolytic enzyme for malto-
dextrin degradation at 0.5 AGU. g-1 of the matrix [50]. K.
radicincitans cells suspension for the osmoadaptation and hydrox-
yectoine treatments were added into the matrix to a final
concentration of 15% w/w (� 8 � 109 viable cells ml�1), and after
gently stirred for 5 min. For bead formation, the suspension was
dripped into a sterile calcium gluconate cross-linking solution (0.1
M) by using a syringe with a cannula (diameter 2.1 x 0.8 mm,
Sterican, B. Braun Melsungen AG, Melsungen, Germany) [51]. The
gelled beads cured in the calcium gluconate cross-linking solution
for at least 10 min. Beads were separated by filtration and washed
with the corresponding NaCl solution [1%, 4%] to remove residual
calcium gluconate. Beads were dried to low water content in a two-
step drying process [51]. Briefly, beads were put in an oven at 30 �C
for 24 h, and later in a desiccator filled with silica gel for another 24
h at room temperature to reach aw <0.3 (LabMASTER-aw at 25 �C,
Novasina AG, Lagen, Switzerland). 1 ml of free-living cells at 1.0 �
107 CFU ml-1 was used as drying process control. Four replicates
composed each treatment. Bead’s diameter before and after drying
with a digital image analyzer was assessed (Digimizer image,
MedCalc Software, Ostend, Belgium).

2.4. Encapsulation efficiency

The encapsulation efficiency or survival after entrapping K.
radicincitans cells in amidated pectin beads was carried out as
followed: 10 beads were disintegrated in a solution containing 0.03
M citric acid and 0.05 M sodium carbonate (pH 7 � 2) for 1 h in a
rotatory shaker at 150 rpm [52]. After complete dissolution, the
entrapped viable bacteria were counted by diluted samples and
plated on standard nutrient agar media (Merck, Darmstadt,
Germany), and incubated at 30 �C for 24 hours. Bacterial cells
encapsulation efficiency (BEE) was calculated (Eq. (1)).

BEE  %ð Þ ¼ Log 10 ½N�
Log 10 ½No� x 100 ð1Þ

Where N is the number of viable entrapped bacterial cells and N0

displays the free viable bacterial cells before encapsulation [53].
Similarly, encapsulation efficiency for sorbitol as a chemical

parameter was determined. Here, the amount of sorbitol in the
remaining calcium gluconate cross-linking solution was quanti-
fied. Briefly, after 10 min of hardening time, beads were separated
and 1 ml of calcium gluconate solution was recovered, centrifuged
at 21130 x g for 5 min (Mikro HT 200R, Hettich GmbH & Co. KG,
Tuttlingen, Germany), and filtered through a 0.45 mm membrane
filter. The concentration of sorbitol by HPLC (EC 150/4.6
NUCLEODUR1 100-5 NH2-RP column, RI detector) was deter-
mined. The chromatographic separation was performed at a flow
rate of 1 ml min-1 at 30 �C, controlled with a column heater, and
using a solvent gradient established between eluents A and B (80%
acetonitrile in HPLC water). The peak areas were integrated and
compared with calibration curves constructed with sorbitol [0.2-
20 mg ml-1]. The entrapment efficiency (EE) for sorbitol was
calculated (Eq. (2)):

EE  %ð Þ ¼ ½Total sorbitol added � amount of sorbitol in cross linker solution�
Total sorbitol added

