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ABSTRACT: Nanopore technology holds great promise for a wide range of
applications such as biomedical sensing, chemical detection, desalination, and
energy conversion. For sensing performed in electrolytes in particular, abundant
information about the translocating analytes is hidden in the fluctuating
monitoring ionic current contributed from interactions between the analytes
and the nanopore. Such ionic currents are inevitably affected by noise; hence,
signal processing is an inseparable component of sensing in order to identify the
hidden features in the signals and to analyze them. This Guide starts from
untangling the signal processing flow and categorizing the various algorithms
developed to extracting the useful information. By sorting the algorithms under
Machine Learning (ML)-based versus non-ML-based, their underlying architec-
tures and properties are systematically evaluated. For each category, the
development tactics and features of the algorithms with implementation examples
are discussed by referring to their common signal processing flow graphically summarized in a chart and by highlighting their key
issues tabulated for clear comparison. How to get started with building up an ML-based algorithm is subsequently presented. The
specific properties of the ML-based algorithms are then discussed in terms of learning strategy, performance evaluation, experimental
repeatability and reliability, data preparation, and data utilization strategy. This Guide is concluded by outlining strategies and
considerations for prospect algorithms.

KEYWORDS: nanopore sensing, signal processing algorithm, pulse-like signal, spike recognition, feature extraction, analyte identification,
machine learning, neural network

Nanopore sensors have been developed for decades to
target multiple applications, including DNA sequencing,1

protein profiling,2 small chemical molecule detection,3,4 and
nanoparticle characterization.5,6 Nanopore sensor is inspired
by the Coulter cell counter7 and realizes a task by matching its
dimension to that of analytes, molecules or nanoparticles.
Thus, it possesses an extremely succinct structure, a nanoscale
pore in an ultrathin membrane. Its sensing function is based on
a simple working principle: the passage of an analyte
temporarily blocks a size-proportional volume of the pore
and induces a spike signal on the monitoring ionic current at a
given bias voltage. Information about passing analytes is
hidden in the corresponding current spikes, i.e., translocation
spikes distributed on the ionic current traces. By processing the
signal and analyzing the features of the spikes such as
amplitude, width (duration), occurrence frequency, and
waveform, the properties of the analytes can be inferred,
including size, shape, charge, dipole moment, and concen-
tration. Therefore, signal processing is the crucial link to
interpreting the signal by assigning the associated features to
relevant physical properties. In general, signal processing
comprises denoising, spike recognition, feature extraction, and
analysis. A powerful signal processing algorithm should be able
to isolate signals from a noisy background, extract useful

information, and utilize the multidimensional information
synthetically to accurately derive the properties of the analytes.
Low-pass filters have been adopted as a simple approach to

removing the background noise. However, this function risks
filtering out the important high-frequency components
naturally present in signals representing rapid changes of
ionic current associated with translocation spikes that carry
informative waveform details related to the target analytes.
Thus, self-adaptive filters and advanced current level tracing
algorithms have been developed.8,9 Traditional algorithms are
mainly based on a user-defined amplitude threshold as a
criterion for detection of translocation spikes. Apparently, the
choice of this threshold determines how successful a spike is
singled out and how good the quality of the subsequent feature
extraction is. However, the threshold is usually chosen based
on the experience of individuals dealing with the data. It is,
hence, a subjective process. Moreover, using the extracted
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features to infer the properties of the analytes relies mainly on
physical models that build upon a comprehensive under-
standing of the physiochemical process involved in the
translocation. Unfortunately, generalized models and algo-
rithms for this purpose are yet to be developed.
Concurrently, Machine Learning (ML) has revolutionized

the signal processing landscape. In this regard, ML algorithms
for nanopore sensing have seen rapid advancements in noise
mitigation, spike recognition, feature extraction, and analyte
classification. The learning process usually demands a huge
number of well-labeled data sets, which is challenging.
Furthermore, the applicability of ML-based algorithms is
restricted by the accessibility of training data sets. In addition,
ML-based algorithms usually work as a black box so that a user
has limited knowledge of their operation.10 This shortcoming
can impair the control and usage of the algorithms and further
adversely affect the interpretation of the results. Combining
ML-based algorithms with physics-based models to exert
respective advantages is considered a promising approach to
attaining high-fidelity signal processing.
Reviews on processing the signals from nanopore sensors are

sparse in the literature despite their scientific relevance and
technological potential. One of the few reviews on signal
processing technologies for identification of nanopore
biomolecule includes both software algorithms and hardware
readout circuits/systems.11 A more general topic on ML-based
algorithms for signals from biosensors touches upon nanopore
sensing.12 In addition, mini-reviews on some specific issues of
signal processing for nanopore sensors and related sensors can
be found, such as ML for identification of single
biomolecules,13 virus detection,14 and nanopore electro-
chemistry.15 Concomitantly, signal processing algorithms for

nanopore sensing have been rapidly developed by adopting
various strategies and techniques. It is, therefore, ripe to
request a systematic treatment of the different algorithms,
including both non-ML-based and ML-based, with respect to
their architectures and properties. This Guide offers a general
description of the explored signal processing algorithms for
nanopore sensors and, thereafter, proposes guidelines for the
development of prospect algorithms.
The Guide starts by categorizing the reported algorithms as

non-ML type and ML type. Each category is generalized under
the umbrella of a common signal processing flow to guide the
discussion of specific algorithms in terms of development
tactics and features. The focus will then be placed on the ML-
based algorithms by scrutinizing the respective strategies and
properties. Specifically, the discussion spans learning strategy,
performance evaluation, experimental repeatability and reli-
ability, data quality, data preparation, and data utilization. The
discussion also concerns challenges, possible solutions, and
special considerations for nanopore signals. Finally, strategies
and considerations are outlined for prospect algorithms to
conclude this Guide.

■ SIGNAL PROCESSING FLOW

The nanopore device used for sensing is usually immersed in
an electrolyte, as shown in the left panel of Figure 1. The
membrane embedding a nanopore separates the electrolyte
into two compartments. The only electrical connection
between them is the nanopore. By applying a bias voltage
across the membrane, a steady ionic current, named open-pore
current, is generated, which constitutes the baseline of the
signal. The electric field also drives charged analytes dispersed

Figure 1. Schematics showing the device structure of a typical nanopore sensor (left) and a typical current trace with spikes generated by analyte
translocations (right).

Figure 2. Typical signal processing flow for nanopore sensors.
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in the electrolyte to pass through the nanopore. During the
translocation, the analytes temporarily block a certain volume
of the pore, proportional to their size. Such blockages usually
cause spike-like current variations, as seen in the right panel of
Figure 1, that are of central interest for signal processing. The
ionic current is anticipated to resume the open-pore level once
the translocations complete. Other designs can also be adopted
to generate signals for nanopore sensing. For example,
functionalizing the nanopore surface with a probe molecule
can generate a specific interaction with target analytes resulting
in characteristic signals on the monitoring ionic current trace.16

Such signals arising from specific interactions,17 adsorption−
desorption processes,18 clogging,19 nanopore morphology
changes,20 and open−close activities of channels21 can also
be dealt with in the same framework designed for processing
the translocation-caused spike signals.
The typical signal processing flow for nanopore sensors is

summarized in Figure 2. Raw data here refer to those directly
acquired experimentally and background noise is persistently
present, while clean data represent those after the denoising
process with which the background noise is sufficiently
mitigated. With raw data at hand, a complete signal processing
scheme comprises four consecutive steps as follows.

Step 1 Denoise raw data to generate clean data, typically via
low-pass filters in the frequency domain. This step can
be omitted if the quality of the raw data, i.e., signal-to-
noise ratio, is acceptable.

Step 2 Identify and extract translocation events represented as
spikes on current traces, frequently based on a user-
defined threshold of the amplitude as a criterion to
separate a true translocation-generated spike from the
noise fluctuation.

Step 3 Extract features of these spikes based on various
methods such as physical models, peak analysis
algorithms, and algorithms of feature analysis in the
frequency domain.

Step 4 Infer the properties of the translocating analytes from
the extracted features.

In general, the parameters/structures of the ML-based
algorithms can be dynamically adjusted in the training process
according to the input data in order to achieve an improved
performance toward the goal.22 For a typical ML algorithm, the
input data is usually deliberately divided into a training data set
and a test data set. An automatic adjustment of the
parameters/structures only applies to the training data set.22

However, the implicit differentiation of the training and test
data sets is not a necessity. For example, an ML algorithm can
adjust its parameters/structures upon processing each and
every input. Furthermore, the input data can be labeled or
unlabeled so that the associated algorithms are based on
supervised or unsupervised learning, respectively.
An algorithm can be regarded as ML-based if its current

output is associated with its historical input or distribution of
input, i.e., it “learns” from the history/distribution and exploits
the hidden relations/patterns carried in the input data. Such
learning can be explicit, as in a supervised training process for
algorithms with labeled data sets. Nevertheless, the learning
can also be implicit, as in some unsupervised clustering
algorithms with a learning-by-doing manner. Therefore, an
ML-based algorithm always relates to tunable weights,
adjustable architectures, self-adaptable parameters, memory,

etc. In contrast, a non-ML algorithm usually outputs in real
time, i.e., it records no history data and, hence, its current
output/systematic state is not influenced by any such history/
input distribution. However, the boundary between non-ML
and ML algorithms is not always sharp and clear. For example,
algorithms for spike recognition and baseline tracing with
dynamic threshold/window adjustments and self-adaptive
filters are usually regarded as non-ML, although the related
parameters are automatically adjusted according to the input in
real time. In this Guide, algorithms with distinguishable
training and testing processes are classified as ML-based ones.
For algorithms with an implicit learning process, conventions
in the field are followed without making such a strict, nuanced
distinction between non-ML and ML algorithms. In addition,
the discussion proceeds by observing the functions of
algorithms categorized by the aforementioned four steps.
It is worth noting that the algorithms reviewed here are

those targeting pulse-like signals from nanopore sensors. They
are not meant for treating the DNA/RNA/protein sequencing
data that may also come from a nanopore sequencer.
Processing such sequencing data belongs to a different field
in bioinformatics. However, pulse-like signals may also be
generated in other sensor devices such as nanogaps23,24 and
ion channels,25 which will be briefly covered here when
appropriate. Furthermore, “model” is used in this Guide to
exclusively refer to physical models not algorithms. It is
important to note that “model” is also widely used in the area
of signal processing to represent a realization/implementation
of algorithms, especially for ML algorithms.

■ NON-ML-BASED SIGNAL PROCESSING FOR
NANOPORE SENSING

Step 1. Denoising. Traditional methods of signal
processing usually rely on low-pass filters for denoising as
the first step in Figure 3. It should be emphasized that low-pass

filtering is a must for signal amplification and data acquisition
in a hardware system to define the bandwidth, mitigate out-of-
band noise, and achieve anti-aliasing before digitalization. In
this guide, the discussed low-pass filter refers, instead, to the
software realization as a category of algorithm for already
acquired digital data during the signal processing. In a
nanopore system, the current noise power spectrum density,
SI, consists of several different components in distinct
frequency ranges.26,27 A white thermal noise exists at all
frequencies in the spectrum with its power density being
inversely proportional to the electrical resistance of the
nanopore. The low-frequency noise at frequencies below 1
kHz is usually contributed by flicker noise originating from the

Figure 3. Architecture of non-ML-based algorithms with representa-
tive approaches used for each signal processing step.
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charge fluctuation on the pore wall and/or number fluctuation
of ions in the pore and 1/f-shape noise from electrodes.26 In
the high-frequency range beyond 1 kHz, the noise power is
dominated by the dielectric noise and capacitance noise. The
former comes from the dielectric loss of the nanopore
membrane, while the latter is a result of current fluctuation
generated by the voltage noise of the amplifier input port on
the impedance of the nanopore. Considering the frequency
distribution of noise power, SIΔf, the high-frequency range
dominates. Therefore, low-pass filters can efficiently restrict the
bandwidth of the signal and filter out background noise.28

However, the limited bandwidth degrades the capability of
capturing fast translocation events and mars important details
for analyzing the translocation waveform.
Traditional low-pass filters set a hard frequency threshold for

the system. During noise filtration, it may also filter out the
high-frequency components of the signal that may contain
abundant details about the analytes. Therefore, different
approaches have been sought to bypass this dilemma. Backed
by the estimation theory, a Kalman filter has been developed to
denoise the nanopore sensing signal.8 Key parameters of the
Kalman filter are adjusted dynamically according to the
historical inputs. The stochastic properties of the signal are
acquired and represented by these dynamic parameters. Thus,
the Kalman filter is capable of extracting a signal whose
frequency spectrum overlaps with that of the background
noise. In addition, a filtering technology based on wavelet
transform has been involved for nanopore signal denoising.29,30

