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ABSTRACT
Introduction  Prediction of type 2 diabetes mellitus 
(T2DM) and its preceding factors, such as insulin 
resistance (IR), is of great importance as it may allow delay 
or prevention of onset of the disease. Plasma protein N-
glycome has emerged as a promising predictive biomarker. 
In a prospective longitudinal study, we included patients 
with a first diagnosis of impaired glucose metabolism (IR 
or T2DM) to investigate the N-glycosylation’s predictive 
value years before diabetes development.
Research design and methods  Plasma protein N-
glycome was profiled by hydrophilic interaction ultra-
performance liquid chromatography in 534 TwinsUK 
participants free from disease at baseline. This included 
89 participants with incident diagnosis of IR or T2DM 
during the follow-up period (7.14±3.04 years) whose last 
sample prior to diagnosis was compared using general 
linear regression with 445 age-matched unrelated 
controls. Findings were replicated in an independent 
cohort. Changes in N-glycome have also been presented in 
connection with time to diagnosis.
Results  Eight groups of plasma N-glycans were different 
between incident IR or T2DM cases and controls (p<0.05) 
after adjusting for multiple testing using Benjamini-
Hochberg correction. These differences were noticeable 
up to 10 years prior to diagnosis and are changing 
continuously as becoming more expressed toward the 
diagnosis. The prediction model was built using significant 
glycan traits, displaying a discriminative performance with 
an area under the receiver operating characteristic curve 
of 0.77.
Conclusions  In addition to previous studies, we showed 
the diagnostic potential of plasma N-glycome in the 
prediction of both IR and T2DM development years before 
the clinical manifestation and indicated the continuous 
deterioration of N-glycome toward the diagnosis.

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is one of 
the most prevalent metabolic diseases in the 
world, with over 400 million individuals living 
affected with this chronic disease.1 2 With 
multiple cardiovascular, metabolic and even 
neurological comorbidities developing along-
side T2DM,3 the search for effective medica-
tions and therapies would be highly beneficial 

both for the drug-developing companies and 
the patients.4 However, T2DM is a chronic, 
ongoing, incurable disease5 6 held under 

SIGNIFICANCE OF THIS STUDY

WHAT IS ALREADY KNOWN ABOUT THIS 
SUBJECT?

	⇒ Type 2 diabetes mellitus (T2DM) and its risk factors 
represent a huge public health burden and identifying 
biomarkers that can predict disease onset would allow 
prevention or delay of onset of T2DM.

	⇒ There is a wide array of available T2DM prediction mod-
els, many of them are relying on pathophysiological 
changes of common diabetes biomarkers, which are 
usually a consequence of an already developed meta-
bolic disorder and are therefore often unable to identify 
at-risk individuals early enough in the disease develop-
ment process.

WHAT ARE THE NEW FINDINGS?
	⇒ In this study, most of our participants had insulin resis-

tance (IR) as their first confirmed diagnosis of impaired 
glucose metabolism, and since IR is known as a condi-
tion which very commonly precedes the development 
of T2DM for even a decade, we have now evaluated 
N-glycans as a predictive biomarker even earlier in life.

	⇒ Our results also indicated the continuous deterioration 
of N-glycome toward the diagnosis of impaired glucose 
metabolism.

	⇒ Our findings point out the importance of using plasma N-
glycans in existing and future T2DM prediction models 
and risk assessment tools since we have shown that 
glycans encompass the information body mass index 
data carry, but also provide additional predictive value.

HOW MIGHT THESE RESULTS CHANGE THE 
FOCUS OF RESEARCH OR CLINICAL PRACTICE?

	⇒ It is still unknown whether these changes are the cause 
or the consequence of the disease; however, it is now 
certain that they play an important role in the diabetes 
development and that the change of glycans within a 
person could warn about possible disease development 
and allow both the clinician and the patient to take ad-
equate steps to prevent or delay disease development.

http://drc.bmj.com/
http://orcid.org/0000-0002-7134-2484
http://dx.doi.org/10.1136/bmjdrc-2021-002263
http://dx.doi.org/10.1136/bmjdrc-2021-002263
http://dx.doi.org/10.1136/bmjdrc-2021-002263
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjdrc-2021-002263&domain=pdf&date_stamp=2022-07-01


2 BMJ Open Diab Res Care 2021;9:e002263. doi:10.1136/bmjdrc-2021-002263

Metabolism

control by medication, but only to prevent further devel-
opment of comorbidities and to resolve symptoms. Even 
though some studies presented the possibility of reversing 
T2DM, such claims are still not clinically proven.7 8

Thus, type 2 diabetes and its risk factors represent a 
huge public health burden and identifying biomarkers 
that can predict disease onset would allow prevention 
or delay of onset of T2DM. Early T2DM prediction was 
mostly based on the recognition of insulin resistance (IR) 
in the pre-diabetic state.