x 100

ð2Þ

2.5. Plant growth promotion in radish by osmoadapted and
encapsulated K. radicincitans cells

The efficacy of amidated pectin beads as formulation alterna-
tive for the endophyte K. radicincitans under glasshouse conditions
was assessed. Moreover, the extended cross-effect of pre-
conditioning by osmoadaptation and the inclusion of hydrox-
yectoine was also addressed. Radish (R. sativus L. var. sativus) seeds
of cultivar Rondar (F1 Hybrid; S & G GmbH, Kleve, Germany) were
used as plant systems. Ten radish seeds were placed per pot, with
ten pots per treatment, filled with 1.5 L of a 1:1 (v/v) quartz-sand
soil mixture (Fruhstorfer Erde type T25: P2O5: 200-300 mg L-1,
Hawita Gruppe GmbH Vechta, Germany). Afterward, pots were
randomly placed on trivets to avoid the transfer of bacteria [19].
The viable cells concentration in dried beads was adjusted by
considering the higher desiccation tolerance encountered previ-
ously in cells upon salt stress and hydroxyectoine addition (Fig. S1)
[29]. Thus, K. radicincitans inoculation with osmoadapted as well as
bacteria cells charged with hydroxyectoine was conducted by
locating two dried beads with the same log unit of cells
concentration (� 2.0 � 106 CFU/bead) under every single seed.
The treatments were beads with osmoadapted bacteria cells at 1%
NaCl, 4% NaCl and at 4% NaCl with hydroxyectoine [1 mM]. Besides,
amidated pectin dried beads without the endophyte as a control
for the formulation components were established. Native seed
without any treatment as the absolute control was used. Free-
living cells as traditional endophyte seed application treatment
was also tested [19]. Seedlings were irrigated and fertilized
manually with Hoagland solution (50 ml per day) [54]. Plants
under natural light conditions were maintained. Temperature and
humidity were recorded over the growth period, with an average
temperature of 18 � 2 �C and with an air humidity > 45% [28].

Plant sampling was conducted one-week post-planting from
three different locations per plot. The seedlings were rinsed
thoroughly with sterile water for removing soil with beads adhering
tothe roots. Further, sampleswere flashfrozenprior totheisolation of
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nucleicacidprocedures.Atthisplantage,theroot lengthwithadigital
image analyzer (Digimizer image, MedCalc Software, Ostend,
Belgium) was measured. The plants were equally thinned to five
plants per pot, avoiding space limitation during growing and tuber
maturation stage. Final sampling at five weeks post-planting was
carried out. Five radish plants from the center of each pot were
harvested. The total fresh mass of tuber and leaves material and the
tuber diameter of each plant were measured. The leaves were
separated from roots, oven-dried at 60 �C for 4 days until constant
weight, and dry weight of tubers and leaves were determined. The
whole experiment was repeated twice.

2.6. Nucleic acid extraction and quantification of K. radicincitans in
planta using qPCR

Bacterial DNA was extracted from approx. 50 mg lyophilized
plant material using DNeasy plant mini kits (Qiagen, Hilden GmbH,
Germany) according to the manufacturer’s instructions. The lysis of
bacterial cells was ensured through adding 5 mm sterile metal
beads and using a Retsch MM200 mechanical disrupter (Haan,
Germany) at 30 rpm for 5 min. The quality and purity of DNA were
determined with a NanoDrop (Thermo Fischer Scientific, Darm-
stadt, Germany). Quantitative real-time PCR (qPCR) measurements
were carried out using an Advanced TM Universal SYBR1 Green I
dye Supermix system (Bio-Rad Laboratories, Hercules, CA, USA). K.
radicincitans species-specific primer and plant TEF reference gene
for in planta bacterial quantification were used [55]. The fold
colonization of K. radicincitans entrapped cells in treated plants
concerning to the reference gene and to the control plants was
calculated and represented with the 2�DDcq method [56].

2.7. Encapsulated bacteria and radish seedlings interaction: GFP-
tagged bacteria approach

An in vitro study was conducted to visualize the endophytic
mode of action and the chemotactic performance of encapsulated
bacteria cells within radish seedlings. As described in Witzel et al.
(2017), electrocompetent bacterial cells were transformed with
plasmid pMP4655 [57]. Single colonies of eGFP mutants of K.
radicincitans grown on Luria-Bertani agar plus gentamycin (150 mg
ml-1) were inoculated in 100 ml standard nutrient broth, and the
encapsulation of bacteria followed the procedure above.

Three radish seeds and three amidated pectin beads containing
immobilized GFP-labelled K. radicincitans (� 1.0 � 107 CFU per
bead) were located in a Petri dish with 20 ml of agar media (1% w/
v). After four days of incubation at 30 � 1 �C, GFP tagged bacteria
activity inside beads and their chemotactic interaction with radish
seedlings was detected by multispectral and kinetic fluorescence
imaging (PSI Open FluorCam FC 800-O, PSI, Brno, Czech Republic).
The following parameters for capturing images were used:
Reflectance mode: Blue light source (447 nm) at 5% intensity,
bandpass filter (440/40 nm), shutter at 2 milliseconds and
sensitivity at 0%; Fluorescence mode: GFP bandpass filter (517/
20 nm): Blue excitation light (447 nm) at 100% intensity, shutter at
300 milliseconds and sensitivity at 38%. Further, root colonization
by immobilized bacterial was recorded with a Zeiss LSM 510 META
laser scanning confocal microscope (Carl Zeiss Jena GmbH).
Bacterial eGFP fluorescence signals were captured using argon
laser excitation at 488 nm (BP505-550 180 filter, Plan Apo 63/1.4 oil
lens), and root images were taken using bright-field settings
[55,58].

