
1Scientific Data |           (2022) 9:587  | https://doi.org/10.1038/s41597-022-01681-z

www.nature.com/scientificdata

A comprehensive genomic and 
transcriptomic dataset of triple-
negative breast cancers
Qingwang Chen   1,6, Yaqing Liu   1,6, Yuechen Gao1,6, Ruolan Zhang1,6, Wanwan Hou   1,6, 
Zehui Cao1, Yi-Zhou Jiang2, Yuanting Zheng1, Leming Shi   1,3,4, Ding Ma2 ✉,  
Jingcheng Yang   1,5 ✉, Zhi-Ming Shao2 ✉ & Ying Yu   1 ✉

Molecular subtyping of triple-negative breast cancer (TNBC) is essential for understanding the 
mechanisms and discovering actionable targets of this highly heterogeneous type of breast cancer. 
We previously performed a large single-center and multiomics study consisting of genomics, 
transcriptomics, and clinical information from 465 patients with primary TNBC. To facilitate reusing 
this unique dataset, we provided a detailed description of the dataset with special attention to data 
quality in this study. The multiomics data were generally of high quality, but a few sequencing data 
had quality issues and should be noted in subsequent data reuse. Furthermore, we reconduct data 
analyses with updated pipelines and the updated version of the human reference genome from hg19 to 
hg38. The updated profiles were in good concordance with those previously published in terms of gene 
quantification, variant calling, and copy number alteration. Additionally, we developed a user-friendly 
web-based database for convenient access and interactive exploration of the dataset. Our work will 
facilitate reusing the dataset, maximize the values of data and further accelerate cancer research.

Background & Summary
Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer and is characterized by the 
lack of expression of estrogen receptor (ER) and progesterone receptor (PR), and the lack of amplification of 
the human epidermal growth receptor 2 (HER2)1,2. This feature leads to the ineffectiveness of the main targeted 
therapeutic treatments for TNBC patients. Meanwhile, the high heterogeneity of TNBC makes it possible for 
each subtype to find its specific etiology and optimal treatment, suggesting the requirement of precise patient 
subtyping3–5. Therefore, molecular profiling-based subtyping is an important strategy for the study of TNBC to 
achieve precise drug administration6–9.

To provide a broader molecular profile of TNBC, we performed a large single-center multiomics study of 
TNBC at the Fudan University Shanghai Cancer Center (FUSCC)10. A unique dataset was established including 
gene quantification, variant calling, and copy number alteration (CNA) data of 465 primary Chinese TNBCs. 
This research helped discover actionable targets for different subtypes and explore connections of multiomics 
features with clinical information, especially in East Asian TNBC patients11,12. Since its initial publication in 
2019, this dataset has been utilized extensively by the scientific community, deepening the understanding of the 
heterogeneity about the immune microenvironment in TNBC, facilitating the discovery of multiple molecular 
biomarkers, and the development of prognostic models for TNBC patients13–27.

However, most of the follow-up studies utilized only a part of the rich dataset, suggesting that the full poten-
tial of the dataset has not been realized, presumably due to a lack of detailed description and user-friendly 
toolsets to access the datasets. Specifically, the dataset has not been sufficiently described and details of the 

1State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan 
University, Shanghai, China. 2Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision 
Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China. 3Shanghai Cancer Hospital/
Cancer Institute, Fudan University, Shanghai, 200438, China. 4Fudan-Gospel Joint Research Center for Precision 
Medicine, Fudan University, Shanghai, 200438, China. 5Greater Bay Area Institute of Precision Medicine, Guangzhou, 
Guangdong, China. 6These authors contributed equally: Qingwang Chen, Yaqing Liu, Yuechen Gao, Ruolan Zhang, 
Wanwan Hou. ✉e-mail: dma09@fudan.edu.cn; yjcyxky@163.com; zhimingshao@yahoo.com; ying_yu@fudan.
edu.cn

