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Two novel drug-conjugates based on a “coumarin linker” have been designed for

the synergic release of a therapeutic agent and fluorescent probe for the potential

application of theranostics. The drug conjugates; CC-RNS and CI-RNS were designed

to be activated by reactive oxygen species or reactive nitrogen species (ROS/RNS).

The fluorescence OFF-ON response was triggered by the peroxynitrite-mediated

transformation of a boronic acid pinacol ester to a phenol moiety with simultaneous

release of the therapeutic agents (Confirmed by HRMS). The limit of detection for

peroxynitrite using CC-RNS and CI-RNS was 0.29 and 37.2µM, respectively. Both

CC-RNS and CI-RNS demonstrated the ability to visualize peroxynitrite production

thus demonstrating the effectiveness of these probes for use as tools to monitor

peroxynitrite-mediated drug release in cancer cell lines.

Keywords: theranostic, peroxynitrite, coumarin, chemosensor, fluorescence

INTRODUCTION

Theranostic systems, are the combination of a diagnostic and therapeutic and represent an
emerging area with regard to effective cancer treatment. There have been an increasing number of
examples of small-molecule theranostics which have good selectivity and high anti-tumor activity
(Aulic et al., 2013; Kumar et al., 2015). In this respect, new theranostic probes are required for whole
organism fluorescence tumor imaging and image guided surgery (Blau et al., 2018).

Real time monitoring of drug action is a prime concern for target specific cancer treatment.
Redox-responsive chemotherapy is gaining attention. In such cases, a chemotherapeutic molecule
is commonly attached to a fluorophore via a sacrificial self immolative linker (i.e., disulphide)
(Wu et al., 2014; Gangopadhyay et al., 2017). Disulphide linkages are selectively cleaved in
cancer cells by biological reducing agents, including glutathione (GSH); owing to high levels
in cellular environments (2–10mM) (Lu, 2013). Other examples of theranostic systems include
hypoxia-induced and hydrogen peroxide activatable self-immolative systems (Kumar et al., 2014,
2016).

A potential problem for “multi-component” systems is that the chromophore and therapy
module could be released independently. One method to circumvent this problem is to use
the fluorophore as the “linker” which can be functionalized with both an activating group
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and a therapeutic. In seminal work, Shabat et al. designed a
theranostic prodrug using a self-immolative coumarin linker
(Figure 1). The drug-delivery system uses a 7-hydroxycoumarin
with a hydroxymethyl substituent. The phenolic alcohol of 7-
hydroxycoumarin is linked to an activating group and the
hydroxymethyl substituent acts as an attachment point for a drug
or targeting group. In this example;Cou-Melphalan incorporates
melphalan as a therapeutic with attachments via carbamates.
This theranostic was designed to be activated by Cathespin B
(Weinstain et al., 2013).

We were interested in utilizing the “coumarin linker” since
they are natural products with simple preparative routes.
Coumarin has important biological activities including; anti-
tumor, anti-HIV and anti-bacterial properties, with multiple
coumarin-derived molecules reported to cross the blood brain
barrier (Borges et al., 2005; Yang et al., 2015). Various activating
mechanisms for theranostics have been used; including activation
by reactive oxygen species (ROS), intracellular thiols and
enzymes (Chan et al., 2012). The reactive nitrogen species (RNS),
peroxynitrite (ONOO−) is of interest due to its orthogonal
reactivity with boronate esters and increased reactivity compared
to its equivalent reactive oxygen species (ROS), hydrogen
peroxide (H2O2) (Sedgwick et al., 2016, 2017; Wu et al., 2018).
To this end, we set out to design ONOO− activatable systems
(Figure 2) (Yang et al., 2006; Sedgwick et al., 2016, 2018). The
probes CI-RNS and CC-RNS were designed with ester linkers,
in order to determine whether the same 1–8 self-immolative
effect can occur, as in Shabat’s system. Since, the use of an ester
attachment provides access to probe-based systems using simpler

FIGURE 1 | Structure of Cou-Melphalan.

FIGURE 2 | Structures of CC-RNS and CI-RNS.

synthetic procedures (Weinstain et al., 2013). The proposed
disassembly mechanism is illustrated in Scheme 1.