2.8. Statistical analysis

Data were analyzed using the SPSS Statistics v.22 software
(SPSS, Chicago, IL), and are presented as mean values � standard
deviations (SD). Data were checked for normality and homogeneity
of variance using the Shapiro-Wilk and Bartlett test, respectively.
Means were tested for significant differences by one-way analysis
of variance (ANOVA) followed by a Tukey post hoc test. Data from
glasshouse experiments were subjected to Duncan post-hoc test.
In this study, the level of significance was set at p < 0.05.

3. Results

3.1. Hydroxyectoine uptake by K. radicincitans

The accumulation of hydroxyectoine during the cultivation at
high salinities previously to encapsulation was assessed with
HPLC. In response to high salinity during the exponential growth
phase in DM at 4% NaCl, bacterial cells amassed this osmolyte after
21 h at 235.09 � 17.56 (n = 3) mmol g-1 dry weight cells. Osmolyte
content in K. radicincitans cells increased over time, >500 mmol per
gram of dry biomass at 24 h. No hydroxyectoine was detectable in
cells grown in DM in the absence of salt.

3.2. Screening of pectin materials references as a nutrient source

Since the early days during plant growth are considered crucial
to provide an open window to the pathogen-endophytes
entrance, a rapid bead activation through water uptake and
internal bacteria proliferation are essential [1]. Then, to assess the
affinity of selected pectin materials to serve as a nutrient source
for encapsulation procedures, a high-throughput microfermen-
tation study was applied. Dissolved oxygen tension and GFP
signal intensity curves demonstrated that pectin references with
a degree of amidation (DA) favored DOT activity and further
bacterial growth (F3, 17 = 59.21; p < 0.05). Noticeable, DA in
combination with a high galacturonic acid content in pectin,
posse a significant effect on kinetic growth and oxygen
consumption during K. radicincitans cultivation (F5, 17 = 30.45; p
< 0.05, Fig. 1 A–B). Thus, GFP intensity curves confirmed that the
pectin amid references AU-L 063/10, CU-L065/10 and CU-L-066/10,
are assimilated by K. radicincitans, which included the combina-
tion of DA and galacturonic acid content (DA/GA) at 15%/83%, 11%/
89% and 24%/91% respectively (Fig. 1B). Interestingly, CU-L-066/10
showed the shortest lag phase among the biopolymers tested with
� 6 h in comparison to 9.3 h required for AU-L 063/10. Yeast
extract alone at 1% cannot support growth under the evaluated
conditions.

3.3. Encapsulation efficiency

The utility of a biopolymer hydrogel for providing a delivery
system relies on the entrapment effectiveness of the active
ingredient and additives [33,59]. Thus, to look into the
efficiency of amidated pectin beads with CU-L-066/10 for
encapsulating K. radicincitans cells and formulation additives,
the concentration of these parameters before and after the
entrapment was determined. The initial cell count of K.
radicincitans before beads preparation was 9.46 � 0.28 log CFU
ml-1. The encapsulation efficiency for bacteria cells using
amidated pectin beads was 98.37 � 1.39% (n = 4). Regarding
sorbitol encapsulation efficiency, HPLC showed that 48 � 1.39% (n
= 4) of this polyol remains into the amidated pectin beads after
the cross-linking reaction and further drying procedure. Beads
diameter before and after drying were 3.38 � 0.31 mm and 2.26 �
0.26 mm, respectively (n>8). Drying survival results are shown in
Fig. S1. The endophyte was quite sensitive to the drying process,
since no viable cells from the free-living treatment after the
desiccation procedure were recovered.