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-022-01681-z
http://orcid.org/0000-0002-7191-5801
http://orcid.org/0000-0001-9356-9164
http://orcid.org/0000-0002-9813-4554
http://orcid.org/0000-0002-2981-4150
http://orcid.org/0000-0002-2550-3910
http://orcid.org/0000-0002-4084-908X
mailto:dma09@fudan.edu.cn
mailto:yjcyxky@163.com
mailto:zhimingshao@yahoo.com
mailto:ying_yu@fudan.edu.cn
mailto:ying_yu@fudan.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01681-z&domain=pdf


2Scientific Data |           (2022) 9:587  | https://doi.org/10.1038/s41597-022-01681-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

analysis pipelines were not fully available in our previous article and other follow-up studies. Moreover, there 
have been updates of mainstream databases (e.g. the adoption of the human reference genome hg38 over hg19) 
and software packages previously used. Importantly, the reproducibility of results with the updated pipelines has 
not been evaluated. Therefore, a detailed description of the dataset with special attention to data quality as well 
as reanalyzing this dataset using the updated pipelines are urgently needed for facilitating reusing this TNBC 
dataset.

In this Data Descriptor, we performed various rigorous quality control (QC) to ensure the data quality from 
RNA sequencing (RNAseq), whole-exome sequencing (WES), and OncoScan copy number variations (CNV) 
assay. Additionally, we updated the dataset with a detailed description of the processing steps. By comparing 
the updated and previously published results, we found good concordance of gene quantification, variant call-
ing, and CNA, demonstrating the excellent reproducibility of the analysis results and pipelines. Eventually, we 
stored the updated profiling files in the data portal (http://fudan-pgx.3steps.cn/cdataportal/study/summa-
ry?id=FUSCC_BRCA_2022) to help with data exchange, interpretation, and reuse. The updated dataset will 
allow researchers to better conduct TNBC studies, thereby facilitating the development of precision medicine in 
breast cancer. A visual summary of the study design and workflow is shown in Fig. 1. In addition, the number of 
samples associated with each omics data type can be seen in Table 1.
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Fig. 1  Schematic overview of the multiomics TNBC dataset. (a) Data generation and data processing. Detailed 
workflows of data processing pipelines including (b) RNAseq pipeline, (c) WES pipeline, and (d) CNA pipeline. 
The tools/algorithms, QC reports, and files are marked with grey, blue and white backgrounds, respectively. FP: 
False Positive.
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Methods
The following is a modified version of Methods previously described in Yi-Zhou Jiang et al.10.

Sample collection and preparation.  A total of 504 consecutive Chinese patients diagnosed with malig-
nant breast cancer were retrospectively selected for our TNBC cohort. All human research included in the present 
study was approved by the FUSCC Ethics Committee, and each patient provided written informed consent.

We removed poor-quality samples that were defined as those with none qualified omics data and generated 
the final cohort of 465 TNBC patients for further analysis. The tumor tissues were freshly frozen with a higher 
than 50% tumor cell percentage and a stromal cell content lower than 30%. Matched white blood cells and nor-
mal tissues were collected for DNA and RNA extraction, respectively. The multiomics dataset includes RNAseq 
data of 360 patients, WES data of 279 patients, and CNV array data of 401 patients (Table 1).

RNA isolation and RNAseq.  Total RNA from tissues previously stored in RNA-later solution was purified 
by a MiRNeasy mini kit (Qiagen, Hilden, Germany). RNA library preparation was performed from 0.3–1 µg of 
total RNA as described in the Illumina TruSeq Stranded Total RNA LT sample preparation kit with Ribo-Zero 
Gold (Illumina Inc., San Diego, CA, USA). All processes involved were implemented according to the manu-
facturers’ manuals. After using an Agilent 2100 Bioanalyzer (Agilent Technologies) with the DNA chip to test 
quality and using a Qubit® 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA) to conduct further quantification, 
the libraries were sequenced on the Illumina HiSeq platform (Illumina Inc., San Diego, CA, USA), and 150 bp 
paired-end reads were generated as FASTQ files. For each library preparation from tissue, 12 samples were loaded 
in a single lane. Additional batch information was also collected for the subsequent elimination of batch effects.