IR, defined as the inability of insulin to increase glucose 
uptake and usage in an individual as much as in healthy 
population,9 is a long-known major risk factor for the 
development of T2DM.10 IR accompanied with abnor-
mally increased body fat is a hallmark of pre-diabetes, 
which has recently been noted as a highly probable major 
underlying condition for the development of metabolic 
syndrome.11 Moreover, pre-diabetes accompanied with 
IR and deteriorated β cells accounts for approximately 
5%–10% of patients with newly diagnosed T2DM per 
year.12

Many studies investigated both basic IR/T2DM 
prediction models using standard, accessible vari-
ables like blood glucose or insulin levels, as well as 
improved models upgraded with additional biomarker 
or body measurement data. A review article from 201213 
combined multiple diabetes prediction models, basic or 
improved, in order to assess their predictive and discrim-
inative performance. The authors concluded that the 
basic models performed well on their own, but additional 
biomarker data made extended models accomplish 
better results. The following general worldwide progress 
of technology, computational models and statistical anal-
yses profusely impacted the field of diabetes prediction 
by using data mining and machine learning to extensively 
upgrade and improve prediction tools and software.14–16 
Even though there is a wide array of available T2DM 
prediction models, many of them are relying on patho-
physiological changes of common diabetes biomarkers, 
which are usually a consequence of an already developed 
metabolic disorder and are therefore often unable to 
identify at-risk individuals early enough in the disease 
development process. Taking this into account, there is 
still a great need for T2DM predictive biomarkers, such 
as N-glycans, that could identify individuals at the very 
start of their metabolic deterioration, while they still 
appear as healthy.

N-glycans are oligosaccharide structures added to the 
polypeptide sequence of a protein via the enzymatically 
mediated and highly regulated process of N-glycosylation.17 
N-glycosylation, a process regulated by a complex network 
of genes,18 is different from glycation, a non-enzymatic 
addition of sugars to proteins.19 N-glycosylation is among 
the most prevalent co-translational and post-translational 
modifications, with the vast majority of eukaryotic proteins 
being glycosylated.17 Since it is known that post-translational 
modifications greatly impact structural and functional 
features of proteins,20 it comes as no surprise that N-glycans 

were examined in the many physiological and pathophys-
iological conditions caused by protein diversification, in 
which they showed to be significant.21 22 Recent studies 
have proposed the idea of glycans as functional effectors 
in various physiological processes, as well as different disor-
ders and diseases, such as diabetes and obesity-induced 
IR.23–26 Importantly, mostly proinflammatory-like changes 
of both plasma and IgG N-glycome were observed in two 
separate cross-sectional studies of patients with T2DM.27 28 
Plasma N-glycome was also identified to have great discrim-
inative power for other types of diabetes, like mature-onset 
diabetes of the young. Specifically, triantennary sialylated 
plasma N-glycan with antennary fucose was very successful 
in extracting individuals with early-onset diabetes with 
damaging HNF1A mutations.29 Our previous studies on 
N-glycome in T2DM development showed that individ-
uals with a higher risk of disease due to recorded hyper-
glycemia during acute illness had increased complexity of 
plasma N-glycome,30 possibly reflecting the altered flux of 
glucose through the hexosamine pathway, which produces 
uridine diphosphate-N-acetylglucosamine, the substrate 
for N-linked glycosylation.24 Other factors such as presence 
of monosaccharide-nucleotides or presence of enzymes 
included in the process of glycosylation are important for 
its heterogeneity,17 as well as the glycan processing pathway 
through the Golgi apparatus and structural features of the 
protein part in glycoprotein, especially near the N-glyco-
sylation site, and many more.31