Fig.1. Screening of selected pectin references as carries through the cultivation of K.
radicincitans. A) Dissolved oxygen tension and B) Fluorescence intensity of GFP
signal. BioLector approach (means � SD, n = 3).
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3.4. Plant growth promotion in radish

Generally, in both glasshouse experiments, plant growth was
promoted by amidated pectin dried beads containing K. radicinci-
tans cells. Higher radish yields in plants inoculated compared to
non-inoculated native plants were found. The dried beads for each
treatment contained the same log unit of concentration � 2.0 � 106

viable cells per bead. Noticeably, when hydroxyectoine at 1 mM
was added during the pre-conditioning step, the fresh matter of
leaves increased significantly by 17.45% in comparison to the
absolute native control treatment (F4, 39 = 3.15; p = 0.0259, Fig. 2A,
D). Noteworthy, either the dry matter of tuber or leave increased
significantly by 18.93% (F4, 39 = 9.66; p < 0.0001) and 20.68% (F4, 39 =
7.74; p = 0.0001) respectively, contrasting the absolute native
control treatment (Fig. 2B). Considering the dried beads control
(without bacterium) as reference, the increments were 2.97% and
5.48% for weight gain in the tuber and leaves respectively. The
tuber diameter was also significantly increased in all cases when K.
radicincitans cells were presented in comparison to the native
control and dried beads control (F4, 39 = 7.64, p = 0.0002). In line
with the plant weight gain, the root length after eight days of
planting was significantly longer in the case of hydroxyectoine
treatment at 3.99 � 1.07 cm, in comparison to the native control at
2.83 � 0.65 cm (F4, 39 = 9.67, p < 0.001, Fig. S2). Tuber diameter
varied significantly from 24.10 � 1.14 mm for the native control up
to 26.18 � 0.62 mm for the hydroxyectoine treatment (F4, 39 = 7.86,
p = 0.0001) (Fig. 2C, D). Free-living cells treatment showed higher
radish yields in comparison to encapsulated approaches; thereby,
fresh and dry matter of leaves increased by 27.18% and 43.42%
respectively.
3.5. K. radicincitans plant colonization

In general, K. radicincitans cells encapsulated in dried amidated
pectin beads can colonize plant tissue. Thereby, bacterial cells
could leave the beads and settle into the eight days seedlings
(Fig. 4). Thus, regarding relative K. radicincitans gene copy number
response, dried amidated pectin beads containing pre-conditioned
bacteria cells with 4% NaCl, significantly enhanced the plant tissue
colonization, in comparison to non-pre-conditioned immobilized
cells at 1% NaCl (F2, 11 = 2460.71; p < 0.05, Fig. 3). Consistent with
biomass production of radish plants, the plant colonization was
stronger with intracellular hydroxyectoine in K. radicincitans cells
osmoadapted at 4% NaCl, which the roughly 10-fold DNA copy
number increment was significantly under the evaluated con-
ditions (F3, 15 = 10477.33; p < 0.0001, Fig. 3). Free-living cells were
capable of colonizing early plant tissue copiously in comparison to
entrapped cells, with values �100 fold higher than encapsulated
treatments (Fig. S3), indicating the role of rapid bacteria activation
for settling. The effects of salt pre-conditioning and hydroxyec-
toine inclusion in free-living cells on endophytic ability were
previously discussed [28].

In vitro assessments suggested that the immobilization in
amidated pectin beads allowed the successful endophytic coloni-
zation, through first the root adhesion to the round shape beads
and further, the establishments of root hairs and secondary roots
within the bead matrix (Fig. 4). The bacterial aggregates formation
within the beads (Fig. 5A–B) along plant interaction is quite
interesting, since these aggregates �10 mm were also observed in
both colonization stages, forming biofilms after seed sprouting in
either roots hairs and secondary roots (Figs. 5C and S4). These
advantageous sites for colonizing are facilitating by the junction,
where lateral root emerges through the endodermis, the cortex
and the epidermis (Fig. S4).

In Fig. 6, the mapping of chemotaxis of encapsulated K.
radicincitans cells was evident, since GFP fluorescence images
demonstrated the activation of beads, the localization of high
bacterial density and the affinity of cells movement towards radish
seedlings roots.