Data processing and quality control of RNAseq.  Preliminary processing of raw FASTQ reads was 
performed using fastp v0.19.628 to remove adapter sequences. In the process, fastp v0.19.628 was used to check 
the quality of reads before trimming and FastQC v0.11.5 (https://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/) after trimming. Then, we used FastQ Screen v0.12.029 to extract the first 10,000 reads from the 
clean FASTQ files to detect whether the raw data were contaminated with other species, junction primers, etc. 
Qualimap v2.0.030 was used to calculate the quality of the mapping process. We randomly selected 10% bam files 
for quality testing for efficiency and cost-effectiveness purposes.

We conducted read alignment and quantification using HISAT v2.131, SAMtools v1.3.132, StringTie v1.3.433 
and Ballgown v2.14.14934. Genome Reference Consortium human genome build 38 (Genome version: GRCh38_
snp_tran) and gene models from Ensembl (version: Homo_sapiens.GRCh38.93.gtf) were used for read mapping 
and gene quantification. Also, to remove batch effects and other unwanted variations in the dataset, we applied 
the RUVg method of the RUVSeq package35 to preprocess raw read count data. The RUVg read counts were used 
for sex check and differential expression analyses. Moreover, transcripts per kilobase of exon model per million 
mapped reads (TPM) were used to normalize the gene expression. To choose genes with accurate expression 
values, we removed genes with TPM values equivalent to zero in more than 30% of samples and applied the log2 
ratio to TPM values prior to subsequent analyses. To avoid infinite values, a value of 0.01 was added to the TPM 
value of each gene before the log2 ratio. TPM values were used to perform principal component analysis (PCA).

Detailed parameters of data processing and quality control pipelines of the RNAseq can be obtained on 
GitHub (https://github.com/fudan-tnbc/rnaseq-qc-directional).

Selection of sex-specific genes.  Sex-specific genes were identified using transcriptomic expression 
profiles from GTEx v7.036, consisting of 11,688 samples across 53 non-diseased tissue sites from 714 donors. 
Differential gene expression (DGE) analyses were conducted between female and male samples in each of 22 
tissue types that were not sex-specific tissues. A gene was identified as sex-specific when satisfying the criteria 
of Student’s t-test p < 0.05 and fold change ≥2 or ≤0.5. Sex-specific genes were then identified and used for sub-
sequent sex check, including five male-specific genes (RPS4Y1, DDX3Y, EIF1AY, KDM5D, TXLNGY) and two 
female-specific genes (XIST and TSIX).

PCA was conducted with the univariance scaling, using the prcomp function of R v4.1.2 (https://
www.r-project.org, R development core team). Hierarchical clustering analysis (HCA) was performed using 
Ward linkage based on a distance matrix using the Euclidean method to measure the distance of the samples and 
genes, using R package pheatmap v1.0.12.

DNA preparation and WES.  Total DNA was isolated from fresh frozen TNBC samples using TGuide M24 
(Tiangen, Beijing, China). The purity and quantity of total DNA were estimated by measuring the absorbance at 
260 nm (A260) and 280 nm (A280) using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, 

Omics

Number of patients with matched samples (n)

Number of patients with 
tumor samples only (n)

Total number of 
patients (n)

Matched tumor tissues 
and normal tissues

Matched tumor tissues 
and white blood cells

Transcriptome (RNAseq) 88 272 360

Genome (WES) 279 279

Genome (CNA) 23 378 401

Table 1.  Constitution of a multiomics dataset of TNBC cohort.
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DE, USA). The extracted DNA was considered to be of good quality and suitable for subsequent experiments if 
the A260/A280 ratio was within the range 1.6–1.9.