Recently, we have also studied glycans as a tool for 
cardiometabolic risk assessment and proposed the glycan-
based score GST2D,32 developed on a population with 
incident T2DM from the European Prospective Investi-
gation into Cancer and Nutrition-Potsdam study. These 
studies confirmed that plasma N-glycome could be an 
early predictor of T2DM development. Apart from being 
associated with various diseases and disorders, plasma 
N-glycosylation has been thoroughly examined in associ-
ation with lifestyle factors, such as smoking,33 exercise,34 
sleep35 and dietary habits.36 While smoking influenced 
increase in complexity of glycans,33 which is associ-
ated with a proinflammatory-like glycosylation profile, 
moderate to vigorous exercise positively affected the 
plasma glycosylation profile of older female individuals 
despite them being diagnosed with metabolic syndrome 
by decreasing levels of triantennary and tetra-antennary 
glycans,34 both hallmarks of complex plasma glycoprofile. 
Interestingly, higher abundance of biantennary glycan 
structures with core fucose and one or two sialic acid resi-
dues was observed in patients with rapid eye movement 
sleep behavior disorder when compared with healthy 
controls.35 These simpler, low-branched glycan struc-
tures are usually decreased in patients with health issues. 
One study found dietary habits influencing interesting 
changes in plasma N-glycosylation.36 Increased sialylation 
was positively associated with a healthier diet, which is 
opposite to the commonly observed higher abundance of 
highly sialylated (trisialylated and tetrasialylated) glycans 
in individuals with various diseases.
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Since IR is a known driving factor for T2DM develop-
ment and its key feature, in addition to previous find-
ings, this study investigated whether plasma N-glycome 
is predictive of first clinical diagnosis of impaired glucose 
metabolism, incident IR or T2DM in 534 individuals 
(89 incident IR/T2DM cases, 445 controls) from the 
TwinsUK cohort with independent replication. Further-
more, the relationship between N-glycome and time to 
diagnosis will be explored.

RESEARCH DESIGN AND METHODS
Study population
Discovery cohort
We analyzed 6032 plasma samples from the TwinsUK 
cohort using the hydrophilic interaction ultra-
performance liquid chromatography with fluorescence 
detection (HILIC-UPLC-FLR). The analyzed samples 
were collected at multiple timepoints throughout 
a period of 20 years, from 1996 to 2016. Chromato-
graphic profiling of the total plasma protein N-glycome 
was followed by the glycan data preprocessing protocol 
(described in detail in the Statistical analysis section), 
which reduced the glycan data set to 5889 samples. 
The following statistical analysis was performed on 
a subset of 534 women, which included incident IR/
T2DM cases and independent controls selected from 
the original set of samples. Case patients were selected 
based on their first confirmed occurrence of disrup-
tion in glucose metabolism—type 2 diabetes (fasting 
glucose  ≥7 mmol/L or physician’s letter confirming 
diagnosis) or IR (evaluated using homeostatic model 
assessment (HOMA2) score)—as well as availability of 
at least one plasma sample taken before the diagnosis. 
The control group was selected based on a negative 
type 2 diabetes and IR status during the total follow-up 
period and only included samples taken at least 5 years 
before the last visit, in order to exclude patients who 
will possibly develop the disease in the next 5 years and 
to obtain truly negative cases. A flow chart of the inclu-
sion and exclusion protocol is depicted in figure  1. 
Neither the case nor the control group contained 
siblings. The control group was age-matched with the 
case group. Description of the cohort is provided in 
table 1.

Replication cohort
As a replication cohort we used samples collected 
through the Finland Cardiovascular Risk Study 
(FINRISK) designed to investigate the risk factors for 
chronic, non-communicable diseases.37 We analyzed 
the samples of 38 participants who developed T2DM 
(mean age  ±SD, years=59.42 ± 8.99) during a 10-year 
follow-up period and 38 participants who remained 
unaffected and served as controls (mean age  ±SD, 
years=59.61 ± 8.93).

Consent to participate
All subjects included in this study gave written, informed 
consent. All twins in the TwinsUK study provided 
informed written consent.

Plasma N-glycome analysis
Release of total plasma protein N-glycans
Plasma samples (10 µL) were denatured using 20 µL 
of 2% (weight/volume (w/v)) sodium dodecyl sulfate 
(SDS) (Invitrogen, USA), followed by incubation 
at 65°C for 10 min. Then, 10 µL of 4% (volume/

Figure 1  Inclusion flow chart of the TwinsUK cohort. IR, 
insulin resistance; T2DM, type 2 diabetes mellitus.