4. Discussion

Exploitation and manipulation of beneficial bacterial endo-
phytes can be a sustainable alternative to cope with the demanding
eco-friendly and productive agriculture. The formulation of
bacterial endophytes can enhance the bio-prospection of this
emerging low-input strategy. Formulation approaches for endo-
phytic bacteria for applying as plant growth stimulators or
biocontrol agents were established. These strategies include
wettable powders [60], pellets [61], gel-based inoculants [62]
and foliar sprays [63]. However, few studies have dealt with the
entrapment or encapsulation of endophytic bacteria as proper
application technology, using mainly the coating of seed by a
bacteria-calcium alginate mix [14,64]. Herein, this research
extends the knowledge of manipulated cultivations and further
cells encapsulation by ionic gelation as an alternative to formulate
bacterial endophytes. Thus, the effectiveness of amidated pectin as
a nutrient source and entrapment biopolymer for K. radicincitans
cells was established.

Though the evident capability of K. radicincitans to promote
radish growth, the results suggest that integrate cells osmoadap-
tation during the cultivation and the uptake of advantageous
compatible solutes such hydroxyectoine are beneficial to the
endophytic activity. Noteworthy, both environment variations
during growth may lead to greater phenotypic plasticity [65].
Thereby, previous studies discussed the beneficial effects on
bacteria endophytes caused by salt stress and the uptake of



Fig. 2. Growth promotion in glasshouse radish plants inoculated with amidated pectin dried beads containing pre-conditioning K. radicincitans cells by osmoadaptation at 1%
NaCl, 4% NaCl and 4% NaCl + hydroxyectoine [1 mM]. A) Fresh mass of tuber and leaves. Fresh tuber mass (F4, 39 = 1.47, P = 0.2321); leaves fresh mass (F4,39 = 3.15, P = 0.0259) B)
Dried mass of tuber and leaves. Dry tuber mass (F4, 39 = 9.66, P < 0.0001) and dry leaves mass (F4, 39 = 7.74, P = 0.001). C). Tuber diameter after 5 weeks of planting (F4, 39 = 7.64, P
= 0.0002). D). Glasshouse-grown radish plants inoculated with pre-conditioned K. radicincitans cells encapsulated in amidated pectin dried beads. Beads control (without
bacterium), beads with pre-conditioned bacterial cells in DM at 4% NaCl and DM at 4% NaCl with the addition of hydroxyectoine [1 mM]. Different letters represent significant
differences according to post hoc Dunnett’s test. at p < 0.05 (means � SD, n = 8).

Fig. 3. Accumulation of K. radicincitans DNA in inoculated radish plants with
amidated pectin dried beads. Effect of pre-conditioning of K. radicincitans in culture
media by osmoadaptation at 1% NaCl, at 4% NaCl, and 4% NaCl + hydroxyectoine [1
mM], on relative gene expression in plant tissue. Different letters above bars
indicate significant differences of treatments according to Tukey post hoc test at p <
0.05, (means � SD, n = 4).

Fig. 4. Interaction of encapsulated bacteria cells in amidated pectin dried beads
with radish seedlings (gnotobiotic system), phase-contrast microscopy approach
(EVOS1 XL core, Life Technologies). K. radicincitans colonizing root hairs and
secondary root surface 4 dpi. Scale bar: 5000 mm.
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hydroxyectoine, including metabolic reordering and enhance-
ments of phosphatases activity [28,29]. Hydroxyectoine as
osmolyte provides significant osmotic-stress reliving features,
superior drying tolerance due to high glass-forming temperature,
protein stabilization and water-binding, among others [66–68].
Despite the relatively high cost of hydroxyectoine, biotechnologi-
cal applications are growing, which are facilitating by the advent of
high-yielded optimized production processes and the ectoine
genome-modified strains usage [69,70].

Entrapping bacterial cells in amidated pectin beads is a
promising alternative to support plant colonization. Moreover,
immobilized bacterial cells in pectin-based beads endure the
drying process in comparison to fresh free-living cells, indicating
an advantage for bioproduct development. Thus, encapsulated
bacterial cells in dried amidated pectin beads maintain the
capability to promote growth in radish plants. The yields are
comparable to Berger et al. (2015), who reported increments in
radish weight in tuber and leaves from 20 to roughly 50%, using
fresh cultivated cells applying either seed-inoculated or two-leaf
sprayed plants. Outstanding, the results of the present study were
achieved by applying dried beads, since it is clear that encapsula-
tion of cells and drying intrinsically depressed motility, which is
highly implied with the plant interaction and colonization. In
addition, dried beads may require a longer establishment to swell
and uptake water for the surroundings, providing porous within
the gel-matrix, facilitating the increment of internal aw for K.
radicincitans cells multiplication [71]. The latter supported the
higher radish yields compared to free-living cell treatment. The
free-living cells may have a longer time than entrapped cells on
seeds surrounding to take advantage of the essential early
colonization sites, during seed sprout and seedlings developing.
These results indicate that rapid colonization by bacterial cells
plays a key role in the final plant growth performance. Embedded
cells require an additional step for sensing root exudates through
the polymeric matrix. They must first take up water from the soil to
release the cells from the beads.