Qualified genomic DNA from tumor tissues and matched white blood cell (normal) samples were prepared 
for WES. A total of 300 ng of each DNA sample fragmented on a Bioruptor Plus sonication system was used to 
perform end repair, A-tailing, and adapter aligation with an Agilent SureSelectXT Library Prep Kit (Agilent 
Technologies, Santa Clara, CA, USA) according to the manufacturer’s protocol. An approximate 750 ng of pre-
pared DNA in a volume of 3.4 μL was then captured using Agilent SureSelect Human All Exon V6 (Agilent 
Technologies) probes, followed by the amplification of the captured library with indexing primers. Quality con-
trol was performed using the Agilent 2100 Bioanalyzer (Agilent Technologies) with a DNA chip. After being 
quantified with a Qubit® 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA), the libraries were sequenced on an 
Illumina HiSeq platform (Illumina Inc., San Diego, CA, USA), and 150 bp paired-end reads were generated as 
FASTQ files. For each library preparation from tissue, 12 samples were loaded in a single lane. And, for each 
library preparation from blood, 20 samples were loaded in a single lane. Finally, we obtained a WES dataset of 
279 matched tumor/normal pairs of samples. The batch information was also collected to differentiate the QC 
metrics of samples.

Data processing and quality control of WES data.  NGSCheckMate37 was used to identify whether the 
raw FASTQ files were from the same individual. To ensure the accuracy of the WES data matching in the TNBC 
cohort, we performed a pairwise analysis of all WES data using a modified version of NGSCheckMate v1.0.0 soft-
ware37. We first calculated the variant allele frequency (VAF) of approximately 10,000 inherent SNPs in each input 
FASTQ file to obtain a VAF file. Then, the correlation scores between all VAF files were calculated. The presence of 
mislabeling was determined based on whether the WES data associated with the same patient ID had significantly 
higher correlations than the other pairs.

The quality of WES data was assessed using FastQ Screen29, FastQC and Qualimap30. After the QC process, 
the WES reads were aligned using BWA-mem38 and the BAM files were generated using Samtools32. Next, the 
BAM files were further preprocessed with the Sentieon Genomics tools version 202010.0239, which sequentially 
included (1) duplicates marking; (2) calculating data quality metrics; (3) conducting base quality score recali-
bration (BQSR); and (4) performing variant calling with TNseq and TNscope.

Three callers were used to identify the somatic mutations, including VarScan240, TNseq39, and TNscope39. 
Specifically, for the raw VarScan2 results, processSomatic and somaticFilter were used to extract high-confidence 
somatic mutations and to remove clusters of false positives and single nucleotide variants (SNV) calls near 
indels. For the other two callers, a filtering procedure based on a panel of normal (PoN) samples was used to 
screen out expected germline variation and artifacts. This PoN panel was based on 279 normal samples, from 
which each VCF file was created corresponding to the sites identified as mutations by TNseq and TNscope, 
respectively. In addition, the location of the population germline resource containing the population allele fre-
quencies obtained from gnomAD41 was used to filter the raw TNseq results.

To obtain the final set of mutation calls, we also used a two-step approach as in the previous publication10. 
First, we removed any spurious variant calls arising as a consequence of sequencing artifacts and then made use 
of consensus mutations in at least two out of three callers to identify somatic mutations (referred to as “1st Filter 
Mutation” in subsequent analysis). Secondly, additional filtering based on Bam-readcount42 was performed to 
reduce false positive calls: (1) variant allele frequency (VAF) ≥ 8%; (2) sequencing depth in the region ≥ 8; (3) 
sequence reads in support of the variant call ≥ 2. Only variants with the following functional classification were 
considered in this study, i.e, missense mutation, nonsense mutation, nonstop mutation, RNA mutation, silent 
mutation, variants at splice site or translation start site, insertion and deletion (referred to as “Final Mutation”).

The above process has been packaged into integrated pipelines which can be accessed at https://github.com/
fudan-tnbc/. The different analysis phases are encapsulated in separate repositories, including ngscheckmate_
fastq and vaf_ncm for paired assays, cbcga-wes-qc and bam-readcount for quality control, and variant-calling for 
the detection of somatic mutations. The detailed parameters can also be accessed.