Table 1  Descriptive statistics of the analyzed T2DM and IR 
subset of the discovery TwinsUK cohort

Characteristics

TwinsUK cohort (IR/T2DM 
subset)

Cases (IR/T2DM) Controls

Samples, n 89 (52/47) 445

Female participants, % 100 100

Age, mean±SD, years 55.07±9.01 55.06±8.95

BMI, mean±SD, kg/m2 28.15±4.78 25.21±3.99

Follow-up period, 
mean±SD, years

7.14±3.04 7.14±3.04

Systolic blood 
pressure, mean±SD, 
mm Hg

125.73±16.95 122.81±16.51

Diastolic blood 
pressure, mean±SD, 
mm Hg

78.86±9.91 76.80±10.12

Active smokers, n (%) 6 (9.4) 15 (5.3)

Non-smokers, n (%) 39 (60.9) 189 (66.3)

Ex-smokers, n (%) 19 (29.7) 81 (28.4)

Data on smoking status were available for 349 participants (65%).
BMI, body mass index; IR, insulin resistance; T2DM, type 2 
diabetes mellitus.
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volume (v/v)) Igepal CA-630 (Sigma-Aldrich, St Louis, 
Missouri, USA) were added to the denatured samples, 
after which the mixture was shaken for 15 min on a 
plate shaker (Gujarat Fluorochemicals Limited (GFL), 
Germany). N-glycans were released by adding 1.2 U of 
PNGase F (Promega, USA) to the mixture, followed by 
overnight incubation at 37°C.

Labeling and HILIC solid-phase extraction clean-up of released 
N-glycans
N-glycans released from total plasma proteins were 
labeled with 2-aminobenzamide (2-AB), a fluores-
cent dye. The fluorescent labeling mixture was made 
inhouse from both 2-AB (19.2 mg/mL; Sigma-Aldrich) 
and 2-picoline borane (44.8 mg/mL; Sigma-Aldrich) 
dissolved in dimethyl sulfoxide (Sigma-Aldrich) 
and glacial acetic acid (Merck, Germany) mixture 
(70:30 v/v). Each sample was labeled by addition of 
25 µL of the labeling mixture, followed by 2-hour 
incubation at 65°C. Following the 2-hour incubation, 
samples were brought to a total concentration of 96% 
acetonitrile by addition of 700 µL of 100% cold acetoni-
trile to each sample. The samples were then transferred 
to a 0.2 µm hydrophilic polypropylene membrane 
(GHP) filter plate (Pall Corporation, USA). All wells 
of the filter plate were prewashed with 70% ethanol 
(Sigma-Aldrich) and water, followed by equilibration 
using 96% acetonitrile. Both 70% ethanol and 96% 
acetonitrile were freshly prepared on the day of the 
experiment execution. Removal of solvent and impuri-
ties from samples, such as excess free labeling dye and 
reducing agent, was performed by HILIC-solid-phase 
extraction on the mentioned filter plate with the appli-
cation of vacuum using a vacuum manifold (Millipore 
Corporation, USA). Loaded samples were subsequently 
washed 5× with 96% acetonitrile (ACN). Plasma protein 
released and labeled N-glycans were finally eluted 2× 
with 90 µL of ultra-pure water and stored at −20°C until 
usage.

HILIC-UPLC-FLR profiling of total plasma protein released 
N-glycans
Fluorescently labeled N-glycans were separated by 
HILIC on Acquity UPLC H-Class instrument (Waters, 
Milford, USA) consisting of a quaternary solvent 
manager, sample manager and a fluorescence detector, 
set with excitation and emission wavelengths of 250 
nm and 428 nm, respectively. The instrument was 
under the control of Empower V.3 software, build 3471 
(Waters). Waters BEH Glycan chromatography column 
was used to separate labeled N-glycans, with 100 mM 
ammonium formate, pH 4.4, as solvent A and liquid 
chromatography-mass spectrometry grade acetonitrile 
as solvent B. Each 96-well plate contained five stan-
dard samples and one blank sample for the purpose 
of maintaining quality control and performing batch 
correction. The plasma protein N-glycans separation 
method used linear gradient of 70%–53% acetonitrile 

at a flow rate of 0.561 mL/min in a 25 min analytical 
run. The calibration of the system was done by using 
an external standard of hydrolyzed and 2-AB labeled 
glucose oligomers from which the retention times for 
the individual glycans were converted to glucose units. 
Automated integration method was used to perform 
data processing.38 The plasma proteins N-glycans chro-
matograms were all separated equivalently into 39 
peaks (GP1–GP39) and are presented in figure 2.

Detailed description of glycan structures corre-
sponding to each glycan peak is presented in online 
supplemental table 1. Glycan peaks were analyzed 
based on their elution positions and measured in 
glucose units. The results were then compared with 
the reference values from the ‘GlycoStore’ database 
(available at https://glycostore.org/)39 for structure 
assignment. In addition to 39 directly measured plasma 
glycan traits, 16 derived traits were calculated. These 
derived traits represent an average of the particular 
glycosylation structural feature, like branching, sialyla-
tion, galactosylation, fucosylation and incidence of 
bisecting N-acetylglucosamine (GlcNAc). The formulas 
used for calculation of plasma protein N-glycan derived 
traits are presented in online supplemental table 2.