First, a group of proper bases that trades between the
resolution of time and frequency is selected. Second, the
wavelet transform of the input signal is implemented on these
bases. Signal and background noise become separable in the
wavelet domain even if they overlap in the frequency domain.
Finally, a few large-magnitude wavelet components are kept,
while the rest of the small-magnitude components are regarded
as noise and meant to be removed, because with the specific
bases chosen, those large magnitude components are the
outcome of the wavelet transform of the main features
(information) of the signal. The boundary between large and
small magnitude is carefully selected by implementing different
threshold functions that work similarly as the cutoff frequency
of a traditional low-pass filter. The separability can be further
enhanced by adopting multiple levels of wavelet transform, and
a simple achievement for discrete signals is a bank of low- and
high-pass filters.30 By confirming the consistency of signals
from multiple readout channels of the same nanopore, a
consensus filter is adopted to remove the uncorrelated events
as noise from each channel.31 In addition, a weighted network
among the single nodes gradually builds up and converges to
stable values of the weights. This network can deliver
consentient events, i.e., the highly correlated signals from
each node, and abandon the uncorrelated events, i.e., noise.
Step 2. Spike Recognition. Spike recognition usually

begins with defining an amplitude threshold as a criterion to
separate spikes from noise. Apparently, this threshold plays a
decisive role in further processing.32−34 If the amplitude of a
spike surpasses this threshold with reference to the baseline, it
is recognized as a translocation event. Otherwise, it is regarded
as noise. The identified spike segments are singled out from
the current trace, and the associated features are extracted in
the next step. Setting a large threshold increases the risk of
omitting translocation spikes, misleadingly rendering a low
translocation frequency. On the other hand, having a small

threshold can mistakenly lead to assignment of noise
fluctuations as translocation spikes, thereby incorrectly
increasing the translocation counts.35 To reduce the
subjectivity due to involvement of the user in the threshold
selection, the background noise level can be used as a
reference.5−10 As an example, a certain multiple of the root-
mean-square (RMS) value of the background noise can be
taken as the threshold.34,36 Nonetheless, two potential
subjectivity risks persist. The determination of the multiple
of the noise level is usually based on the user’s empirical
experience. An accurate measurement of the background noise
level, e.g., RMS value or peak-to-peak value, is related to the
baseline detection. It is common for an algorithm for dynamic
baseline detection to be designed to track the baseline position
as an effort to mitigate the influence of shift, drift, and slow
swing of the baseline on spike recognition. A dynamic average
with a proper window size is a simple and straightforward
method to obtain the baseline.32 How to optimize the window
size is crucial for the final performance. A large window can
function as a low cutoff frequency filter and shows a stable
baseline, but it can be insensitive to rapidly changing signals,
including sudden jumps from the baseline. With a small
window, changes from the baseline can be followed better, but
the penalty is that the attained baseline can be easily influenced
by translocation spikes. A simple fixation to overcome this
dilemma is to keep the baseline level not updated during the
blockage state, i.e., within a spike.33 An iterative detection
method is further proposed34 wherein the baseline is first
traced using a simple dynamic average method. Then, the
translocation spikes are identified with respect to the baseline.
They are then removed from the signal. By repeating the
described operations several times, more spikes are recognized
and subsequently removed. The dynamic average baseline
eventually approaches the real level.
An alternative to the window size selection is to closely

follow the current changes without differentiating them in the
open-pore state (baseline) from those in the blockage state
(spike). A dedicated algorithm named Cumulative Sums
(CUSUM) has been developed along this line.9 By adopting
an adaptive threshold, which is dynamically adjustable
according to the slow fluctuations of the signal level, it can
detect abrupt changes possibly associated with state switching,
e.g., from open-pore to blockage, from a shallow blockage level
to a deep level, etc. First, an initial value of the signal level is set
by referencing to the average of a small section of the signal at
its start. Second, the deviation between the predicted signal
level and the real value is calculated and accumulated. If the
predicted level is close to the real one, the noise fluctuations
above and below this level cancel each other. If the current
jumps to a different level, a net deviation accumulates. Third,
once this deviation surpasses a user-defined threshold, an
abrupt change is identified, and the predicted level is shifted to
the new level. Otherwise, the predicted level is updated by
averaging the present data points. This algorithm can not only
recognize the translocation spikes, i.e., the blockage stage, but
also separate multiple levels in one blockage event.37

Furthermore, information about these spikes can be extracted
naturally, including the amplitude, duration (dwell time in
blockage state), interval between adjacent spikes (dwell time in
open-pore state), and ionic current levels and dwell time at the
corresponding levels for multilevel signals.

Step 3. Feature Extraction. Once the spikes are singled
out from the baseline, feature extraction constitutes the third

ACS Sensors pubs.acs.org/acssensors Review

https://doi.org/10.1021/acssensors.1c01618
ACS Sens. 2021, 6, 3536−3555

3539

pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.1c01618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


step in Figure 2. The main features of a spike-like signal
commonly include amplitude and duration (width of the
spike). An additional parameter to quantify the translocation is
the apparent frequency of translocation events (FTE). In
general, larger analytes translocating smaller pores induce more
severe blockades in the form of deeper spikes; longer analytes
with lower translocation speed, caused by weaker driving forces
and/or stronger analyte−nanopore interactions, yield longer
durations; higher analyte concentrations and/or larger bias
voltages give rise to higher FTEs. These are intrinsic factors
relevant to the properties of analytes and nanopores.
Extrinsically, the bandwidth constraint of an electrical readout
system may distort narrow spikes, rendering an attenuation of
amplitude and a prolongation of duration. Signal distortion by
limited bandwidth has received quantitative analysis.28,38 In
order to recover the true spike waveform from the distorted
one, a physical model-based algorithm named ADEPT39,40 and
a Second-Order-Differential-Based Calibration (DBC) method
with an integration method41−43 have been developed. The
ADEPT algorithm is based on an equivalent circuit model of
the nanopore system. From the system transfer function of the
circuit, the true signal is recovered from the distorted one by
inversely applying the system function. Thus, the affected
spikes corresponding to short-lived events are compensated for
to restore the unaffected features. In the DBC method, a
Fourier series is first applied to fit the translocation spikes for
smooth waveforms. Second, the second-order derivative of the
smoothed waveform is calculated. Third, the minima of the
derivative are located at positions corresponding to the start
and end time points of the translocation, thereby leading to an
accurate determination of the duration of a spike. Finally, the
attenuation of amplitude by the limited bandwidth is
compensated for by considering the area beneath the spikes
referred to as the baseline. The DBC algorithm has been
integrated in software packages for signal processing of
nanopore sensing data.33,44

ADEPT is effective for short-duration spikes, while CUSUM
is suitable for long-duration spikes with multiple blockage
levels. A software platform, MOSAIC, has emerged by
combining the two algorithms to benefit from their respective
strengths.32 An advanced version of CUSUM has recently been
adopted in MOSAIC for a robust statistical analysis of
translocation spikes. In addition, an algorithm named
AutoStepf inder is devoted to stepwise signals.45 First, the initial
number of step levels representing different blockage states is
assigned. Fitting is then implemented to achieve the minimum
error. Second, the fitting outcome is evaluated and compared
with the halt condition for the required accuracy. Third, if it
does not reach the halt condition, the number of step levels is
gradually increased for the new iterative round of data fitting.
In an iterative manner, this process is repeated until finding the
best number of step-levels. This algorithm is developed for
signals arising from the growth dynamics of protein polymer
microtubules with optical tweezers.46 Translocation spikes
from nanopore sensors, including the typical single-step signals
and blockages with multiple levels, are all targets of this
algorithm. Other multiple-step signals from electrical, optical,
and mechanical measurements can also be processed using this
algorithm.10,45 For stepwise signals, the Rissanen principle of
Minimum Description Length (MDL) is adopted to identify
the steps, e.g., the close−open dynamics of ion channels.47

Here, an anticipated location of step is confirmed by achieving

an MDL, which trades off between fineness and fitting
accuracy.
Besides the three main features of spikes, amplitude,

duration, and FTE, more specific features need to be
scrutinized for analyte classification and analysis. A large
number of different features, i.e., multiple dimensions of
feature space, advances the especially powerful ML-based
classifiers for processing data in high-dimensional space. In
contrast, simple non-ML-based classifiers, such as statistical
distribution-based distances and hypothetical tests, provide
limited functionalities. The ML-based classifiers will be
discussed later, and the focus is placed on feature extraction
here. Several details of the translocation spikes are selected as
features, such as increasing and decreasing slopes of a spike,
spike area, area of increase and decrease period and their ratio,
symmetry of spikes, bluntness of spikes, and “inertia” with
respect to the current axis and time axis with and without
normalization by the amplitude.48−50 The frequency spectrum
and cepstrum of spikes based on the Fourier transform can also
be used as features for the classification.51 Usually, peaks may
appear in the frequency spectrum representing the major
frequency components of a signal. The features of these peaks,
e.g., the position, amplitude, and phase angle of the peaks, are
collected as features of the signal in the frequency domain.
Furthermore, if no clear peak-wise pattern appears, the
amplitude and phase angle of a series of frequency points
obtained by resampling on the spectrum can be used as
features for classification as well.51 If the number of features is
too large and some of them are highly correlated, the Principal
Components Analysis (PCA) method can be employed to
compress the redundant information and decrease the
dimensionality of the feature space. This treatment can lead
to refined features in an efficient manner for the classification
algorithms.

Step 4. Analyte Identification. The final step of signal
processing is to infer the analyte properties and identify/
classify the analytes based on the extracted features. As
discussed above, simple physical models can be utilized to
correlate the amplitude of spikes to the size and shape of
analytes;52,53 to relate the duration to the translocation speed
and nanopore−analyte interaction that in turn are connected
to the physiochemical properties such as mass, charge, dipole,
and hydrophobicity;54,55 and to associate the frequency of
spikes to the concentration of analytes at a given bias
voltage.55,56 By synthetically considering the three features in
a three-dimensional space and utilizing the tools of hypo-
thetical tests, the separability of spike clusters in a feature space
can be inferred, each cluster can be attributed to certain
characteristics of the analytes, and new spikes can be identified
to one of these clusters. For example, the Mahalanobis distance
metrics are adopted to assess the similarity of certain spikes
with labeled clusters in the feature space so that five different
amino acids can be identified.57 Moreover, a probabilistic fuzzy
algorithm is adopted to quantify the concentration range of
analytes through a comparison between the Gaussian
distribution of the blockage amplitude and the calibration
values.58 The fuzzy property endows the algorithm with
flexibility, which can tolerate the data variation from the
experimental conditions to some extent. Details of trans-
location waveform are considered by invoking more
sophisticated physical models55,59 to distinguish proteins
based on their fingerprint feature of blockage of current
distribution.60
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Instead of DC bias, an AC voltage can be applied as
excitation and the corresponding AC current is recorded as
signal.61 It has been shown that the frequency response
properties, including magnitude and phase, of translocating
nanoparticles, SiO2, Au, and Ag, are easily differentiable by
employing this AC method.
The non-ML-based algorithms for processing nanopore

signals are summarized in Table 1, while the commonly used
algorithms in each step are depicted in Figure 3.

■ ML-BASED SIGNAL PROCESSING FOR NANOPORE
SENSING

The ML-based algorithms are mainly devoted to treating two
key aspects in a typical signal processing flow, i.e., spike
recognition in step 2 and analyte identification in step 4.
Besides, few algorithms are developed for step 1, denoising,
and step 3, feature extraction.
Step 1. Denoising. A Deep Neural Network (DNN) can

be adopted to filter out the noise from the signals generated by
carboxylated polystyrene nanoparticles translocating a 5-μm-
long nanochannel.62 In such an algorithm, the time sequence
traces as signals are first sent to a convolutional autoencoding
Neural Network (NN) that repeats the convolution of input
and passes on the features to the next stage, i.e., an activation
function of either rectified linear unit (ReLU) or LeakyReLU.
This operation converts current traces into vectors in a high-
dimensional feature-enhanced space by keeping the features
and dropping the time resolution. Next, the vectors undergo
deconvolution to reconstruct the current trace in the original
size. During the training process, the weights and biases for
each node in the NN are tuned by means of gradient descent
optimization to evaluate the deviation between the output and
the denoised (control) current traces obtained by Fourier
analysis and wavelet transform. In this way, the algorithm can
automatically identify features and discard noise in the high-
dimensional feature space, thereby overcoming the limitation
of traditional filtering with overlapping frequency components
of signal and noise. This is a typical unsupervised algorithm
needing no labeled data sets, i.e., the ideal “clean” data without
noise, during the training process.
Step 2. Spike Recognition. Regarding Step 2, most efforts

are based on the Hidden Markov Model (HMM) strategy.63,64

The HMM is naturally suitable for the description of stochastic
hops between the open-pore state and the blockage state, as a
Markov chain. The key to train an HMM is to determine the
probability of state transition from one to the other, i.e., state
transition probability, and the probability of ascertaining the
value of an observed variable with certain values of hidden
stochastic variables, i.e., output probability. In order to train
the HMM, labeled data sets are necessary. For nanopore
translocation signals, the current of each sampling point need
be assigned to a given state, e.g., open-pore, shallow blockage,
deep blockage, etc. First, a Fuzzy c-Means (FCM) algorithm
and a Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) have been adopted to cluster the sampled
data. Next, the Viterbi approach, which is used to obtain the
maximum a posteriori probability and estimate the most likely
sequence of hidden states in an HMM, has been utilized to
achieve an intelligent retrieval of multilevel current signatures.
This approach has enabled detection of nanopore translocation
events and extraction of useful information about single
molecules under analysis.65,66 Lately, some feature vectors
from HMMs have also been used to provide the characteristics

of translocation spikes.64,67 Finally, the feature vectors are used
for further analyte classification. The components of feature
vectors include not only translocation spike related features,
such as mean value and variation of spike amplitude, but also
stochastic process related parameters, such as the transition
probability between the open and blockage states and the
statistical distribution of emission probability.
Concerning classification and by way of introduction to such

a topic, HMMs have also been utilized for classification. For
instance, HMM-based duration learning experiments on
artificial two-level Gaussian blockade signals can be used to
identify a proper modeling framework.68 Then, the framework
is applied to the real multilevel DNA blockage signal. Based on
learned HMMs, base-pair hairpin DNA can be classified with
an accuracy up to 99.5% on experimental signals.