CNA data generation.  Genome-wide copy number analysis was performed using an OncoScan CNV 
Assay Kit (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s recommendations. The arrays 
were washed and stained using a GeneChip Fluidics Station 450 (Affymetrix, Santa Clara, CA, USA) and were 
scanned using a GeneChip Scanner 3000 7 G (Affymetrix, Santa Clara, CA, USA). The fluorescence of clusters 
was measured to generate a DAT file. Cluster intensity values were automatically calculated using a built-in algo-
rithm from DAT files using the GeneChip Command Console software (Affymetrix, Santa Clara, CA, USA), and 
a CEL file was generated. Apart from the 401 tumor samples, we also added 23 randomly selected white blood 
cell samples from these patients as a reference cohort of DNA to assess the level of recurrent germline/potential 
false-positive calls.

Data processing and quality control of CNA.  Chromosomal Analysis Suite (ChAS) v4.3 software 
(Affymetrix) was used to perform quality control of Affymetrix OncoScan CNV SNP probe assays. Common 
QC metrics for OncoScan CNV data were collected, including the Median of the Absolute values of all Pairwise 
Differences (MAPD), Normal Diploid Waviness Standard Deviation (ndWavinessSD), and SNP Quality Control 
of Normal Diploid Markers (ndSNPQC). MAPD and ndWavinessSD represent short-range and long-range noise 
levels, respectively, and these values are negatively related to the quality of CNA estimation43. ndSNPQC meas-
ures how well genotype alleles are resolved in the microarray data but are only applicable to normal diploid mark-
ers. Higher ndSNPQC values indicate better identification of each genotype.

Moreover, we used R software to pick regions altered in 12 or more of the 23 WBC samples. These regions 
were doubled in range and were defined as recurrent germline/potential false-positive calls for subsequent 
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removal. The probe-level output from the ChAS v4.3 software was filtered by the log2 ratio of segment-level 
output. The filtered probe-level file was then analyzed using ASCAT v2.4.3 to obtain segmented copy number 
calls. These segments from ASCAT v2.4.3 that overlap with previously described recurrent germline/potential 
false-positive calls were removed.

The filtered segments were subsequently used to produce log2 ratios by dividing the total copy number 
(nAraw + nBraw, with zero values set to 0.05). These segments were used as the input of GISTIC2.0 v2.0.2344 that 
was run with the same parameter settings as the previous publication10 (-ta 0.2 -td 0.2 -genegistic 1 -smallmem 
1 -broad 1 -conf 0.95 -rx 0 –brlen 0.7 -cap 3.5 –armpeel 1 -savegene 1).

The files “all_lesions.conf_95.txt” and “all_thresholded.by_genes.txt” were collected from the results of 
GISTIC2.044 for further analysis. The former file provided CNA information on chromosome peaks and the 
latter provides the CNA profile of genes. We regarded the old and new different peaks as the same when the 
following conditions were met (1) both peaks are identical (2) both peaks contain the most identical genes (3) 
the band range of different peaks fluctuates within 1. Then, we used the Jaccard Index, which represented the 
number of observations in both sets divided by the number in either set (intersection set divided by union set), 
to measure the consistency of gene CNA profiles across different pipelines.

Classification of four TNBC subtypes.  The expression profiles of 2,000 protein-coding genes which had 
the highest SDs (Standard Deviation) in tumor samples from the old expression matrix (Fragments Per Kilobase 
of exon model per Million mapped fragments (FPKM)) were selected to perform k-means clustering with max-
imum 1,000 iterations (the “kmeans” function in R, k = 4) in the old analysis. Four subgroups corresponding to 
the four subtypes of FUSCC TNBC could be obtained, including a luminal androgen receptor (LAR) subtype, an 
immunomodulatory (IM) subtype, a basal-like and immune-suppressed (BLIS) subtype, and a mesenchymal-like 
(MES) subtype. The details could be seen in the previous publication10. For determining the impact of the new 
analysis on the molecular subtyping results, we selected the unfiltered FPKM expression profiles and the SD top 
2000 genes (only 1889 genes were consistent with the old pipeline because of the shifted genome version) used in 
the old analysis to subtype classification.