Statistical analysis
Data normalization
The raw data represented as areas under each glycan 
peak had to be normalized in order to remove the exper-
imental noise. This area was divided by the total inte-
grated area and multiplied by 100, expressing each peak 
as a percentage of the total integrated area. This allows 
different patients’ glycan peaks to be compared, regard-
less of absolute intensities obtained by analysis of their 
samples.

Batch correction
To remove the effects of experimental variation during 
sample preparation and analysis, batch correction was 

Figure 2  Chromatogram of HILIC-UPLC-FLR-analyzed 
plasma N-glycome. The most abundant glycan structure 
is graphically presented for each glycan peak (GP). The 
y axis represents the intensity of the signal measured in 
emission units, while retention time in minutes is presented 
on the x axis. HILIC-UPLC-FLR, hydrophilic interaction 
ultra-performance liquid chromatography with fluorescence 
detection.

https://dx.doi.org/10.1136/bmjdrc-2021-002263
https://dx.doi.org/10.1136/bmjdrc-2021-002263
https://glycostore.org/
https://dx.doi.org/10.1136/bmjdrc-2021-002263
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performed on normalized glycan data. The data were 
first log-transformed due to the right-skewness of its distri-
bution. The experimental noise was then reduced by 
applying the ComBat method from the R package ‘sva’. 
Within the model, the corresponding order number of 
sample plates, representing the source of variation, was 
set as a batch covariate. This procedure was performed 
for every glycan peak.

Analysis of last prediagnostic timepoint
In order to identify glycan structures which are signifi-
cantly different in patients prior to diagnosis of T2DM or 
IR compared with controls, general linear models were 
used. For each glycan, log-transformed relative area under 
the glycan peak was modeled as a dependent variable, 
while disease status was used as an independent variable. 
Since the control group was age-matched and there were 
no siblings in either of the groups, no additional covari-
ates were included in the model. This was repeated for 
each of 39 glycan peaks and 16 derived glycan traits. We 
adjusted for multiple testing using Benjamini-Hochberg 
false discovery rate, with adjusted p value of <0.05 consid-
ered as significant. Obtained effect sizes represent the 
natural logarithm of the difference in relative area of 
the corresponding glycan peak in prediagnostic patients 
compared with controls.

Prediction of disease development
Discriminatory potential of individual glycan peaks was 
further evaluated using area under the receiver oper-
ating characteristic curve (AUC). From the set of eight 
glycan peaks significantly associated with disease status in 
the previous step, the best predicting ones were identi-
fied using stepwise regression variable selection method. 
It was carried out in bidirectional approach based on 
Akaike information criteria to find the best performing 
model and reduce overfitting. Six glycan peaks selected 
by stepwise regression along with the body mass index 
(BMI) data were included in the logistic regression 
model. Using receiving operator characteristic (ROC) 
curves, it was compared with BMI data alone, which repre-
sented the null model, as well as the model containing 
only six selected glycan peaks. The ‘pROC’ package was 
used to construct the ROC curves and calculate the corre-
sponding AUC.

Temporal progression of glycan abundances
The dynamics of glycan abundances in the disease devel-
opment period were also represented. All available case 
group samples, ranging from 10 years before the diag-
nosis of IR or T2DM up to 2 years after the diagnosis, 
were split into four groups (10–8 years, 7–5 years, 4–2 
years before and 0–2 years after the diagnosis) and 
included in the linear mixed effects model. As fixed 
effects, log-transformed relative area under the glycan 
peak was modeled as the dependent variable, while the 
corresponding temporal groups along with age at time 
of sampling were included as independent variables. 

Individual patient identification nested within the family 
identification was modeled as random effect. From 
the obtained model using the ‘emmeans’ package, the 
mean of glycan peak relative area was estimated for each 
temporal group and back-transformed from the log scale. 
This provided age-corrected data on average abundancy 
of individual glycan peak, depending on the time to or 
from diagnosis. The procedure was repeated for each 
glycan peak previously identified as significantly changed 
in the case group compared with controls. Estimated 
means were then graphically represented along with 95% 
CI.