Step 3. Feature Extraction. As to Step 3, most commonly
used algorithms are non-ML-based. Few studies on ML
algorithms can be found though. Based on the Residual Neural
Network (ResNet), a bipath NN, named Bi-path Network (B-
Net), has recently been established to extract spike features.35

Since the task of counting the number of spikes is essentially
different from that of measuring the amplitude and duration,
the bipath design, composed of two ResNets, each one trained
for one task, has been shown to be robust with compelling
performance. During the training process, segments of time
sequence traces are first sent to the NN. The predicted values
of spike number, average amplitude, and duration of the
appearing spikes are then compared with the respective ground
truths. Next, the deviations of the predicted values and the
ground truths are back-propagated through the NN using the
Stochastic Gradient Descent (SGD) algorithm and the weights
of each node are adjusted. Finally, the training performance in
each epoch is evaluated on a validation data set so that the best
trained NN is selected. The training data sets are artificially
generated by a simulator on the foundation of a set of physical
models, describing open-pore current, blockage spikes, back-
ground noise, and baseline variations. The trained B-Net can
directly extract the three features of spikes, i.e., amplitude,
duration, and number (or FTE), from raw translocation data of
λ-DNA and protein streptavidin. The features show clear
trends with the variation of certain conditions, which is in
agreement with the corresponding physical mechanisms of
analyte translocation. The B-Net avoids the inherent
subjectivity found on spike recognition with traditional
threshold-based algorithms that are dependent on a user-
defined amplitude threshold.
A new concept of shapelet has been involved in the feature

extraction of translocation spikes.69 Shapelets are short time-
series segments with special patterns that contain discrim-
inative features. For translocation spikes from nanopore
sensors, the tiny fluctuations of the ionic current in the
blockage state, i.e., the bottom of the blockage spike, do not
always result from noise. They can be characterized by certain
regular patterns representing the characteristics of the
translocating analytes as well as their interactions with the
nanopore. In the learning time-series shapelets (LTS)
algorithm, these regular patterns are learned as shapelets
automatically from the training data set to maximize the
discriminative features among the spikes from different
analytes. Then, the similarities of test spikes and these
shapelets are measured by the Euclidean distance, as the
features of these spikes. Consequently, a multidimensional
feature space is established. On the platform of aerolysin
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nanopore, the LTS algorithm is proven to have the ability to
discriminate the translocation spikes generated by 4-nucleotide
DNA oligomers with single-nucleotide difference.69

Step 4. Analyte Identification. Finally, when it comes to
Step 4, main trends have been directed toward three
approaches, (i) Support Vector Machines (SVMs), (ii)
Decision Trees (DTs) and Random Forests (RFs), and (iii)
NN-based classifiers. For shallow ML algorithms such as (i)
and (ii), the inputs are the features of a signal, i.e., vectors in
high-dimensional feature space. The extraction of features, i.e.,
construction of feature space, are adequately discussed in Step
3 of non-ML-based signal processing algorithms as well as in
the previous section. The commonly used features include
those from the time-domain of signal, e.g., amplitude, duration,
and frequency of spikes, and those from frequency-domain,
e.g., peaks in the spectrum. Regarding deep-learning (DL)
algorithms such as (iii), the inputs are usually the time
sequence of current traces or spike segments. Therefore, the
DL algorithms, compared to their shallow ML counterparts,
may avoid the tedious feature extraction process that usually
needs rich experience and can be subjective. An expanded
discussion of this issue is found in the section Strategies of ML-
Based Algorithms. However, although rare, it is also found that
extracted features have been used as inputs for DL
algorithms.70

An SVM is a linear classifier whose goal is to find a
hyperplane in an n-dimensional space that segregates data
points belonging to different classes. Consequently, data points
falling on either side of the hyperplane can be attributed to
different classes. Multiple possible hyperplanes can be chosen
to separate two classes of data points. The main aim of an
SVM is to find the plane with the maximum margin, i.e., the
maximum distance between the data points of both classes.
Maximizing the margin distance provides robustness such that
future data points can be classified with high confidence.
Support vectors are the data points closer to the hyperplane,
which are taken as references and determine the position and
orientation of the hyperplane, thereby maximizing the margin
of the classifier. Since an SVM is a linear classifier, it works
better when there is a clear margin of separation between
classes, and it is more effective in higher dimensional spaces,
i.e., when the number of dimensions is greater than the
number of samples. This algorithm does not incorporate
nonlinearities to the input points by itself. However,
complementary kernels can be involved to realize the
nonlinearity. The cost is that they come with the incorporation
of more dimensions to the inputs and carry more processing
loads. Accordingly, the SVM does not perform well when the
data points at different target classes severely overlap. As a
result, this algorithm needs a preprocessed data set in its input
to build up the high-dimensional feature space. Such a
preprocessing step is not linked to the automatic optimization
process of the algorithm and has to be conducted using
human-engineered tools, which makes this procedure less
automatic and adds limitations derived from human sub-
jectivity.71

In regard to how to utilize SVMs to attain classification, a
strategy has been introduced to classify and interpret nanopore
and ion-channel signals.72 The Discrete Wavelet Transform
(DWT) is used for denoising nanopore signals and features.
Spike duration, amplitude, and mean baseline current are
extracted and subsequently used to detect the passage of
analytes through the nanopore. First, a two-stage feature

extraction scheme adopts the Walsh-Hadamard Transform
(WHT) to provide feature vectors and PCA to compress the
dimensionality of the feature space. Afterward, classification is
carried out using SVMs with 96% accuracy to discriminate two
highly similar analytes. Along the same lines,73 each current
blockade event can be characterized by the relative intensity,
duration, surface area, and both the right and left slope of the
pulses. The different parameters characterizing the events are
defined as features and the type of DNA sample as the target.
By applying SVMs to discriminate each sample, an accuracy
between 50% and 72% is shown by using two features that
distinctly classify the data points. Finally, an increased accuracy
up to 82% can be achieved when five features are implemented.
Likewise, the SVM has also been used to identify two different
kinds of glycosaminoglycans with an accuracy higher than
90%.74

Similarly to nanopore techniques, nanogap sensors generate
characteristic tunneling current spikes when individual analytes
are trapped in a gap between two electrodes. As is the case for
nanopores, this technique has also been used to identify
individual nucleotides, amino acids, and peptides at a single-
molecule level. Following this line of research using nanogaps,
an SVM has been shown to classify a variety of anomers and
epimers via the current fluctuations they produce when being
captured in a tunnel junction functionalized by recognition
probe molecules.24 Likewise, a tunneling nanogap technique to
identify individual RNA nucleotides has been demonstrated.51

To call the individual RNA nucleotides from the nanogap
signals, an SVM is adopted for data analysis. The individual
RNA nucleotides are distinguished from their DNA counter-
parts with reasonably high accuracy. In addition, it is found
through using an SVM for data analysis how probe molecules
in a nanogap sensor distinguish among naturally occurring
DNA nucleotides with great accuracy.75 It is further shown that
single amino acids could be identified by trapping the
molecules in a nanogap being coated with a layer of
recognition molecule probes and then by measuring the
tunneling current across the junction.23 Since a given molecule
can bind in different manners in the junction, an SVM
algorithm is useful in distinguishing among the sets of
electronic “fingerprints” associated with each binding motif.
To pursue classification, ensemble learning is involved in

signal processing of nanopore sensing. By assembling the
results from multiple simple learners, the ensemble learner can
achieve a better generalization than by the individual simple
learners.76 A simple learner is usually based on learning
algorithms with low complexity, such as DT and NN. An
ensemble learner combines multiple simple learners based on
the same algorithm, i.e., homogeneous ensemble, or different
algorithms, i.e., heterogeneous ensemble. To highlight the
advantage of assembling, the individual learners should behave
differently, yet with sufficient accuracy. Therefore, an
important issue in this scheme is to find a smart way to
divide the training data sets for the individual learners,
especially for homogeneous ensembles, since the behavior of
each learner is based on the training data. According to the
strategies adopted to generate these base/component learners,
ensemble learning algorithms can be divided into two major
categories: (i) the individual learners are generated sequen-
tially with strong correlations in between, and (ii) they are
generated in parallel with weak correlation.
Boosting algorithms belong to the first category, such as

Adaptive Boosting (AdaBoost), in which the training data for
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each individual learner is selected/sampled from the entire
training data set. The performance of the current learner
determines the manner in selecting the training data for the
next learner, and as mentioned, the simple learners in boosting
algorithms are generated one by one. AdaBoost, assembled by
multiple DT classifiers, is used to classify the spikes generated
by the mixture of two kinds of 4-nucleotide DNA oligomers
with single-nucleotide difference.67

Bagging, on the other hand, is a typical algorithm of the
second category, in which the training data for each learner is
selected simultaneously in the training data set. Thus, the
learners can be trained individually at the same time. An RF
algorithm constructs the bagging ensemble architecture by
involving a random selection mechanism in the training data
selection for each DT. Thus, the RF shows better robustness
and generalization ability than achievable with the simple DT.
Moreover, the performances of RF and SVM are contrasted.77

On one hand, an SVM-based regressor is used to establish the
correspondence between specific peptide features inside the
pore and the generated signal. On the other hand, an
alternative approach for supervised learning can be explored
by implementing the RF regression for translocation waveform
prediction. The resulting RF becomes more robust to outliers
also exhibiting less overfitting.
To boost the generalization ability, Rotation Forest (RoF)

has been proposed. It builds classifier ensembles using
independently trained DTs. The RoF is proven to be more
accurate than bagging, AdaBoost, and RF ensembles across a
collection of benchmark data sets.78 In an RoF algorithm, the
feature set is randomly split into a number of subsets in order
to create the training data for the base classifiers, i.e., DT, and
the selected training data for each DT is further processed
usually by PCA. Then, a rotation operation is applied in the
feature space to form the new features for the base classifiers.
The aim of the rotation operation is to boost individual
accuracy and diversity simultaneously within the ensemble.
Along the same research line, RoF ensembles have been

used to demonstrate label-free single-cell identification of
clinically important pathogenic bacteria via signal pattern
classification in a high-dimensional feature space.79 A similar
classifier is used in bacterial shape discrimination48 and for
label-free electrical diagnostics of influenza to distinguish
among individual viruses by their distinct features from the
same group.14,50 Recently, RoF and RF-based classifiers have
been developed to identify four kinds of coronal viruses
according to the features of translocation spikes, even when
they have highly similar size and shape.80 A comparison
between RFs and Convolutional Neural Networks (CNNs)
has recently been conducted.81 Using either a set of engineered
signal features as input to an RF classifier or the raw ionic
current signals directly into a CNN, both algorithms are found
to achieve similar classification accuracy ranging from 80% to
90%, depending on the hyperparameters and data sets.
Another major category of classifiers is those based on

DNNs with various architectures, such as CNN, fully
connected DNN, Long Short-Term Memory (LSTM),
ResNet, etc. The DNNs came to the scene to eliminate an
important bottleneck in the previously traditional ML pipeline.
Essentially, previous ML workflows put feature extractions
from raw data in the hands of human experts in step 3 as
discussed above. The consideration behind relying on human
expertise is not guided by the optimization conducted in the
classifiers whatsoever, in order to attain better discrimination.