Data Records
All the omics data and attached metadata can be viewed in the National Omics Data Encyclopedia (NODE, 
http://www.biosino.org/node) by pasting the accession (OEP000155)45. OncoScan CNV data and sequence data 
have also been deposited in the NCBI Gene Expression Omnibus (OncoScan array; GEO: GSE118527)46 and 
Sequence Read Archive (WES and RNAseq; SRA: SRP157974)47. The updated profiling files can also be seen at 
Figshare (https://doi.org/10.6084/m9.figshare.19783498.v5)48 in parallel to the Data Portal (http://fudan-pgx.
3steps.cn/cdataportal/study/summary?id=FUSCC_BRCA_2022).

Technical Validation
Omics data quality control.  Transcriptomic data QC.  We conducted quality control of RNAseq data 
(Fig. 1b) and generated a series of QC metrics RNAseq (Supplementary Table 2). The overall quality of the 
RNAseq dataset was satisfied at the level of raw and mapped data in the following aspects: (1) the Phred quality 
scores across all bases at each position in the FASTQ file of all samples were consistently high (Fig. 2a); (2) the 
mapping ratio of all samples was high (>96%), and no obvious contamination from other sources was observed 
(Fig. 2b); (3) the distribution of gene region occupancy was consistent with the characteristics of the Ribo-Zero 
libraries49 (Fig. 2c); (4) the average mapped reads of all samples were around 13 Million (Fig. 2d); (5) the average 
length of insert size was approximately 200 bp (Fig. 2e); (6) the average GC content of the data generated from all 
samples was around 52% (Fig. 2f).

Besides, we also performed quality control at the expression profile level, including sex check and principal 
component analysis (PCA) clustering based on tumor and paired normal tissue classification. For sex check, we 
used seven sex-specific genes, including five male-specific genes (RPS4Y1, DDX3Y, EIF1AY, KDM5D, TXLNGY) 
and two female-specific genes (XIST and TSIX). All samples passed the sex check because they were all from 
female patients with high expression of female-specific genes and little expression of male-specific genes was 
observed in our results (Fig. 2g). The PCA results showed that tumor samples and paired normal samples can 
be well differentiated at the first principal component (Fig. 2h), indicating good quality of RNAseq data at the 
expression level.

Genomic data QC.  We performed a pairwise analysis of all WES to ensure accuracy in terms of data matching 
in the TNBC cohort. Information from RNAseq was added only to assist in determining whether the WES sam-
ples were paired or not. The results showed that 98.92% (276/279) of patients were confirmed to have matched 
tumor-normal samples. Two tumor samples (FUSCCTNBC044, FUSCCTNBC140) did not match the labeled 
paired samples, and they were not matched with any samples in the cohort. In addition, one tumor sample 
(FUSCCTNBC030) failed to match the labeled paired sample and matched well with another tumor sample 
(FUSCCTNBC032) in the cohort. Overall, sample ID mismatch problems occurred in the WES data of three 
samples, which were labeled as FUSCCTNBC044_WBC, FUSCCTNBC140_WBC, and FUSCCTNBC030_TT. 
We recommend that researchers remove them in subsequent studies. Detailed information on sample mismatch 
can be found in Supplementary Table 1.

We then ensured the reliability of the WES data by calculating the key quality metrics in both the raw data 
and the mapped data (Fig. 1c). The overall quality of the sequence data was satisfied in the following aspects: (1) 
FastQC results showed a high-quality score per sequence (Fig. 3a); (2) the mapping ratio was higher than 97% 
for human, and there was no obvious contamination from other sources (Fig. 3b); (3) sequencing coverage was 
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Fig. 2  Quality control metrics of RNA-seq data (N = 448). (a) Line plot presenting an overview of high-quality 
scores across all bases at each position in the FASTQ file of all samples. (b) Box plot representing mapping ratio 
(%) across all samples of multiple sources. (c) Bar plot representing the percentage of reads that map to gene 
sequence categories across all samples. (d) Frequency distribution plot representing mapped reads. Box plots 
representing (e) median insert size of the data of all samples per batch and (f) GC content across all samples 
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hierarchical clustering representing the expression level of the seven sex-specific genes across all samples, 
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genes (XIST and TSIX). (h) Principal Component Analysis (PCA) of all tumor and normal samples.
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around 50X–250X for tumor samples and 0X-150X for white blood cells, as expected (Fig. 3c); (4) the average 
duplication rate was 14% (Fig. 3d); (5) average insert size was about 186 ± 13.6 bp for tumor samples while 
195 ± 15.7 bp for white blood cells (Fig. 3e), (5) the average GC content was between 50 and 55% (Fig. 3f). More 
QC metrics results were organized in Supplementary Table 3.