RESULTS
Plasma N-glycome is extensively different in individuals prior 
to their IR/T2DM diagnosis when compared with unaffected 
controls
Using HILIC-UPLC method, we have analyzed and 
profiled total plasma protein N-glycome in 534 patients 
from the TwinsUK cohort. Of these, 445 were unaf-
fected individuals who have not developed IR nor 
T2DM during the study period (controls) and 89 were 
individuals who were diagnosed with IR/T2DM in one 
of the timepoints (the IR/T2DM cases). General linear 
model was used to examine differences in initial and 
derived plasma glycan traits between the IR/T2DM 
cases (last sample prior to the disease diagnosis; mean 
time before diagnosis 4.65±2.36) and the controls. Out 
of 39 directly measured initial glycan traits, 8 showed 
statistically significant difference. GP10, GP16 and 
GP18 were decreased, while GP19, GP20, GP26, GP32 
and GP34 were increased, in IR/T2DM cases, as shown 
in figure 3 and online supplemental table 3.

Besides investigating differences in directly measured 
initial glycans, we have also searched for significant 
differences in derived traits, which represent an average 
of the same glycosylation feature, shared among 
different glycan structures and are calculated from 

Figure 3  Effects of insulin resistance and type 2 diabetes 
development on the identified significantly differentiated 
initial (left) and derived plasma N-glycan traits (right) from the 
TwinsUK cohort. Calculated effect size (natural logarithm of 
difference in relative area) of each presented initial or derived 
trait is shown on the y axis with error bar representing 95% 
CI, while glycan trait name, initial or derived, is displayed on 
the x axis. G3, trigalactosylated glycans; GP, glycan peak; 
HB, high-branched glycans; LB, low-branched glycans; S1, 
monosialylated glycans; S3, trisialylated glycans.

https://dx.doi.org/10.1136/bmjdrc-2021-002263
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the initial glycan traits. After adjusting for multiple 
testing, out of 16 derived plasma N-glycome traits, 5 
were significantly altered in affected individuals when 
compared with the controls: monosialylated (S1) and 
low-branched N-glycans showed a significant decrease, 
while high-branched, trigalactosylated (G3) and 
trisialylated (S3) N-glycans were significantly increased, 
in IR/T2DM cases (figure 3, online supplemental table 
3).

The effects of T2DM and IR development on the 
identified initial and derived plasma N-glycan traits are 
depicted separately in online supplemental figure 1.

Plasma N-glycome continuously changes toward the 
diagnosis of IR or T2DM
Next, we examined the time-to-diagnosis behavior of 
eight initial glycan groups that showed predictive poten-
tial for IR/T2DM development. Their abundances 
were plotted through different timepoints from the 10 
years prior to disease development to the disease onset 
(figure  4). Each temporal group consisted of all case 
samples available for chosen timepoint prior to disease 
diagnosis; for example, temporal group 8–10 years prior 
to diagnosis consisted of glycan data analyzed from all 
available samples taken 8–10 years prior to diagnosis. The 
groups did not differ in age (the comparison of N-glycan 
levels with the control group of the corresponding age for 
each timepoint is shown in online supplemental figure 
2, with average age of both cases and controls shown in 
online supplemental table 4). The differences between 
temporal groups for GP10, GP16, GP20, GP26 and GP32 
showed a continuous trend toward disease development. 

GP19 even shows an increase in this trend 2–4 years prior 
to diagnosis, while GP18 displays a change in direction 
5–7 years before diagnosis establishment. GP34 shows the 
largest glycan abundance increase from 8–10 to 5–7 years 
prior to diagnosis, after which their levels start to stag-
nate. These results demonstrate that the human plasma 
N-glycome develops more visible and notable alterations 
as the diagnosis of either IR or T2DM approaches.

Stratification of IR/T2DM-prone individuals using N-glycans
T2DM prediction and progression models are key factors 
for diabetes management and could be the source of 
significant improvements in health status and overall 
quality of life for the individuals with increased risk 
for this serious health burden. Therefore, in order to 
improve the IR/T2DM prediction, we have built a ‘glyco 
diabetes prediction model’ using the most informative 
glycan variables (GP10, GP16, GP18, GP19, GP20 and 
GP34). The model was built from the last available data 
before disease diagnosis. We further added BMI to the 
model as it is a known risk factor for IR/T2DM,40 thus 
creating a model combining glycan and BMI infor-
mation (‘glyco-BMI diabetes prediction model’). The 
performance of each model was examined using ROC 
curve analysis. The result of ROC analysis is the graphic 
representation of the stratification ability based on the 
comparison of glycan abundances in 534 individuals. 
The AUC value of ‘glyco diabetes prediction model’ is 
0.77, while the AUC of the ‘glyco-BMI diabetes predic-
tion model’ is 0.78, and for the model consisting only 
of BMI data (‘BMI diabetes prediction model’) it is 0.69. 
These results show that glycans are valuable predictors 
of IR/T2DM. Furthermore, the fact that BMI has negli-
gible contribution to glycan prediction model indicates 
that glycans already encompass the information the BMI 
data can provide (figure  5). Additional data for each 
point of the ROC curves are provided in online supple-
mental table 5. We have also compared the predictiveness 
of glycans with BMI and other risk factor data (smoking 
status and blood pressure) available only for the portion 
of TwinsUK cohort participants (online supplemental 
figure 3).