Great risks are involved in the fact that human judgments
could neglect important information and features present in
the raw input data. The combinatorial nature of possible
correlations among different features cannot be completely
contemplated by human expertise. Therefore, essential
correlations can be accidentally discarded with the con-
sequential compromises in classification accuracy. Likewise,
some feature correlations can be essential in the perspective of
human reasoning. Yet, those could also be completely useless
statistical features at the time of attaining better classification
performance. The DNNs, instead, promote the extraction of
features using optimization mechanisms guided by ultimate
classification objectives in an end-to-end fashion. By back-
propagating errors and applying optimization steps, such as
SGD, these architectures modify internal parameters in the
networks in order to accomplish better classification perform-
ance. Every stage in such multilayer pipelines abstracts more
and more relevant information regarding the final objectives of
the complete system. The automation of the feature extraction
stages in the ML pipeline bypasses an explicit operation in step
3 in Figure 2. Hence, the DNNs can directly process the
traces/segments of translocation spikes from step 1 or 2 and
achieve outstanding results in a variety of important
applications, such as computer vision, speech recognition,
and Natural Language Processing (NLP) among many other
newer and essential fields.82

Following the research line of CNNs, a CNN is developed
for a fully automated extraction of information from the time-
series signals obtained by nanopore sensors.83 It is trained to
classify translocation events with greater accuracy than
previously possible, which increases the number of analyzable
events by a factor of 5.83 An illustration of the step-by-step
guide in how a CNN can be used for base classification in
DNA sequencing applications is available in the literature.10

Moreover, a CNN has been adopted to classify different kinds
of proteins according to the fluorescently labeled signals from
optical measurement of the translocation through solid-state
nanopores, which also show spike-like features as electrical
current signals.84 A comparison with the SVM as a more
conventional ML method is provided for discussion of the
strengths and weaknesses of the approaches. It is claimed that a
“deep” NN has many facets of a black box, which has
important implications in how they look at and interpret data.
Moreover, each translocation event is described by various
features in order to enhance classification efficiency of
nucleotide identities.70 By training on lower dimensional data
and comparing different strategies, such as fully connected
DNN, CNN, and LSTM, a high accuracy up to 94% on
average is reached. In addition, a ResNet is trained and
acquired the ability to classify the spikes generated by the
translocation of two kinds of DNA oligomers, 5′−(dA)7(dC)-
7−3′ and 5′−(dC)7(dA)7−3′ that only differ in the sequence
direction.85 Prior to classification, an ensemble of empirical
mode decomposition, variational mode decomposition, in-
herent time scale decomposition, and Hilbert transform has
been designed to extract multispectral features of nanopore
electrical signals. By combining ResNet with SVM, adeno-
associated viruses carrying different genetic cargos are
discriminated according to their respective translocation
spike signal through a SiNx nanopore.

86 The ResNet extracts
abstract “features” of the signal traces, although these features
are not describable and cannot be directly correlated to
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physical meanings, and delivers them to a SVM for
classification.
Besides the translocation spike signals, a DL algorithm based

on CNNs and LSTM architecture can also be used for
recognition of the open and blocked states of ion channels by
the ionic current levels.25 It can process signals from multiple
channels with multiple ionic current levels. The algorithm is
completely unsupervised and, thus, adds objectivity to ion
channel data analyses.
An NN-based technique called Positive Unlabeled Classi-

fication (PUC) has been introduced to learn the interference
of background noise fluctuation with the spikes generated by
the four different nucleotides in a nanogap sensor. It uses
groups of training current signals recorded with the target
molecules. By combining with a common NN classifier, it can
identify the four nucleotides with a high degree of precision in
a mixture sample.87

Other ML optimization algorithms such as Expectation
Maximization (EM) have also been used for classification. An
EM is a widely used iterative algorithm to estimate the latent
variables from the observations of the statistical estimation
theory. The unobserved latent variables can be induced from
the incomplete/damaged data set or variables that cannot be
measured/observed directly. In an EM algorithm, the two
steps, E and M, are repeated alternatively. In the E step, the
values of the latent variables are estimated from the parameters
of the stochastic schemes. In the following M step, the
stochastic parameters are updated according to the observed
variables from the data set and latent variables from the
previous E step. By iterating these two steps, the stochastic
parameters may converge to their real values. The EM
algorithm is adopted in several clustering methods, such as
the k-mean clustering and the Gaussian mixture model. The
EM algorithm has been implemented to cluster the trans-
location spikes from wild-type E. coli cells and f liC deletion
mutants.88 Seven features related to the shape of the
translocation spikes are selected, and the statistical distribution
parameters of the spikes in a seven-dimensional feature space
are estimated by applying the EM iteration. In addition, the
same algorithm has been used to classify two viruses, influenza
A and B, through the translocation signals from peptide
functionalized SiNx nanopore sensors.49 Other classification
and clustering algorithms have also been implemented to
identify various analytes via the translocation features obtained
from nanopore sensors, such as the k-nearest neighbor (k),89,90

the logistic regression,69,89,90 and the naive Bayes.89

An important facet of the ML related algorithms is that they
devote significant effort to comparisons among as many
methods as possible. For instance, by utilizing ML, it is
possible to determine two different compositions of four
synthetic biopolymers using as few as 500 events.89 Seven ML
algorithms are compared: (i) AdaBoost; (ii) k-NN; (iii) naive
Bayes; (iv) NN; (v) RF; (vi) logistic regression; and (vii)
SVM. A minimal representation of the nanopore data, using
only signal amplitude and duration, can reveal, by eye and
image recognition algorithms, clear differences among the
signals generated by the four glycosaminoglycans. Extensive
molecular dynamics simulations and ML techniques are used
to featurize and cluster the ionic current and residence time of
the 20 amino acids and identify the fingerprints of the
signals.90 Prediction is compared among three classifiers: k-NN
with k = 3, Logistic regression, and RF with the number of
estimators of 9.90

The ML-based algorithms for processing the nanopore
signals are summarized in Table 2, while the commonly used
algorithms in each step are depicted in Figure 4.

■ STRATEGIES OF ML-BASED ALGORITHMS
As its name alludes, ML conforms to a set of algorithms that
improve automatically through experience. Such algorithms are
essentially machines that learn a task from data. One part of
these algorithms is mainly regarded as classification machines
that use preprocessed features as inputs. The conventional ML
techniques, classical MLs, are limited by the information
contained in such features, since they are obtained by other
algorithms tailored by highly specialized human engineering.
Such specialization is bound by human subjectivity, which does
not always align with the best decisions at time of providing
relevant features to the classifiers for the task at hand. The
typical classical ML algorithms for signal processing of
nanopore sensing are k-NN, DT, RF, RoF, AdaBoost, and
SVM among others.
Following the categorization scheme laid down and the line

of argument thus far, all these algorithms share the same
strategy of receiving highly preprocessed human engineered
features. This approach limits their capability of self-
discovering relevant features in order to attain a higher
performance for the task. Deep Learning, on the other hand, is
based on representation learning, which is a set of strategies by
which representations of data can be learned automatically to
extract useful information when building, for instance, a
classifier.91

To extract the features, clear criteria in traditional algorithms
for preprocessing data need consequently be defined and
described by unambiguous logic judgments. These criteria are
usually based on users’ empirical experience, thereby rendering
them subjective and case dependence. For example, a user
needs to summarize related key features of the spikes by
observation and experience in order to single out the spikes
from a noisy background in step 2, e.g., the threshold for spike
recognition. The prevalent algorithms used in these application
scenarios follow this path, and all the links in the path should
be expressed explicitly. The limitation for each step is obvious;
feature extraction needs experts, but some key features may
only bear limited information. The criteria are rigid and stiff,
which can be incompatible with highly nonlinear cases turning
to an even more complicated and sophisticated structure. Such
limitations can be attributed to the weakness of the concept
itself, since the traditional algorithms request an explicit
representation of everything, including features, variables, and
logical relationships. This process inexorably invites sub-
jectivity.

Figure 4. Architecture of ML-based algorithms with representative
approaches used for each signal processing step.
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With DL algorithms, in contrast, the features of spikes are
acquired by the algorithm during the training process and thus
include as much of the original information as possible. This
approach inherently bears the commonality for wide
application scenarios. Its assessment process is flexible and
probabilistic, thus implying a more complex and nonlinear
logic and indicating a powerful method with robust perform-
ance. The whole process minimizes the participation and
intervention of users, which warrants a maximum level of
objectivity.91 The automatic feature extraction in DL
algorithms is specially beneficial for atypical signals induced
by nanopore−analyte interaction, morphology change dynam-
ics, adsorption−desorption, and clogging. Such atypical signals
usually do not display the spike-like features of the typical
translocation signals. Therefore, it is challenging and requires
rich experience to define and extract features for those signals.
The DL strategy builds its own features by highlighting the

most explanatory ones, while diminishing the ones with the
least explanatory value for the task that the network is
commissioned to solve. Such an efficacy is achieved because
the feature extraction part of the network uses optimization
mechanisms connected to the final optimization algorithms in
the pipeline, which are regarded to address the final task. Such
connections are provided by back-propagating errors through-
out the architecture in a scheme that utilizes derivatives, the
chain rule, and SGD. These mechanisms work together on
moving the optimal point of the network progressively in order
to find some local minimum in a loss function that the system
seeks to minimize. Consequently, the feature extractor
mechanism harmoniously follows more robust paths of
optimization that permit the whole network to achieve the
optimum performance.91

Historically, the main differences in the data to be processed
are forwarded to the corresponding DL architectures. Thus,
Feed-Forward Artificial Neural Networks (FFANNs) process
data in a way that information flows from input to output
without a loop in the processing pipeline. In other words, the
input to any module in the network is not influenced by the
outputs of such modules directly or indirectly. Examples of
FFANN include CNN implementations, such as LeNet-5
introduced in 1998 and known as CNNs today.92 Later,
AlexNet was introduced in 201293 with a considerably larger
but structurally similar architecture (60,000 parameters for
LeNet-5 vs 60 million for AlexNet). Then, VGG-16, developed
in 2014, introduced a deeper (with 138 million parameters) yet
simpler variant of the previous architectures.94 Inception
network (or GoogleNet) was also introduced in 2014,95 with

its 5 million parameters in version V1 and its 23 million in
version V3. As networks started to become deeper and deeper,
it was noticed that adding more layers would compromise the
quality of gradients. The advantage of the network concept
could eventually vanish or explode exponentially with the
number of layers. Nowadays, this limitation can be mitigated
by employing a new architecture called ResNet, which
incorporates skip connections to residual layers. There are
several ResNet variants, for instance, ResNet 50 with 25
million parameters. Another architecture called ResNeXt is an
extension of ResNet by replacing the standard residual block
with one having a different strategy.96 Finally in the DenseNet
architecture, the feature map of each layer is concatenated to
the input of every successive layer within a dense block. This
strategy encourages feature reuse thus allowing later layers
within the network to directly leverage the features from earlier
layers. Compared with ResNet, DenseNets are reported to
possess better performance with less complexity.97 For
instance, DenseNet has architectures with the number of
parameters ranging from 0.8 million to 40 million.
Concomitantly, Recurrent Neural Networks (RNNs) allow

the existence of loops in the pipeline. Derived from FFANNs,
RNNs use their internal state (memory) with temporal
dynamic behaviors to process variable-length sequences of
inputs. Basically, an RNN uses sequential data, i.e., time series,
all regarded as temporal problems in language translation,
sentiment classification, NLP in general, Automatic Speech
Recognition (ASR),98 image captioning, music generation, etc.
Their memory from prior inputs influences the current
network’s internal state and output. An important property
of RNNs is that they share weights along the sequence and
apply Backpropagation Through Time (BPTT) throughout the
sequence in order to learn.98 The main principle of BPTT is
the same as the traditional back-propagation, where errors are
back-propagated from its output layer to its input layer.
However, the BPTT differs from the traditional approach in
that it sums up errors at each time step, whereas FFANNs do
not need to do so, as they do not share parameters across each
layer (CNNs do share weights too, but such sharing occurs
through the feature space and not through time).
There are several variants in the RNN reign. For instance,

Bidirectional Recurrent Neural Networks (BRNNs) pull
information from future data in order to improve the accuracy
and LSTM and Gated Recurrent Unit (GRU) are created as a
solution to the vanishing gradient problem.99 Recently,
attention mechanisms have been introduced in new algorithms
configuring the state-of-the-art today. Attention is a technique

Figure 5. Flowchart of the general steps for building an ML algorithm.
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that mimics the cognitive attention process in the human brain.
Initially, it was applied to solve typical problems normally
tackled by RNNs but completely precluding recurrence.
Today, attention almost completely spans the ML application
landscape. Attention enhances the more relevant parts of the
input data while fading out the rest in regard to the task that
the network seeks to solve. Famous examples with big
breakthroughs are Generative Pretrained Transformer (GPT)
2 and 3,100,101 as well as Bidirectional Encoder Representations
from Transformers (BERT).102

■ HOW TO GET STARTED
There is a series of feasible steps one could follow to aim for a
successful ML application. Yet, such steps will not necessarily
be conducted once on the ML process. Conversely, this step-
by-step procedure is cyclic, returning once again to the first
step and optimizing strategies in each step to achieve better
results,103 as shown in Figure 5.
First of all, the problem to be solved needs to be

characterized. Characterizing a problem means to understand,
define, and delineate it by identifying its challenging aspects.
Characterizing a problem in ML is to define what the
algorithm will have as input information and what it will need
to return as output. The loss functions and performance
evaluations are selected once the input−output is defined. This
is the step where valuable knowledge from domain experts
helps in collecting the relevant data in order to understand the
target requirements.
The second step is to collect appropriate data sets for

training. The volume, type, and quality of the data depend on
both the complexity of the ML strategy and the problem
defined in Step 1. Typical questions that can arise in this stage
include: Is this a classification or regression problem? Is there
enough labeled data? Could we approach the problem by
generating artificial data to train the model? Can we transfer
knowledge from an available data set to a target data? In the
case of data scarcity, can we augment our data set? In which
way? The NVIDIA Data Loading Library (DALI) is a platform
for data loading and preprocessing to accelerate deep learning
applications. Using DALI, one can augment their own data sets
by offloading them on graphic processing units so as to avoid
the bottlenecks of central processing unit in the processing
pipeline. Collecting an appropriate data set is a fascinating and
complex problem in itself. This problem frequently entails
complete investigations in which prestigious research groups
devote years of laborious work.104

Data exploration and preparation is the third step. On one
hand, interacting with the data set, substantially exploring it
before its final utilization, is mandatory in order to get more
insights that help in the ML strategy selection and
optimization. Data exploration includes testing its separability,
linearity, monotonicity, and balance, finding its statistical
distribution and spatial and/or temporal dependency, etc. On
the other hand, data preparation deals with arranging the data
for training, validation, and testing procedures. This stage
usually includes cleaning, normalizing, segmenting, balancing,
etc.
The fourth step concerns implementation, i.e., the ML

strategy is selected and then trained and validated to finally be
tested. Choosing an appropriate strategy depends on the
combination of a multitude of factors such as the kind of data
set to be processed and the problem to be solved. A myriad of
different architectures can be chosen for different problems.