We finally conducted quality control of CNA data (Fig. 1d) and generated a series of QC metrics 
(Supplementary Table 4). The Oncoscan CNV dataset also showed generally good quality. Approximately 91% 
of samples can pass strict quality control (beyond the thresholds of MAPD and ndSNPQC metrics). However, 
five samples failed the MAPD metric (with value > 0.3, Fig. 3g), which measured differences between adjacent 
probes, indicating short-range noise in the microarray data. Data that failed this metric may have too much 
noise to provide reliable copy number calls. 7% (32/424) samples failed the ndSNPQC metric (with value < 26, 
Fig. 3h), indicating a possible impact on allele-specific copy number detection or specific SNP calling. We did 
not exclude any of these failed samples in our Oncoscan CNV dataset, but it was advised to check and consider 
the data quality with such QC metrics in specific analysis applications.

Good consistency across different analysis pipelines.  Many changes have occurred in the data anal-
ysis pipelines after the publication of the FUSCC TNBC article10, including but not limited to the shift of the 
reference genome version from hg19 to hg38, the upgrade of the software version and the change of the analysis 
tools, etc. To determine the impact of the old (adopted in the previous analysis10) and new (adopted in the current 
analysis) pipelines on the results, we compared the profiling results generated about five years apart by two ver-
sions of the pipelines of the FUSCC TNBC dataset.

Reanalysis of transcriptomic data.  After upgrading the analysis pipeline, we calculated log2 fold change 
(log2FC) and p-value (p) by comparing tumor samples with normal samples in the RNAseq expression profiles 
(read counts) of the old and new analyses through limma software50. The results showed a great consistency 
rate (Pearson’s R = 0.98, p < 2.2 × 10−16) of these differentially expressed genes (|log2FC| ≥ 1, p < 0.05) in the 
two analyses (Fig. 4a), proving that the updated pipeline has little impacts on the final results. Besides, we per-
formed unsupervised clustering based on the expression profiles obtained from the new pipeline and compared 
subtypes with the previous clustering results. The clustering consistency rate was found to be high except for the 
MES subtype (Fig. 4b).

We performed PCA for all tumor and normal samples of 360 patients to determine the potential reason for 
the inconsistency of the MES clustering. The results showed the inconsistent MES samples were grouped close 
to other molecular subtype clusters, while a substantial portion of MES tumors was grouped with normal tissues 
(Fig. 4c). We conducted the H&E analysis to obtain tumor purity, including 315 of 360 tumor samples in the 
study (Supplementary Table 5). The tumor purity in the four molecular subgroups was not statistically signifi-
cant (Fig. 4d). Moreover, the range of purity in the MES tumors grouped with normal tissues (45% to 90%) was 
similar to those grouped with other tumor subtypes (50% to 100%) (Fig. 4c), indicating that normal contamina-
tion wasn’t the factor contributed to inconsistent clustering of MES subtypes.

Reanalysis of genomic data.  Three callers were used in the process of somatic variant calling. Thus, we com-
pared the consistency of variant genes obtained by these three callers between the two pipelines. We performed 
a two-step approach10 which has been mentioned before, defined the mutations that appear in at least two caller 
results as a filtered set of mutations (1st Filter Mutation), and the final set of mutation calls (Final Mutation). 
For each mutation set, we calculated the concordance of mutated genes annotated in the old and new results for 
each patient separately and represented the consistency rate using the Jaccard Index. The analysis showed that 
Final Mutation exhibited the highest consistency, followed by 1st Filter Mutation. For individual variant callers, 
the concordance of TNseq, TNscope, and VarScan gradually decreased, with the Jaccard Index even below 0.25 
for VarScan. In this case, the performance of the two filtered mutation sets was significantly affected by VarScan 
(Fig. 4e). The above results demonstrated the superiority of the strategy of integrating multiple callers for variant 
calling. Variants detected by a single caller may include more false positives that cannot be completely excluded 
based on hard filtering criteria. To further ensure the reliability of the results, we compared the mutation fre-
quencies of well-known cancer-related genes and the results still showed a high concordance (Fig. 4f).