The osmoadaptation as a sub-lethal pre-conditioning proce-
dure along with osmolytes addition could modify the identity and
functioning of metabolites that bacteria cells produce. These
alterations favor the competitiveness and the establishment in the
rhizosphere before colonizing the plant endosphere [28,29].
Hence, osmotic unbalanced can modify mechanisms of quorum
sensing (QS), quenching (QQ), or extracellular polymeric sub-
stances (EPS). The effects occur during the biofilm formation and
further signaling steps for endophytic establishment [72–74].
Therefore, small groups of cells aggregates and biofilm formation,
mediated through QS, provide advantages to capitalize on
favorable environments or withstand stressful conditions [73].

The successful bacterial establishment could also involve
indirect mechanisms provided by the formulation such the
additives into the bead. Pectin is one of the major components
in plant cell walls, and it might serve as an environmental factor in
the stimulation of bacterial biofilm formation, during plant
colonization, mimicking natural conditions and triggering the
bacterial enzymatic arsenal [75,76].

This study demonstrated that amidated pectins with a high
content of galacturonic acid could provide an advantageous
nutrient source for endophytic bacteria, supporting the early
establishment in the soil. Indeed, K. radicincitans can encode for
pectinases secretion and utilizes D-galactose precursor of D-
galacturonic acid as a sole carbon source [58,77]. Moreover, other
studies in spruce provide evidence of D-galacturonic acid and D-
sorbitol utilization as a trait for contributing to the endophytic
lifestyle and proliferation in highly reducing microsites in plants
[78,79]. Besides, amidated pectin beads have also successfully used
as a carrier for delivering fungi endophyte in potato plants [32].
Regarding the other components in the bead, monosodium
glutamate has been demonstrated as a nutrient source for plant
bio-stimulation, enhancing soil microbial activity and soil respira-
tion [80]. Maltodextrine- amyloglucosidase combination included
within the beads may boost an additional C-source for bacteria
proliferation. Considering that bead components may modify the
nutrient niche of root surfaces and subsequent soil microbiome,
they could influence the switch of K. radicincitans from bead-
rhizosphere to endophytic lifestyles. This effect could alter radish
carbon metabolism, including secondary metabolites such as
glucosinolates and inducing priming of defense responses [81–83].

In line with biomass production of radish plants, entrapped
cells colonization ability increased with hydroxyectoine inclusion
in K. radicincitans cultivation, in which the roughly 10-fold specific
DNA copy number increment was significantly under the
glasshouse conditions. Similar results with free-living cells were
found [28]. This finding indicates that plant colonization improved
by synergistic effects of pre-conditioned cells by osmoadaptation
and formulation performance. The hydroxyectoine amassing
during cultivation may support the endophyte persistence in
plant tissue, since this osmolyte may confer protection from
osmotic stress during biofilms formation [84]. The best of our
knowledge, the current study is the first to deal with the pre-
conditioning of cells and pectin-based beads as a formulation
alternative for supporting endophytic performance.

This research provides further details on the colonization
patterns of GFP-labeled K. radicincitans in radish seedlings. Thus,
bacteria cells entrapped in pectin beads can colonize radish
seedlings and show an endophytic lifestyle by two main pathways.
First, through root hairs during the first stage of root development.
In contact with beads, root hairs establish mainly nearby the
frontiers of growth out the bead and eventually into the bead by
multiple adhesions entrance events. In these zones, K. radicincitans
cells are predominant planktonic cells and forming aggregates
thereafter. Secondly, bacteria cells are capable of colonizing the
secondary roots, either the region of cell maturation (the basis) or
the root cap (the tip) reaching the cortical tissue. This mechanism
occurs during the second stage of root development. Surprisingly,
secondary roots penetrate the bead matrix, and they can establish
into it. K. radicincitans aggregates embedded into the bead,
proliferate and migrated through the capsule material, colonizing
the secondary root. Unusually, since groups of cells appeared at
depths > 100 mm, the location of bacterial aggregates was not
restricted to the bead borders, where the oxygen concentration
could be higher [85]. The bacterial aggregates distribution
suggested the facultative capability that allows bacterium the
anoxic growth and the entire exploitation of bead structure. This
feature could favor the proliferation through the redox gradient
between anoxic sites and the microaerobic parenchymatic tissue
environment [86]. Altogether, pectin hydrogels could consider as
an in-vivo-like biofilm system, diffusion-limited, wherein bacterial
endophytes growth exhibits central features of in-vivo biofilms
showed during plant colonization.