External validation of significantly altered initial glycan traits 
on an independent T2DM follow-up cohort (FINRISK)
We replicated our findings in FINRISK, an independent 
T2DM cohort. We compared baseline plasma protein 
N-glycan abundances of both 38 incident cases (the ones 
who developed T2DM during a 10-year-follow-up) and 
38 controls. We were able to show the same direction of 
changes for all previously identified significantly altered 
initial N-glycans (GP10, GP18, GP19, GP20, GP26, GP32, 
GP34), except for GP16, with GP32 displaying statisti-
cally significant difference between the groups (adjusted 
p=6.62×10−03; online supplemental table 6). Mentioned 
glycan alterations in FINRISK cohort are depicted in 
online supplemental figure 4.

Figure 4  Time-to-diagnosis behavior of the most 
significantly altered initial glycan traits in individuals who 
developed insulin resistance/type 2 diabetes from the 
TwinsUK cohort. Glycan abundance is presented on the 
y axis with dots representing calculated means and lines 
representing 95% CI, while different temporal groups are 
presented on the x axis. The timepoint period in which 
the disease diagnosis occurred is labeled brown, while all 
prediagnosis timepoint periods are labeled blue. Numbers 
listed inside the brackets represent years of distance from 
diagnosis. GP, glycan peak.
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CONCLUSIONS
Here we show that plasma N-glycome can identify indi-
viduals who will develop either IR or T2DM years before 
the clinical diagnosis. Individuals healthy at baseline 
and developing IR/T2DM during the follow-up time 
have a higher presence of complex, highly branched 
glycans within their plasma N-glycome, accompanied 
by a decrease in low-branched structures. Increase in 
the complexity and branching of the plasma N-gly-
come is a hallmark of many pathological conditions 
with inflammatory component,41 as well as aging,21 and 
was also observed in previous studies investigating the 
changes of plasma N-glycome connected to T2DM.27 30 
It has been suggested that the increased branching of 
plasma N-glycome actually reflects the disruption in the 
glucose metabolism through the altered flux of glucose 
through the hexosamine pathway.30 We have previously 
reported that N-glycans (GST2D score) could predict 
T2DM development 6–8 years before the disease onset. 
Herein we strengthen our result by including not only 
the individuals developing T2DM, but also individuals 
developing IR as their first diagnosis of impaired glucose 
metabolism. Since IR is known as a condition which very 
commonly precedes the development of T2DM for even 
a decade,42 43 we have now evaluated the predictive poten-
tial of N-glycans earlier in life.

The two glycan peaks which showed the most significant 
alteration in incident IR/T2DM cases in this study were 

GP32 (p=9.52×10−06) and GP34 (p=9.38×10−04). GP32 is 
a structure consisting of a trigalactosylated trisialylated 
triantennary glycan structure (A3G3S3), while GP34 is 
the mixture of mostly core fucosylated trigalactosylated 
trisialylated triantennary glycan structure (FA3G3S3) 
and less tetragalactosylated trisialylated tetra-antennary 
glycan structure (A4G4S3). A3G3A3 structure, in plasma, 
predominantly originates from α1-acid glycoprotein 
(AGP), while A4G4S3 completely derives from this posi-
tive acute phase protein,44 whose increased levels were 
found to be significantly associated with diabetes in many 
studies.45–47 Even in our recent study, which focused on 
a cardiometabolic risk assessment, GP32 (A3G3S3) was 
recognized as one of the six structures strongly associated 
with T2DM development.32 Considering these findings, 
future studies should definitely focus on investigating 
the N-glycosylation of AGP in diabetes, such as a recently 
published paper which developed high-throughput 
method for AGP N-glycosylation analysis and tested it on 
a population of individuals with hyperglycemia at high 
risk of T2DM development.48

Our examination of time-to-diagnosis behavior of 
significantly altered glycan structures showed that modi-
fication of plasma N-glycome started even 10 years before 
the clinical presentation and diagnosis of glucose metab-
olism impairment, either IR or T2DM, and it continu-
ously proceeds throughout the disease onset.