For instance, when the problem is related to computer vision, a
suitable architecture is the one with considerable visual
inductive bias such as the variant of a CNN. Proper
architectures for NLP are the ones with a recurrent structure,
such as LSTM or GRU. Nevertheless, all kinds of rules in these
aspects have shown to become obsolete with time. Today, the
best architectures for NLP are shown to dispense with
recurrence using self-attention with transformers.105 Likewise,
such architectures have been taken from the NLP world and
successfully been applied to image classification.106 In some
cases, a combination, using a self-attentional architecture by
preprocessing the inputs using a pretrained CNN as a
backbone architecture, is applicable to more complex tasks,
such as object detection in computer vision.107 However, there
is no universally superior ML algorithm according to the no
free lunch theorem for ML. Typical DL frameworks are
Tensorflow and Pytorch, among others. Choosing the right DL
framework for one’s needs is a topic in itself and is beyond the
scope of this guide.
After each training epoch, validation is conducted.

Validation metrics are chosen to select the best performing
epoch in an iterative manner. The current epoch with
outperformed results will be stored. Otherwise, it will be
discarded. Until the performance meets the requirement, the
best one will be used on the testing data set. The validation
metrics could be different from or the same as the ones used
for the final testing.
For implementation, there are diverse ways to develop and

share codes. The most widely used platform is GitHub that is a
provider of Internet hosting for software development and
version control using Git. Git is the software for tracking
changes in any set of files, but it is mostly used for tracking
changes in software development files. For sharing data sets
and code, general-purpose open-access repositories, such as
Zenodo, are the preferred options.

■ PROPERTIES OF ML-BASED ALGORITHMS
Algorithm Performance Evaluation and Benchmark.

Performance evaluation is crucial for the development of any
algorithm. It directly affects algorithm selection and parameter
tuning. Different schemes exist to evaluate the deviation
between the ground truth and the prediction generated by an
algorithm, known as the error. During training, weights are
adjusted to minimize the errors produced on training data sets,
i.e., training errors. To evaluate the generalization capacity of
the algorithms, the errors produced on the validation data sets,
i.e., generalization errors, are relevant for practical applications.
Usually, the performance on validation data sets is used during
training to select the best performing implemetations. Such
implementations will be finally utilized in real test data sets.
Validation also provides a reference to tune the structural
parameters, such as the number of layers and nodes in an NN.
Accordingly, by comparing the performance of different
algorithms on a validation data set, the most suitable
algorithms can be selected for further application in real-life
scenarios (test data sets).
Regarding the continuous output from the regression tasks,

such as the denoised current trace from step 1, extracted spike
segments from step 2, continuously varied spike features from
step 3, and inferred properties of analytes with continuous
values from step 4, relative error (errr) and mean-squared error
(errms) are usually employed as indexes to evaluate the
performance, defined as
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where x is the measured value, x0 the ground truth, and m the
total number of output points. The relative errors can be
calculated for each data point/situation, and the average and
standard deviation of these relative errors on the total output
points m can be further derived to reflect the overall
performance of the algorithm on a certain data set.35

For discrete outputs from the classification tasks, such as
identified classes of the analytes from step 4 and extracted
spike features in qualitative, categorical, or attribute variables,
error rate (ER), and accuracy (Acc) are commonly adopted to
count the incorrectly and correctly classified data, respectively
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where χ(.) is the indicator function equal to 1 when the
condition is valid and to 0 otherwise. In addition, a standard F-
measure is widely employed to evaluate the classification
performance.69,83,87 By comparing with the ground truth, a
table named confusion matrix can be derived by evaluating the
true positive (TP), false positive (FP), true negative (TN), and
false negative (FN) predictions for each class. Two metrics,
precision and recall, are defined as

=
+

precision
TP

TP FP (5)

And

=
+

recall
TP

TP FN (6)

Precision and recall are not useful when used in isolation. For
instance, it is possible to have perfect recall by simply
producing a less restrictive classification of samples without
worrying about false positives. Similarly, it is also possible to
obtain a very high precision by just being very restrictive about
the classification of positive samples, virtually invalidating the
chances of false positives. Therefrom, the F score is a kind of
trade-off that combines precision and recall as a figure of merit
to evaluate the overall performance, i.e.,

=
× ×

+
F

2 precision recall
precision recall (7)

Furthermore, other performance measures can be commonly
seen according to the specific situations, such as receiver
operating characteristics and cost curves.108,109

To compare the overall performance among various
algorithms on a higher level, directly ranking the value of the
aforementioned performance indices is not a comprehensive
manner. Considering the stochastic factors in the training/test-
data selection and training process, hypothesis tests based on
the statistical theory are usually adopted.110

In general, acquisition of the ground truth is always difficult
in performance evaluation. For example, it is usually impossible

to acknowledge the ground truth, e.g., a clean signal without
noise, true values of amplitude, duration, and FTE, etc., from
the measured experimental data. An indirect route is to analyze
the rationality and consistency of the outputs with the
assistance of related physical models. Apart from experimental
results, it can be beneficial to use artificially generated data, if
they are accessible, to evaluate an algorithm. Usually, the
generated data may come from simulations or modeling from
which the ground truth is “known”. Thus, a well-established set
of physical models and related simulation frameworks are
crucial for evaluating algorithms.

Reproducibility as a Means for Result Reliability.
Reproducibility is inextricably associated with the scientific
method in itself. Any result, whether for experimental
measurement or algorithm implementation, must be accom-
panied by clear descriptions delineating its replication
procedure under explicit conditions.
In order to obtain reliable results from the signal processing

algorithms, a general agreement of experimental data
repeatability with considerable signal-to-noise ratio is neces-
sary. Various algorithms have been specifically designed for
unique patterns of signals. If the processed signals are closer to
such typical cases, the output results are more reliable and
interpretative. It is obvious that in the ML-based algorithms,
the features/patterns/properties learned are based on the
training data sets and regarded as the essential connotations of
a certain category distinguished from other categories.
Therefore, these acquired connotations should be repeatable
and reliable such that they can represent the essential
differences among these categories in the real world.
Efforts can be made from two aspects to reinforce the

reliability. One is a strict control of experimental conditions to
guarantee repeatability as much as it could attain, such as
standardization of experimental procedures, careful handling of
nanopore devices, robust screening of noise interference, etc.
The other is an improvement of the generalization ability of
algorithms. Multiple variations should be involved in the data
sets for algorithm training toward complicated scenarios so as
to boost the robustness. Moreover, a suitable architecture of
algorithms with a proper scale should be carefully selected to
avoid overfitting due to randomly appearing details.
As for the implementation of ML, any one should be able to

achieve the same results by using the code and data. In this
way, the same computations could be easily executed to
replicate identical results. Nowadays, there are exceptional
tools to achieve this endeavor. For instance, a complete project
can be shared online using Git and GitHub. A release of the
code can be issued at the moment of publication of the
experiments. Such a release allows researchers to access the
same version of the code in its state at the date of publication.
Researchers can also combine such tools with general-purpose
open-access repositories, such as Zenodo, that allow for
deposition of data sets and research software fully available
online under specific licensing conditions.
Yet, today’s advantages regarding ML reproducibility do not

end there. Incorporating additional improvements to already
cloned implementations is easily achievable to build up on
stable releases. The DL frameworks allow the research
community to build powerful ML implementations progres-
sively, step by step, through well tested and appropriately
optimized baselines. Typical examples of these frameworks
include Pytorch and Tensorflow. Such tools enable the
research community to coherently build DL applications that
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can be rapidly modified by reconfiguring hyper parameters and
computation graphs in a modularized fashion. With these tools
at hand, researchers can not only replicate but also build upon
released implementations by modifying them for their own
needs.
Data Preparation and Data Utilization Strategies for

Algorithm Training. It is not necessary to show a human
infant a giraffe more than twice in order to get her to identify it
in different positions and light conditions. Such a scenario is a
far-reaching one for ML. Instead, the success of any ML
application is at best uncertain without massive amounts of
data. For today’s ML standards, data, in considerable amounts,
is available for only a subset of powerful companies, and
academia is usually left out. Generally, data is considered a
scarce resource, let alone accurately labeled data that is far
from abundant.111 Data has to be annotated manually
according to human judgment, which is an extremely costly
and time-consuming process. Crowdsourcing, on the other
hand, is an alternative approach, which exploits the crowd to
annotate data and thus significantly reduces human labor and
therefore cost. Yet, results from crowdsourcing are far from
perfect and bear numerous low-quality annotations.112

Appealing to the example of recognizing images, some tasks
in this area are simple, such as categorizing dogs, and can be
done by nonspecialized staff. Conversely, labeling medical
images, such as the ones found in cancerous tissues, needs
deep medical expertise, which is extremely hard to access.113

Supervised learning is the leading cause for this problematic
situation, whereas alternative solutions to this problem can be
referred to nonsupervised paradigms. For instance, semi-
supervised learning is an extension of supervised learning that
uses unlabeled data in conjunction with labeled data to
improve learning. Classically, the aim is to obtain enlarged
labeled data by assigning labels to unlabeled data using their
own predictions.114 Another example is unsupervised represen-
tation learning methods that make use of unlabeled data to learn
a representation function f such that replacing data point x by
feature vector f(x) in new classification tasks reduces the
requirement for labeled data. Typical examples of such
methods are self-supervised methods and generative algo-
rithms. Finally, reinforcement learning is an optimized-data
alternative to supervised learning, since the sample complexity
does not depend on preexisting data, but rather on the actions
that an agent takes in the dynamics of an environment.115

Another general solution can be data augmentation. It
involves a set of methods that apply systematic modifications
to the original training data in a way that it creates new
samples. It is regularly utilized in classification problems with
the aim of reducing the overf itting caused by limitations
imposed by the size of the training data. Augmentations can be
basic or generative, depending on if they are handcrafted by
humans or artificially learned by machines via utilizing
generative algorithms. They can be applied to data-space or
feature-space. They can be supervised or unsupervised
depending on if they rely on labels or not.
Knowledge sharing aims at reusing knowledge instead of

relying solely on the training data for the main task. This
category comprises (i) transfer learning, which aims to improve
learning and minimize the amount of labeled samples required
in a target task by leveraging knowledge from a source task;
and (ii) multitask learning, which involves no distinction
between source, target task, and multiple related tasks. They
are learned jointly using a shared representation, (iii) lifelong

learning, which aims to avoid “catastrophic forgetting”
(catastrophic forgetting basically means the loss or disruption
of previously learned knowledge when a new task is learned)
and (iv) meta-learning, which automates the experiments that
are required to find the best performing algorithm and
parameters of the algorithm resulting in better predictions in
shorter time.
In the realm of nanopore translocation events, several

applications, such as spike recognition, feature extraction, and
analyte identification, can be solved using shallow ML or
sophisticated DL schemes. In contrast to traditional algorithms
that usually rely on expert knowledge and experience, ML has
advanced with important achievements exemplified by its
success in addressing most of the issues in this area during the
past decades. Shallow ML has mainly offered new mechanisms
with the capacity to automatically learn from data, solving
problems of feature extraction, classification, identification, and
regression, in the signal processing for nanopore sensors. Even
when the parameters of the ML algorithms are automatically
adjusted from data, the inputs to such algorithms have to be
preprocessed considerably in order to make them digestible by
the algorithms. However, this preprocessing step usually
requires human expertise, which is subjective and sometimes
incompatible with the ultimate goal of the learning algorithms.
To overcome this challenge, DL can recognize and

automatically extract highly specialized features from the raw
data by a training process that agrees with the latest
classification or regression stages. This solution can consid-
erably improve the performance of system tasks. By taking such
a strategy, DL has been applied to solve analyte classification
with automatically extracted features,70,83 translocation wave-
form regression and identification,25,77 and noise recognition
and elimination62,87 in nanopore sensing. Yet, DL has its own
drawbacks that render it difficult to implement in some
scenarios. To begin with, DL is inherently a data-hungry
strategy lacking mechanisms for learning relevant abstractions
from few explicitly exposed examples. This pitfall is far from
how humans solve problems on a daily basis. Additionally, DL
works best when there are thousands, millions, or even billions
of training examples.101 In problems with limited data sources,
DL is not an ideal solution. In the specific area of nanopore
sensing, real traces collected from nanopore translocation
experiments could be abundant, but they are not labeled.
Recruiting staff for labeling such data is not viable, given the
extension of the data sets needed to train any conceivable DL
architecture. Palliative strategies as the ones discussed above
could solve the problem at least partially. For instance, data can
be augmented in several ways, knowledge of the system can be
transferred to new tasks, and alternative unsupervised tasks can
serve as pretraining examples to improve the performance
obtained from scarcely labeled data sets. Moreover, it is
paramount to develop good strategies to augment the available
data or to pretrain the architectures on, for instance,
unsupervised tasks before training (fine-tuning) them on
labeled data for the final downstream tasks. Generating
artificial nanopore translocation signal traces appears to be a
good option. Such a path has its own caveats though, since
generating a data set with the same probability distribution as
the experimental data is an impossible endeavor.
Nonetheless, an approximation can be achieved and the

better it is, the better the network can be trained regarding
experimental data sets. From the perspective of the
architecture, DL offers a rich repertoire of alternatives with
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different characteristics. A reasonable strategy seems to be
following the trends utilized in current state-of-the-art
computer vision and language models. For example, it is a
reasonable path that employs CNNs as preprocessing back-
bones pretrained on unsupervised tasks. Afterward, it fine-
tunes such backbones using attentional architectures, such as
transformers. Finally, it trains them on supervised downstream
tasks with reduced labeled data sets. Therefore, it demands
new ways of augmenting nanopore translocation data or
alternatively generating unsupervised tasks in order to pretrain
the architectures.