Furthermore, we reanalyzed CNA status using the updated pipeline and compared the concordance of CNA 
amplification and deletion peaks in different pipelines. The results showed moderate consistency (Jaccard Index 
was 0.57 and 0.55, respectively) at the peak level51 (Fig. 4g). The reduction of total CNA numbers may be due to 
the stricter threshold when eliminating false positive positions and the updated version of GISTISC2.0 as well 
as the utilization of the hg38 genome. We listed the CNA results and related genes and highlighted different loci 
between the old and new analyses (Supplementary Table 6). Moreover, we analyzed the consistency of different 
CNA types (neutral, gain, loss, and total) genes in different pipelines based on genes that were detected in both 
pipelines. It showed satisfying consistency of CNA types, including gain, loss, and total genes (Median Jaccard 
Index was 0.71, 0.77, and 0.67, respectively) (Fig. 4h).

Usage Notes
The updated profiling files can be downloaded at Data Portal (http://fudan-pgx.3steps.cn/cdataportal/study/
summary?id=FUSCC_BRCA_2022) for easy reuse. Meanwhile, online visualization exploration is made availa-
ble in this portal, and overall statistical results of multi-omics data with clinical information are provided in the 
form of interactive charts. In addition, users can also query specific samples or genes according to their interests, 
and the results displayed in the portal will timely change.
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Fig. 4  Comparisons of the results from the same dataset but the different pipelines (old vs. new). (a) Scatter plot 
representing consistency of the log2FC of differentially expressed genes by comparing tumor and normal samples 
across different pipelines based on RNAseq read counts. (b) Expression-based (FPKM) unsupervised clustering 
shows good concordance in TNBC molecular subtyping. BLIS: basal-like and immune-suppressed subtype, IM: 
immunomodulatory subtype, MES: mesenchymal-like subtype, and LAR: luminal androgen receptor subtype. 
(c) PCA of 360 TNBC patients including 448 samples (360 tumor samples and 88 normal samples) using SD 
top 2000 genes used in the old analysis. Tumor purity (%) of 40 tumor samples from MES patients (N = 53) 
was labeled on the graph. Box plots representing (d) tumor purity of 315 tumor samples across four molecular 
subtypes in the study (ns: no significance) and (e) the Jaccard index of detected mutations from five mutation 
datasets through different processes. (f) Scatter plot representing the high consistency in allele frequency of all 
mutated genes between different pipelines (The displays of the x-axis and y-axis are scaled by log10, and the 
known cancer-related genes were labeled. There are many genes are overlaid on each other in the panel because 
their mutation frequencies are consistently low.). (g) Venn diagrams representing the good consistency at the 
peak level and the box plot representing (h) the Jaccard Index of detected genes across different CNA types.
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Code availability
The pipeline applications we provided contain all the processes described by Workflow Description Language 
(WDL, https://github.com/openwdl/wdl) before R analyses. Please note that the parameters in them are fixed, 
and the sample files can be processed by direct invocation. The upstream analysis of WES and RNAseq is 
available at the GitHub repository (https://github.com/fudan-tnbc). The dockers used in the upstream analysis 
can be obtained in the Docker Hub (https://hub.docker.com/u/chenqingwang). The code for pre-processing the 
upstream result data and drawing the figures can be found in the GitHub repository (https://github.com/fudan-
tnbc/TNBC-Multiomics). Quality control metrics for all data were collected in the metadata tables and visualized 
using R v4.1.2 (https://cran.r-project.org/, R development core team).
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