To determine the discriminative power of plasma 
N-glycans in identifying individuals at risk of IR/T2DM, 
we have built a ‘glyco diabetes prediction model’ using 
the most significantly different and informative N-glycan 
structures. This glyco model had the discriminative 
power greater than the model with BMI data alone and 
almost identical as the BMI–glycan combined model. 
Our ‘glyco diabetes prediction model’ had similar perfor-
mance as other, non-glycan-based, suggested T2DM 
prediction models.49 Its clinical value could be possibly 
further improved when combined with other known risk 
factors, but unfortunately we did not have sufficient data 
available for our patients to evaluate this potential. Our 
findings on diabetes prediction using glycans, as well as 
other similar studies on this subject,30 31 definitely point 
out the importance of using plasma N-glycans in existing 
and future T2DM prediction models and risk assessment 
tools since we have shown that glycans encompass the 
information BMI data carry, but also provide additional 
predictive value.

Comparison of baseline plasma N-glycans in FINRISK 
incident diabetes cases with that of healthy controls 
confirmed our findings on the increase of more complex 
glycan structures present in plasma N-glycome prior to 
disease diagnosis. It is important to highlight that in the 
FINRISK cohort we have compared glycans from individ-
uals’ samples taken 10 years before the T2DM diagnosis 
occurred, which means that probably some participants 
in the mean time (baseline timepoint to follow-up 
timepoint) developed/were diagnosed with IR or pre-
diabetes. Therefore, these baseline samples of future 

Figure 5  Stratification performance of insulin resistance/
type 2 diabetes prediction model created from the TwinsUK 
cohort data. Comparison of prediction model based on 
selected glycan peaks with the model including the BMI 
data alone and the model combining both BMI and glycan 
data. Dashed grey diagonal line represents no-discrimination 
reference. AUC, area under the receiver operating 
characteristic curve; BMI, body mass index.
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T2DM cases could display the earliest noticeable changes 
in glycans resulting from underlying development of 
glucose metabolism impairment.

We note some study limitations. First, the results were 
discovered primarily in women. Second, our replication 
cohort is quite small-numbered, which may pose as a risk 
of bias. Third, due to unavailability of various patient 
clinical data, we were unable to further test glycans’ clin-
ical value by evaluating the discriminative potential of a 
model composed of glycans and other T2DM risk factors 
(apart from BMI). Also, it is important to mention that 
BMI, while widely and most commonly used, is not the 
best clinical marker for diabetes prediction, especially 
in older population,50 where it has been shown that the 
association of BMI and diabetes decreases with age. On 
the other hand, BMI is calculated solely from body weight 
and height and offers no information regarding body fat 
percentage, which showed to bring added informative 
value in identifying individuals at high risk of abnormal 
glucose levels.51 Unfortunately, body fat percentage data 
were not available for this study. Fourth, in our study we 
have investigated only the glycan portion of the plasma 
glycoproteins, and not the protein part. Changes in 
protein levels,52 their clearance rate, structure53 and 
other parameters are known to be influenced by a myriad 
of various processes, such as different diseases,54 lifestyle 
habits, oxidative status and others,55 all of which also 
heavily influence glycans.17 21 56 Therefore, it is important 
to mention that some of the observed glycan alterations 
might also be a result of changes in the protein portion 
of plasma glycoproteins.

In conclusion, our study further highlights the role of 
T2DM prediction using plasma N-glycome. This opens 
the possibility of early assessment of individuals at high 
risk of disrupted glucose metabolism which can lead to 
prevention or delay of T2DM development, increasing 
the quality of life and at the same time decreasing treat-
ment costs. We have shown that plasma N-glycome is not 
only altered years before T2DM development, but also 
precedes IR diagnosis, showing that the impairment of 
glycome starts to manifest even earlier than it was previ-
ously shown. Taking into consideration this early mani-
festation, glycome changes are certainly associated with 
underlying progression of T2DM, which is known to 
take years to develop and present symptoms.57 58 It is still 
unknown whether these changes are the cause or the 
consequence of the disease; however, it is now certain 
that they play an important role in diabetes development 
and that the change of glycans within a person could 
warn about possible disease development and allow both 
the clinician and the patient to take adequate steps to 
prevent or delay disease development.
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