■ CONCLUSION AND OUTLOOK

Nanopore-based sensors have found myriad existing applica-
tions and confer potential in a wide range of scientific
disciplines and technological areas. The realization of nano-
pore sensors has critically benefitted from today’s mature
biotechnology and semiconductor fabrication technology.
Signal processing is an inseparable component of sensing in
order to identify the hidden features in the signals and to
analyze them. In general, the signal processing flow can be
divided into four steps: denoising, spike recognition, feature
extraction, and analyte identification. Following this processing
flow, the developmental tactics and features of the algorithms
at each step are discussed with implementation examples, by
categorizing them into ML-based and non-ML-based classes.
With the application of ML, the performance of an algorithm is
enhanced to a great extent, especially for classification tasks,
thus facilitating the wide spectrum of real-life applications of
nanopore sensors. Lately, an increasing number of novel
algorithms are developed periodically. Thus, in this work, a
comprehensive guide is provided with further discussion on the
special properties of ML-based algorithms that are shaping up
a new paradigm in the field.
A successful nanopore technology builds on two hand-in-

hand pillars, i.e., the “hardware” comprising, apart from
essential biochemistry, device fabrication, integration, upscal-
ing, electronics, surface management, and the “software”
named signal processing. Nanopore sensing signals are
generally different from those of other sensing approaches
and require special treatments. Three sets of major challenges
need to be resolved in order to take full advantage of the great
potentials of nanopore technology. (i) The complicated
physics in the intertwined processes of ion transport and
analyte translocation makes the mechanisms behind signal
generation intriguing, since they depend on a large range of
different factors. (ii) The nanoconfined space, surface-
dominant processes, multiorigin noise, high environmental
susceptibility, and weak long-term stability invite serious
concerns about the quality of signals. Achieving a quantitative
and precise description of the signals can render a challenging
proposition. (iii) The great variability found in the
configuration of sensor structures and experimental measure-
ments demands the handling of the nanopore signals to seek
interpretation of the widely varying data and to standardize
procedures, tools, and protocols. In order to respond to these
three challenges, two aspects are considered. On one hand,
sophisticated physical models based on the established
translocation mechanisms are required to assist the evolution
of corresponding algorithms. On the other hand, strategies for
performance enhancement regarding accuracy, objectivity,
robustness, and adaptiveness need be outlined.

As can be seen from the general flow of signal processing for
nanopore sensors, each step has its own purpose. No single
algorithm/strategy can resolve all problems covering the entire
flow. Moreover, this flow is not strict and can be redesigned to
take into consideration variations in sensor structures,
measurement configurations, target analytes, and application
scenarios. Thus, the algorithms are highly application-specific,
and some may skip certain steps while others may need to
integrate several.
Further development of algorithms for nanopore sensors

should consider three aspects. (1) Modularity in each step is a
necessity in order to retain the flexibility of the signal
processing flow. Users should be able to select suitable
algorithms, according to the nature of the data, so as to
accomplish the entire task from raw data to final extraction of
analyte properties. Standardization of the inputs and outputs is
required for each step. (2) Tailorability is another important
feature that users should be provided with. Some system
parameters for each algorithm, such as format of data, option
of data pretreatment, interested feature of the signal, etc., may
need reconfiguration in order to adapt to the specified
application. (3) A synthetical platform as a package solution
is welcome. It integrates several algorithms in all steps and
assembles a pipeline of the signal processing by the users’
preference. Furthermore, the performance of different
algorithms can be compared systematically, which offers a
reference for users’ selection.
Advanced algorithms should be able to assess more

stereoscopic data than generated electrically by analyte
translocations. Optical and nanomechanical signals are
complementary examples. Algorithms of the next level are
also able to evaluate experiment-related information such as
design and fabrication parameters and characterization
conditions. Co-design of experiment and algorithm would be
the ultimate.
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■ VOCABULARY

Nanopore sensor, A sensor device with a nanoscale pore in a
separation membrane. It usually works in electrolytes to count
or analyze analytes, such as biomolecules, upon their passage
through the pore that generates signals of electrical, optical, or
mechanical nature; Pulse-like signal, A time-sequence signal
that consists of rapidly increasing-decreasing changes, i.e.,
pulses, on a generally stable baseline. The appearance of these
pulses can be either random, such as neuron spike signals and
nanopore translocation signals, or regular, such as electro-
cardiographic signals; Machine learning, A family of algorithms
whose current output is associated with its history input or the
distribution of the history input. Hence, such algorithms are
built on recurrently “learning” from the history/distribution of
the input. Such learning can be either explicit, as in a
supervised training process, or implicit, as in some
unsupervised clustering algorithms; Signal features, Abstract
parameters that characterize the information of a signal.
Feature extraction is a process of information compression that
uses several parameters to represent the information of interest
for the signal; Labeled data, Data with correct answers. They
are marked and subsequently used for training an algorithm in
accordance to a supervised learning process. These correct
answers are the information of interest that are anticipated
from the algorithm upon inputting corresponding data. They
can be the right class of the data and/or the right values of
certain quantities of the data; Deep vs. shallow learning, Two
different categories of machine learning algorithms. Deep
learning is based on a huge number of tunable parameters that
can be even larger than the amount of training data, such as
those in a neural network, while shallow leaning uses a
relatively smaller scale of tunable parameters, such as those in a
support vector machine; Classification vs regression, Two
distinct categories of machine learning tasks. A classification
task requires that an algorithm identify the input data and
divide them into several preset classes, while a regression task
anticipates that an algorithm predict the values of continuous
variables, usually the characteristic quantities of the data

■ REFERENCES
(1) Deamer, D.; Akeson, M.; Branton, D. Three Decades of
Nanopore Sequencing. Nat. Biotechnol. 2016, 34, 518−524.
(2) Luo, Y.; Wu, L.; Tu, J.; Lu, Z. Application of Solid-State
Nanopore in Protein Detection. Int. J. Mol. Sci. 2020, 21, 2808.
(3) Wu, H.-C.; Astier, Y.; Maglia, G.; Mikhailova, E.; Bayley, H.
Protein Nanopores with Covalently Attached Molecular Adapters. J.
Am. Chem. Soc. 2007, 129, 16142−16148.
(4) Borsley, S.; Cockroft, S. L. In Situ Synthetic Functionalization of
a Transmembrane Protein Nanopore. ACS Nano 2018, 12, 786−794.
(5) Goyal, G.; Freedman, K. J.; Kim, M. J. Gold Nanoparticle
Translocation Dynamics and Electrical Detection of Single Particle
Diffusion Using Solid-State Nanopores. Anal. Chem. 2013, 85, 8180−
8187.
(6) Venta, K. E.; Zanjani, M. B.; Ye, X.; Danda, G.; Murray, C. B.;
Lukes, J. R.; Drndic, M. Gold Nanorod Translocations and Charge
Measurement through Solid-State Nanopores. Nano Lett. 2014, 14,
5358−5364.
(7) Rhee, M.; Burns, M. A. Nanopore Sequencing Technology:
Research Trends and Applications. Trends Biotechnol. 2006, 24, 580−
586.
(8) O’Donnell, C. R.; Wiberg, D. M.; Dunbar, W. B. A Kalman Filter
for Estimating Nanopore Channel Conductance in Voltage-Varying
Experiments. IEEE 51st Conference on Decision and Control (IEEE
CDC) 2012, 2304−2309.

(9) Raillon, C.; Granjon, P.; Graf, M.; Steinbock, L.; Radenovic, A.
Fast and Automatic Processing of Multi-Level Events in Nanopore
Translocation Experiments. Nanoscale 2012, 4, 4916−4924.
(10) Albrecht, T.; Slabaugh, G.; Alonso, E.; Al-Arif, S. M. R. Deep
Learning for Single-Molecule Science. Nanotechnology 2017, 28,
423001.
(11) Das, N.; Mandal, N.; Sekhar, P. K.; RoyChaudhuri, C. Signal
Processing for Single Biomolecule Identification Using Nanopores: A
Review. IEEE Sens. J. 2021, 21, 12808−11820.
(12) Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H. S. Advancing
Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346−3364.
(13) Taniguchi, M. Combination of Single-Molecule Electrical
Measurements and Machine Learning for the Identification of Single
Biomolecules. ACS Omega 2020, 5, 959−964.
(14) Arima, A.; Tsutsui, M.; Washio, T.; Baba, Y.; Kawai, T. Solid-
State Nanopore Platform Integrated with Machine Learning for
Digital Diagnosis of Virus Infection. Anal. Chem. 2021, 93, 215−227.
(15) Ma, H.; Ying, Y.-L. Recent Progress on Nanopore Electro-
chemistry and Advanced Data Processing. Curr. Opin. Electrochem.
2021, 26, 100675.
(16) Eggenberger, O. M.; Ying, C.; Mayer, M. Surface Coatings for
Solid-State Nanopores. Nanoscale 2019, 11, 19636−19657.
(17) Wang, J.; Bafna, J. A.; Bhamidimarri, S. P.; Winterhalter, M.
Small-Molecule Permeation across Membrane Channels: Chemical
Modification to Quantify Transport across OmpF. Angew. Chem., Int.
Ed. 2019, 58, 4737−4741.
(18) Wei, R.; Gatterdam, V.; Wieneke, R.; Tampé, R.; Rant, U.
Stochastic Sensing of Proteins with Receptor-Modified Solid-State
Nanopores. Nat. Nanotechnol. 2012, 7, 257−263.
(19) Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R.
C.; Li, J.; Yang, J.; Mayer, M. Controlling Protein Translocation
through Nanopores with Bio-Inspired Fluid Walls. Nat. Nanotechnol.
2011, 6, 253−260.
(20) Wang, H.-Y.; Song, Z.-Y.; Zhang, H.-S.; Chen, S.-P. Single-
Molecule Analysis of Lead(II)-Binding Aptamer Conformational
Changes in an α-hemolysin Nanopore, and Sensitive Detection of
Lead(II). Microchim. Acta 2016, 183, 1003−1010.
(21) Galenkamp, N. S.; Soskine, M.; Hermans, J.; Wloka, Z.; Maglia,
G. Direct Electrical Quantification of Glucose and Asparagine from
Bodily Fluids Using Nanopores. Nat. Commun. 2018, 9, 4085.
(22) Duda, R. O.; Hart, P. E. Pattern Classification and Scene Analysis,
2nd ed.; John Wiley & Sons: New York, 2001.
(23) Zhao, Y.; Ashcroft, B.; Zhang, P.; Liu, H.; Sen, S.; Song, W.; Im,
J.; Gyarfas, B.; Manna, S.; Biswas, S.; Borges, C.; Lindsay, S. Single-
Molecule Spectroscopy of Amino Acids and Peptides by Recognition
Tunnelling. Nat. Nanotechnol. 2014, 9, 466−473.
(24) Im, J.; Biswas, S.; Liu, H.; Zhao, Y.; Sen, S.; Biswas, S.; Ashcroft,
B.; Borges, C.; Wang, X.; Lindsay, S.; Zhang, P. Electronic Single-
Molecule Identification of Carbohydrate Isomers by Recognition
Tunnelling. Nat. Commun. 2016, 7, 13868.
(25) Celik, N.; O’Brien, F.; Brennan, S.; Rainbow, R. D.; Dart, C.;
Zheng, Y.; Coenen, F.; Barrett-Jolley, R. Deep-Channel Uses Deep
Neural Networks to Detect Single-Molecule Events from Patch-
Clamp Data. Comm. Biol. 2020, 3, 1−10.
(26) Wen, C.; Zeng, S.; Arstila, K.; Sajavaara, T.; Zhu, Y.; Zhang, Z.;
Zhang, S.-L. Generalized Noise Study of Solid-State Nanopores at
Low Frequencies. ACS Sens. 2017, 2, 300−307.
(27) Wen, C.; Zhang, S.-L. Fundamentals and Potentials of Solid-
State Nanopores: A Review. J. Phys. D: Appl. Phys. 2021, 54, 023001.
(28) Pedone, D.; Firnkes, M.; Rant, U. Data Analysis of
Translocation Events in Nanopore Experiments. Anal. Chem. 2009,
81, 9689−9694.
(29) Shekar, S.; Chien, C.-C.; Hartel, A.; Ong, P.; Clarke, O. B.;
Marks, A.; Drndic, M.; Shepard, K. L. Wavelet Denoising of High-
Bandwidth Nanopore and Ion-Channel Signals. Nano Lett. 2019, 19,
1090−1097.
(30) Jagtiani, A. V.; Sawant, R.; Carletta, J.; Zhe, J. Wavelet
Transform-Based Methods for Denoising of Coulter Counter Signals.
Meas. Sci. Technol. 2008, 19, 065102.