Pectin as a biopolymer for entrapping bacteria could trigger the
enzymatic arsenal of the bacterium. The early barrier encountered
of this polysaccharide may mimic natural conditions and activate
the plant cell wall-degrading apparatus. These mechanisms
include the secretion of endopolygalacturonase and pectin
esterases to degrade the backbone of α-D-galacturonic acid, which
are considering as physiological traits in endophytes [87]. Besides,
other important enzymes that K. radicincitans DSM16656T could
encode and facilitate plant colonization are glycoside hydrolases
(>127 proteins), β- glucosidases, mannosidases, galactosidases and
glucanases [58,76,79].

The root exudates that diffuse to the neighborhood of the bead
could be the driven force for entrapped K. radicincitans cells to



Fig. 5. Confocal laser scanning micrographs showing the inner colonization of radish seedlings by encapsulated K. radicincitans cells expressing eGFP. A. Bacterial aggregates
formation inside and at the edge of amidated pectin bead [Sliced 20 mm, CM 1800 microtome (Leice Instruments, Nussloch, Germany)]. B. Amidated pectin-encapsulated GFP-
tagged K. radicincitans cells colonizing root hairs by forming aggregates 4 dpi. C. K. radicincitans colonizing root hairs and secondary root epidermis at 4 dpi. In all cases were
visualized the formation of bacterial aggregates and biofilms in plant tissue. Scale bar: 50 mm.
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Fig. 6. Mapping of the chemoattraction effect of K. radicincitans GFP-tagged cells encapsulated in pectin beads. Left column represents blue reflectance images. Right column
represents GFP fluorescence images A) Control beads without K. radicincitans. B) Beads with K. radicincitans pre-conditioning at NaCl 1% C) Beads with K. radicincitans pre-
conditioning at NaCl 4%. D) Beads with K. radicincitans pre-conditioning at NaCl 4% + hydroxyectoine [1 mM]. Color bar indicates emitted light intensity for both image types.
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swim towards seedlings, since the fluorescence images showed
higher GFP intensities in the bead’s boundary pointed to the radish
roots. Indeed, the induction of chemotactic response of bacterial
endophytes to root exudates was reported [88] and is presented as
the first step for colonizing the rhizoplane region [89]. Although all
beads containing bacteria endophyte showed chemotactic activity,
the images of pre-osmoadapted cells with hydroxyectoine
suggested that these cells might have advantages for sensing
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the roots exudates. Questions remain regarding this hypothesis, to
delve into the capability of osmotic stress to modify the flagella
apparatus, the bacteriocin such kosakonicin, the metabolite profile
and the quorum sensing in bacteria endophytes [86,90,91].
Noticeably, with this study, the use of multispectral-kinetic
fluorescence imaging emerges as an applicable methodology for
targeting analysis of GFP-labelled bacterial endophytes and plant
host interaction.

5. Conclusions

This study showed that physiological modifications by osmotic
stress, the accumulation of compatible solutes during cultivation,
and the entrapment of these pre-conditioned cells in amidated
pectin beads enclosed a feasible strategy to improve bacterial
endophyte-host interactions. For the first time, a successful
endophytic activity of K. radicincitans cells encapsulated in amidated
pectin dried beads (DA = 24%; GA = 91%) was demonstrated. Besides,
their capability to proliferate as aggregates, to migrate through the
biopolymer matrix and to promote radish growth under glasshouse
conditions was elucidated. The phenotypic plasticity of K. radi-
cincitans DSM16656T triggered by osmoadaptation and providing
exogenously hydroxyectoine during cultivation persists in
entrapped cells for increasing plant bio-stimulation and endophytic
performance. These findings advance inoculant technology for
plant growth-promoting bacterial endophytes.
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