ACS Sensors pubs.acs.org/acssensors Review

https://doi.org/10.1021/acssensors.1c01618
ACS Sens. 2021, 6, 3536−3555

3552

https://doi.org/10.1038/nbt.3423
https://doi.org/10.1038/nbt.3423
https://doi.org/10.3390/ijms21082808
https://doi.org/10.3390/ijms21082808
https://doi.org/10.1021/ja0761840?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.7b08105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.7b08105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac4012045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac4012045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac4012045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl502448s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl502448s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.tibtech.2006.10.005
https://doi.org/10.1016/j.tibtech.2006.10.005
https://doi.org/10.1109/CDC.2012.6426129
https://doi.org/10.1109/CDC.2012.6426129
https://doi.org/10.1109/CDC.2012.6426129
https://doi.org/10.1039/c2nr30951c
https://doi.org/10.1039/c2nr30951c
https://doi.org/10.1088/1361-6528/aa8334
https://doi.org/10.1088/1361-6528/aa8334
https://doi.org/10.1109/JSEN.2020.3032451
https://doi.org/10.1109/JSEN.2020.3032451
https://doi.org/10.1109/JSEN.2020.3032451
https://doi.org/10.1021/acssensors.0c01424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c01424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.9b03660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.9b03660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.9b03660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.coelec.2020.100675
https://doi.org/10.1016/j.coelec.2020.100675
https://doi.org/10.1039/C9NR05367K
https://doi.org/10.1039/C9NR05367K
https://doi.org/10.1002/anie.201814489
https://doi.org/10.1002/anie.201814489
https://doi.org/10.1038/nnano.2012.24
https://doi.org/10.1038/nnano.2012.24
https://doi.org/10.1038/nnano.2011.12
https://doi.org/10.1038/nnano.2011.12
https://doi.org/10.1007/s00604-015-1699-x
https://doi.org/10.1007/s00604-015-1699-x
https://doi.org/10.1007/s00604-015-1699-x
https://doi.org/10.1007/s00604-015-1699-x
https://doi.org/10.1038/s41467-018-06534-1
https://doi.org/10.1038/s41467-018-06534-1
https://doi.org/10.1038/nnano.2014.54
https://doi.org/10.1038/nnano.2014.54
https://doi.org/10.1038/nnano.2014.54
https://doi.org/10.1038/ncomms13868
https://doi.org/10.1038/ncomms13868
https://doi.org/10.1038/ncomms13868
https://doi.org/10.1038/s42003-019-0729-3
https://doi.org/10.1038/s42003-019-0729-3
https://doi.org/10.1038/s42003-019-0729-3
https://doi.org/10.1021/acssensors.6b00826?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.6b00826?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1361-6463/ababce
https://doi.org/10.1088/1361-6463/ababce
https://doi.org/10.1021/ac901877z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac901877z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.8b04388?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.8b04388?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0957-0233/19/6/065102
https://doi.org/10.1088/0957-0233/19/6/065102
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.1c01618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(31) Yan, B.; Cui, H.; Zhou, J.; Wang, H. Electrical Noises
Reduction in Nanopores Experiments Based on Consensus Filter.
Quim. Nova 2020, 43, 837−843.
(32) Forstater, J. H.; Briggs, K.; Robertson, J. W.; Ettedgui, J.; Marie-
Rose, O.; Vaz, C.; Kasianowicz, J. J.; Tabard-Cossa, V.; Balijepalli, A.
MOSAIC: A Modular Single-Molecule Analysis Interface for
Decoding Multistate Nanopore Data. Anal. Chem. 2016, 88,
11900−11907.
(33) WANG, H.-F.; HUANG, F.; GU, Z.; HU, Z.-L.; YING, Y.-L.;
YAN, B.-Y.; LONG, Y.-T. Real-Time Event Recognition and Analysis
System for Nanopore Study. Chin. J. Anal. Chem. 2018, 46, 843−850.
(34) Plesa, C.; Dekker, C. Data Analysis Methods for Solid-State
Nanopores. Nanotechnology 2015, 26, 084003.
(35) Dematties, D.; Wen, C.; Pérez, M. D.; Zhou, D.; Zhang, S.-L.
Deep Learning of Nanopore Sensing Signals Using a Bi-Path
Network. ACS Nano 2021, 1 DOI: 10.1021/acsnano.1c03842.
(36) Zeng, S.; Wen, C.; Solomon, P.; Zhang, S.-L.; Zhang, Z.
Rectification of Protein Translocation in Truncated Pyramidal
Nanopores. Nat. Nanotechnol. 2019, 14, 1056−1062.
(37) Huang, Y.; Magierowski, S.; Ghafar-Zadeh, E.; Wang, C. A
High-Speed Real-Time Nanopore Signal Detector. IEEE Conference on
Computational Intelligence in Bioinformatics and Computational Biology
(IEEE CIBCB) 2015, 1−8.
(38) Talaga, D. S.; Li, J. Single-Mmolecule Protein Unfolding in
Solid State Nanopores. J. Am. Chem. Soc. 2009, 131, 9287−9297.
(39) Balijepalli, A.; Ettedgui, J.; Cornio, A. T.; Robertson, J. W.;
Cheung, K. P.; Kasianowicz, J. J.; Vaz, C. Quantifying Short-Lived
Events in Multistate Ionic Current Measurements. ACS Nano 2014, 8,
1547−1553.
(40) Balijepalli, A.; Ettedgui, J.; Cornio, A. T.; Robertson, J. W.;
Cheung, K. P.; Kasianowicz, J. J.; Vaz, C. Correction to Quantifying
Short-Lived Events in Multistate Ionic Channel Measurements. ACS
Nano 2015, 9, 12583−12583.
(41) Gu, Z.; Ying, Y.-L.; Cao, C.; He, P.; Long, Y.-T. Accurate Data
Process for Nanopore Analysis. Anal. Chem. 2015, 87, 907−913.
(42) Dunbar, W. B. Comment on Accurate Data Process for
Nanopore Analysis. Anal. Chem. 2015, 87, 10650−10652.
(43) Gu, Z.; Ying, Y.-L.; Cao, C.; He, P.; Long, Y.-T. Reply to
Comment on Accurate Data Process for Nanopore Analysis. Anal.
Chem. 2015, 87, 10653−10656.
(44) Zhang, N.; Hu, Y.-X.; Gu, Z.; Ying, Y.-L.; He, P.-G.; Long, Y.-T.
An Integrated Software System for Analyzing Nanopore Data. Chin.
Sci. Bull. 2014, 59, 4942−4945.
(45) Loeff, L.; Kerssemakers, J. W.; Joo, C.; Dekker, C.
AutoStepfinder: A Fast and Auto-Mated Step Detection Method for
Single-Molecule Analysis. Patterns 2021, 2, 100256.
(46) Kerssemakers, J. W.; Munteanu, E. L.; Laan, L.; Noetzel, T. L.;
Janson, M. E.; Dogterom, M. Assembly Dynamics of Microtubules at
Molecular Resolution. Nature 2006, 442, 709−712.
(47) Gnanasambandam, R.; Nielsen, M. S.; Nicolai, C.; Sachs, F.;
Hofgaard, J. P.; Dreyer, J. K. Unsupervised Idealization of Ion
Channel Recordings by Minimum Description Length: Application to
Human PIEZO1-Channels. Front. Neuroinform. 2017, 11, 31.
(48) Tsutsui, M.; Yoshida, T.; Yokota, K.; Yasaki, H.; Yasui, T.;
Arima, A.; Tonomura, W.; Nagashima, K.; Yanagida, T.; Kaji, N.;
Taniguchi, M.; Washio, T.; Baba, Y.; Kawai, T. Discriminating Single-
Bacterial Shape Using Low-Aspect-Ratio Pores. Sci. Rep. 2017, 7,
17371.
(49) Arima, A.; Harlisa, I. H.; Yoshida, T.; Tsutsui, M.; Tanaka, M.;
Yokota, K.; Tonomura, W.; Yasuda, J.; Taniguchi, M.; Washio, T.;
Okochi, M.; Kawai, T. Identifying Single Viruses Using Biorecogni-
tion Solid-State Nanopores. J. Am. Chem. Soc. 2018, 140, 16834−
16841.
(50) Arima, A.; Tsutsui, M.; Harlisa, I. H.; Yoshida, T.; Tanaka, M.;
Yokota, K.; Tonomura, W.; Taniguchi, M.; Okochi, M.; Washio, T.;
Kawai, T. Selective Detections of Single-Viruses Using Solid-State
Nanopores. Sci. Rep. 2018, 8, 16305.

(51) Im, J.; Sen, S.; Lindsay, S.; Zhang, P. Recognition Tunneling of
Canonical and Modified RNA Nucleotides for Their Identification
with the Aid of Machine Learning. ACS Nano 2018, 12, 7067−7075.
(52) Larkin, J.; Henley, R. Y.; Muthukumar, M.; Rosenstein, J. K.;
Wanunu, M. High-Bandwidth Protein Analysis Using Solid-State
Nanopores. Biophys. J. 2014, 106, 696−704.
(53) Sha, J.; Si, W.; Xu, B.; Zhang, S.; Li, K.; Lin, K.; Shi, H.; Chen,
Y. Identification of Spherical and Nonspherical Proteins by a Solid-
State Nanopore. Anal. Chem. 2018, 90, 13826−13831.
(54) Tsutsui, M.; Yokota, K.; Arima, A.; He, Y.; Kawai, T. Solid-
State Nanopore Time-of-Flight Mass Spectrometer. ACS Sens. 2019,
4, 2974−2979.
(55) Houghtaling, J.; List, J.; Mayer, M. Nanopore-Based, Rapid
Characterization of Individual Amyloid Particles in Solution:
Concepts, Challenges, and Prospects. Small 2018, 14, 1802412.
(56) Lan, W.-J.; Holden, D. A.; Zhang, B.; White, H. S. Nanoparticle
Transport in Conical-Shaped Nanopores. Anal. Chem. 2011, 83,
3840−3847.
(57) Wei, X.; Ma, D.; Zhang, Z.; Wang, L. Y.; Gray, J. L.; Zhang, L.;
Zhu, T.; Wang, X.; Lenhart, B. J.; Yin, Y.; Wang, Q.; Liu, C. N-
Terminal Derivatization-Assisted Identification of Individual Amino
Acids Using a Biological Nanopore Sensor. ACS Sens. 2020, 5, 1707−
1716.
(58) Das, N.; Ray, R.; Ray, S.; Roychaudhuri, C. Intelligent
Quantification of Picomolar Protein Concentration in Serum by
Functionalized Nanopores. IEEE Sens. J. 2018, 18, 10183−10191.
(59) Houghtaling, J.; Ying, C.; Eggenberger, O. M.; Fennouri, A.;
Nandivada, S.; Acharjee, M.; Li, J.; Hall, A. R.; Mayer, M. Estimation
of Shape, Volume, and Dipole Moment of Individual Proteins Freely
Transiting a Synthetic Nanopore. ACS Nano 2019, 13, 5231−5242.
(60) Yusko, E. C.; Bruhn, B. R.; Eggenberger, O. M.; Houghtaling,
J.; Rollings, R. C.; Walsh, N. C.; Nandivada, S.; Pindrus, M.; Hall, A.
R.; Sept, D.; Li, J.; Kalonia, D. S.; Mayer, M. Real-Time Shape
Approximation and Fingerprinting of Single Proteins Using a
Nanopore. Nat. Nanotechnol. 2017, 12, 360−367.
(61) Liu, X.; Zeng, Q.; Liu, C.; Wang, L. A Fourier Transform-
Induced Data Process for Label-Free Selective Nanopore Analysis
under Sinusoidal Voltage Excitations. Anal. Chem. 2020, 92, 11635−
11643.
(62) Tsutsui, M.; Takaai, T.; Yokota, K.; Kawai, T.; Washio, T. Deep
Learning-Enhanced Nanopore Sensing of Single-Nanoparticle Trans-
location Dynamics. Small Methods. 2021, 5, 2100191.
(63) Schreiber, J.; Karplus, K. Analysis of Nanopore Data Using
Hidden Markov Models. Bioinformatics 2015, 31, 1897−1903.
(64) Landry, M.; Winters-Hilt, S. Analysis of Nanopore Detector
Measurements Using Machine-Learning Methods, with Application to
Single-Molecule Kinetic Analysis. BMC Bioinf. 2007, 8, S12.
(65) Zhang, J.-H.; Liu, X.-L.; Hu, Z.-L.; Ying, Y.-L.; Long, Y.-T.
Intelligent Identification of Multi-Level Nanopore Signatures for
Accurate Detection of Cancer Biomarkers. Chem. Commun. 2017, 53,
10176−10179.
(66) Zhang, J.; Liu, X.; Ying, Y.-L.; Gu, Z.; Meng, F.-N.; Long, Y.-T.
High-Bandwidth Nanopore Data Analysis by Using a Modified
Hidden Markov Model. Nanoscale 2017, 9, 3458−3465.
(67) Sui, X.-J.; Li, M.-Y.; Ying, Y.-L.; Yan, B.-Y.; Wang, H.-F.; Zhou,
J.-L.; Gu, Z.; Long, Y.-T. Aerolysin Nanopore Identification of Single
Nucleotides Using the AdaBoost Model. J. Anal. Test. 2019, 3, 134−
139.
(68) Churbanov, A.; Baribault, C.; Winters-Hilt, S. Duration
Learning for Analysis of Nanopore Ionic Current Blockades. BMC
Bioinf. 2007, 8, S14.
(69) Wei, Z.-X.; Ying, Y.-L.; Li, M.-Y.; Yang, J.; Zhou, J.-L.; Wang,
H.-F.; Yan, B.-Y.; Long, Y.-T. Learning Shapelets for Improving
Single-Molecule Nanopore Sensing. Anal. Chem. 2019, 91, 10033−
10039.
(70) Diaz Carral, A.; Ostertag, M.; Fyta, M. Deep Learning for
Nanopore Ionic Current Blockades. J. Chem. Phys. 2021, 154, 044111.
(71) Wang, L. Support Vector Machines: Theory and Applications;
Springer: Berlin Heidelberg, 2005.

ACS Sensors pubs.acs.org/acssensors Review

https://doi.org/10.1021/acssensors.1c01618
ACS Sens. 2021, 6, 3536−3555

3553

https://doi.org/10.21577/0100-4042.20170560
https://doi.org/10.21577/0100-4042.20170560
https://doi.org/10.1021/acs.analchem.6b03725?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b03725?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S1872-2040(18)61090-4
https://doi.org/10.1016/S1872-2040(18)61090-4
https://doi.org/10.1088/0957-4484/26/8/084003
https://doi.org/10.1088/0957-4484/26/8/084003
https://doi.org/10.1021/acsnano.1c03842?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c03842?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c03842?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41565-019-0549-0
https://doi.org/10.1038/s41565-019-0549-0
https://doi.org/10.1109/CIBCB.2015.7300316
https://doi.org/10.1109/CIBCB.2015.7300316
https://doi.org/10.1021/ja901088b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja901088b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn405761y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn405761y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b06216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b06216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac5028758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac5028758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b02281?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b02281?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b03225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.5b03225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s11434-014-0660-4
https://doi.org/10.1016/j.patter.2021.100256
https://doi.org/10.1016/j.patter.2021.100256
https://doi.org/10.1038/nature04928
https://doi.org/10.1038/nature04928
https://doi.org/10.3389/fninf.2017.00031
https://doi.org/10.3389/fninf.2017.00031
https://doi.org/10.3389/fninf.2017.00031
https://doi.org/10.1038/s41598-017-17443-6
https://doi.org/10.1038/s41598-017-17443-6
https://doi.org/10.1021/jacs.8b10854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b10854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-018-34665-4
https://doi.org/10.1038/s41598-018-34665-4
https://doi.org/10.1021/acsnano.8b02819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b02819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b02819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bpj.2013.12.025
https://doi.org/10.1016/j.bpj.2013.12.025
https://doi.org/10.1021/acs.analchem.8b04136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b04136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.9b01470?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.9b01470?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/smll.201802412
https://doi.org/10.1002/smll.201802412
https://doi.org/10.1002/smll.201802412
https://doi.org/10.1021/ac200312n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac200312n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c00345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c00345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c00345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/JSEN.2018.2872853
https://doi.org/10.1109/JSEN.2018.2872853
https://doi.org/10.1109/JSEN.2018.2872853
https://doi.org/10.1021/acsnano.8b09555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b09555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b09555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nnano.2016.267
https://doi.org/10.1038/nnano.2016.267
https://doi.org/10.1038/nnano.2016.267
https://doi.org/10.1021/acs.analchem.0c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/smtd.202100191
https://doi.org/10.1002/smtd.202100191
https://doi.org/10.1002/smtd.202100191
https://doi.org/10.1093/bioinformatics/btv046
https://doi.org/10.1093/bioinformatics/btv046
https://doi.org/10.1186/1471-2105-8-S7-S12
https://doi.org/10.1186/1471-2105-8-S7-S12
https://doi.org/10.1186/1471-2105-8-S7-S12
https://doi.org/10.1039/C7CC04745B
https://doi.org/10.1039/C7CC04745B
https://doi.org/10.1039/C6NR09135K
https://doi.org/10.1039/C6NR09135K
https://doi.org/10.1007/s41664-019-00088-x
https://doi.org/10.1007/s41664-019-00088-x
https://doi.org/10.1186/1471-2105-8-S7-S14
https://doi.org/10.1186/1471-2105-8-S7-S14
https://doi.org/10.1021/acs.analchem.9b01896?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b01896?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0037938
https://doi.org/10.1063/5.0037938
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.1c01618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(72) Konnanath, B.; Sattigeri, P.; Mathew, T.; Spanias, A.; Prasad, S.;
Goryll, M.; Thornton, T.; Knee, P. Acquiring and Classifying Signals
from Nanopores and Ion-Channels. Artificial Neural Networks-
International Conference on Artificial Neural Networks (ICANN)
2009, 5769, 265−274.
(73) Meyer, N.; Janot, J.-M.; Lepoitevin, M.; Smietana, M.; Vasseur,
J.-J.; Torrent, J.; Balme, S. Machine Learning to Improve the Sensing
of Biomolecules by Conical Track-Etched Nanopore. Biosensors 2020,
10, 140.
(74) Im, J.; Lindsay, S.; Wang, X.; Zhang, P. Single Molecule
Identification and Quantification of Glycosaminoglycans Using Solid-
State Nanopores. ACS Nano 2019, 13, 6308−6318.
(75) Biswas, S.; Sen, S.; Im, J.; Biswas, S.; Krstic, P.; Ashcroft, B.;
Borges, C.; Zhao, Y.; Lindsay, S.; Zhang, P. Universal Readers Based
on Hydrogen Bonding or π-π Stacking for Identification of DNA
Nucleotides in Electron Tunnel Junctions. ACS Nano 2016, 10,
11304−11316.
(76) Reynaud, L.; Bouchet-Spinelli, A.; Janot, J.-M.; Buhot, A.;
Balme, S.; Raillon, C. Discrimination of α-Thrombin and γ-Thrombin
Using Aptamer-Functionalized Nanopore Sensing. Anal. Chem. 2021,
93, 7889−7897.
(77) Kolmogorov, M.; Kennedy, E.; Dong, Z.; Timp, G.; Pevzner, P.
A. Single-Molecule Protein Identification by Sub-Nanopore Sensors.
PLoS Comput. Biol. 2017, 13, e1005356.
(78) Kuncheva, L. I.; Rodriguez, J. J. An Experimental Study on
Rotation Forest Ensembles. Multiple Classifier Systems. International
Workshop on Multiple Classifier Systems (MCS) 2007, 4472, 459−468.
(79) Hattori, S.; Sekido, R.; Leong, I. W.; Tsutsui, M.; Arima, A.;
Tanaka, M.; Yokota, K.; Washio, T.; Kawai, T.; Okochi, M. Machine
Learning-Driven Electronic Identifications of Single Pathogenic
Bacteria. Sci. Rep. 2020, 10, 15525.
(80) Taniguchi, M.; Minami, S.; Ono, C.; Hamajima, R.; Morimura,
A.; Hamaguchi, S.; Akeda, Y.; Kanai, Y.; Kobayashi, T.; Kamitani, W.;
Terada, Y.; Suzuki, K.; Hatori, N.; Yamagishi, Y.; Washizu, N.; Takei,
H.; Sakamoto, O.; Naono, N.; Tatematsu, K.; Washio, T.; Matsuura,
Y.; Tomono, K. Combining Machine Learning and Nanopore
Construction Creates an Artificial Intelligence Nanopore for
Coronavirus Detection. Nat. Commun. 2021, 12, 3726.
(81) Cardozo, N.; Zhang, K.; Doroschak, K.; Nguyen, A.; Siddiqui,
Z.; Strauss, K.; Ceze, L.; Nivala, J. Multiplexed Direct Detection of
Barcoded Protein Reporters on a Nanopore Array. Nat. Biotechnol.
2021, 1 DOI: 10.1038/s41587-021-01002-6.
(82) LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015,
521, 436−444.
(83) Misiunas, K.; Ermann, N.; Keyser, U. F. QuipuNet:
Convolutional Neural Network for Single-Molecule Nanopore
Sensing. Nano Lett. 2018, 18, 4040−4045.
(84) Ohayon, S.; Girsault, A.; Nasser, M.; Shen-Orr, S.; Meller, A.
Simulation of Single-Protein Nanopore Sensing Shows Feasibility for
Whole-Proteome Identification. PLoS Comput. Biol. 2019, 15,
No. e1007067.
(85) Fu, X.; Wan, Y.; Li, X.; Ying, Y.; Long, Y. Analysis and
Classification of Nanopore Data Based on Feature-Level Multi-
Modality. 13th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI) 2020, 692−698.
(86) Karawdeniya, B. I.; Bandara, Y. M. N. D. Y.; Khan, A. I.; Chen,
W. T.; Vu, H.-A.; Morshed, A.; Suh, J.; Duttab, P.; Kim, M. J. Adeno-
Associated Virus Characterization for Cargo Discrimination through
Nanopore Responsiveness. Nanoscale 2020, 12, 23721.
(87) Taniguchi, M.; Ohshiro, T.; Komoto, Y.; Takaai, T.; Yoshida,
T.; Washio, T. High-Precision Single-Molecule Identification Based
on Single-Molecule Information within a Noisy Matrix. J. Phys. Chem.
C 2019, 123, 15867−15873.
(88) Tsutsui, M.; Tanaka, M.; Marui, T.; Yokota, K.; Yoshida, T.;
Arima, A.; Tonomura, W.; Taniguchi, M.; Washio, T.; Okochi, M.;
Kawai, T. Identification of Individual Bacterial Cells through the
Intermolecular Interactions with Peptide-Functionalized Solid-State
Pores. Anal. Chem. 2018, 90, 1511−1515.

(89) Xia, K.; Hagan, J. T.; Fu, L.; Sheetz, B. S.; Bhattacharya, S.;
Zhang, F.; Dwyer, J. R.; Linhardt, R. J. Synthetic Heparan Sulfate
Standards and Machine Learning Facilitate the Development of Solid-
State Nanopore Analysis. Proc. Natl. Acad. Sci. U. S. A. 2021, 118,
No. e2022806118.
(90) Barati Farimani, A.; Heiranian, M.; Aluru, N. R. Identification
of Amino Acids with Sensitive Nanoporous MoS2: Towards Machine
Learning-Based Prediction. npj 2D Mater. Appl. 2018, 2, 1−9.
(91) Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT
Press: Boston, 2016.
(92) Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based
Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278−2324.
(93) Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet
Classification with Deep Convolutional Neural Networks. Proceedings
of the 25th International Conference on Neural Information Processing
Systems 2012, 1097−1105.
(94) Simonyan, K.; Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv, 2015,
1409.1556v6. https://arxiv.org/abs/1409.1556 (accessed Sept 1,
2021).
(95) Szegedy, C.; Wei Liu; Yangqing Jia; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going
Deeper with Convolutions. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2015, 1.
(96) Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated
Residual Transformations for Deep Neural Networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) 2017,
5987.
(97) Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K. Q.
Densely Connected Convolutional Networks. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 2017, 2261.
(98) Ahmad, A. M.; Ismail, S.; Samaon, D. F. Recurrent Neural
Network with Backpropagation through Time for Speech Recog-
nition. IEEE International Symposium on Communications and
Information Technology (IEEE ISCIT) 2004, 98.
(99) Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory.
Neural Comput. 1997, 9, 1735−1780.
(100) Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I. Language Models Are Unsupervised Multitask Learners;
2019 https://paperswithcode.com/paper/language-models-are-
unsupervised-multitask (accessed Sept 1, 2021).
(101) Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.;
Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.;
Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.;
Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.;
McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D. Language
Models Are Few-Shot Learners. arXiv, 2020, 2005.14165v4. https://
arxiv.org/abs/2005.14165 (accessed Sept 1, 2021).
(102) Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-
Training of Deep Bidirectional Transformers for Language Under-
standing. arXiv, 2019, 1810.04805v2. https://arxiv.org/abs/1810.
04805 (accessed Sept 1, 2021).
(103) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
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