In vivo ONOO− is generated through the diffusion limited
reaction of superoxide (O2

•−) and nitric oxide (NO).
Both O2

•− and NO are non-toxic in vivo due to efficient
methods to minimize accumulation (Beckman, 1996). Under
proinflammatory conditions, production of O2

•− and NO
is activated, which inevitably increases the concentration of
ONOO− (Pacher et al., 2007). Typically, in vitro studies, the
concentration of ONOO− is enhanced by the ONOO− donor
SIN1 or stimulation of an inflammatory response using LPS
and IFN-γ . The repurposing of the boronate-based probe
peroxyresorufin-1 (PR1) Miller et al. (2005) to detect ONOO−

in vitro using these methods was reported by Weber et al. (2018).
Interestingly, there is no reported data for loss of drug function
through reaction with ONOO−. Examples of drug delivery
systems which are activated by H2O2 have shown that, on release
of the drug, the drug released still has the desired therapeutic
response (Kumar et al., 2014; Wang et al., 2017).

As therapeutic payloads we chose; chlorambucil and
indomethacin, providing distinct mechanisms of action for our
theranostic probes. Chlorambucil is a DNA alkylating agent
from the nitrogen mustard family. It is used to treat leukemia,
Hodgkin’s disease and non-Hodgkin lymphomas (Begleiter et al.,
1996). Nitrogen mustards are generally unstable (Wang et al.,
2010). Off-target reactions with proteins and biological thiols
reduce drug potency, requiring higher dosages to produce a
substantial therapeutic response. The repurposing and targeting
of chlorambucil to enhance treatment scenarios are currently
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SCHEME 1 | Proposed disassembly mechanism of CC-RNS and CI-RNS, adapted from Weinstain et al. (2013).

being investigated with successful preliminary studies in breast
and pancreatic cancer cell lines (Millard et al., 2013; Kaur et al.,
2017).

Indomethacin is primarily a non-steroidal anti-inflammatory
drug (NSAID). Indomethacin inhibits the cyclooxygenase
enzymes which catalyze the production of prostaglandins;
responsible for inflammation and pain (Lucas, 2016). More
recently; the effect of indomethacin on the modulation of
the inflammatory responses in cancer have been investigated.
Indomethacin has been shown to reduce cell migration, invasion,
and metastasis in breast and colon cancer cell lines (Ackerstaff
et al., 2007; Guo et al., 2013).

RESULTS AND DISCUSSION

CI-RNS and CC-RNS were synthesized according to Scheme 2.
CI-RNSwas prepared over seven steps.CC-RNSwas synthesized
in six steps. First, coumarin-derivative (4) was obtained using
previous literature procedures (Kim et al., 2014; Behara
et al., 2017). Coumarin (1) was obtained by reacting 2,4-
dihydroxybenzaldehyde with propionic anhydride in the
presence of sodium propionate and piperidine. Compound
1 subsequently underwent radical bromination to afford
compound 2; which was transformed into compound
3 via acetylation. Compound 3 was deprotected with
potassium carbonate in MeOH to yield coumarin (4). 4-
(Bromomethyl)phenylboronic acid pinacol ester was added to
compound 4 in an alkylation reaction to produce compound 5

in moderate yield. To generate CI-RNS; compound 5 underwent
bromination in the presence of PBr3 to produce 6. Thereafter,
CI-RNS was obtained by reacting indomethacin in the presence
of potassium carbonate, to afford the desired compound in
17% yield. To prepare CC-RNS; compound 5 was reacted with
indomethacin using a HATU cross coupling reaction. This
reaction gave the desired compound in a 9% yield.

Intermediate compound 5 is an example of a ONOO−

activatable molecular probe. Therefore, the reactivity of 5 with
ONOO− was investigated. All measurements were recorded in

a PBS buffer solution (pH = 7.3) at ambient temperature. The
measurements were recorded instantly after ONOO− addition.
There is no change in UV-VIS absorption maximum at 315 nm
on the addition of ONOO− (20µM) to the probe 5 (20µM)
(Supplementary Figure 1). The fluorescence spectra of probe
5 (10µM), shows a ratiometric response. With increasing
concentrations of ONOO− (0–20µM), there is a decrease in peak
at 390 nm and emergence of a new peak at 460 nm; characteristic
of free coumarin (Figure 3, Supplementary Figure 2). The
limit of detection for 5 was calculated to be 76.5 nM
(Supplementary Figure 3). The formation of free coumarin was
also supported by mass spectroscopic studies; finding [M]− =

192.0417 (Supplementary Figure 4).
The spectroscopic properties of intermediate 6 were also

investigated. 4-bromoumbelliferone shows weak fluorescence
at 438 nm, therefore 6 is expected to be non-fluorescent
(Thasnim and Bahulayan, 2017). This is due to the less
electron-donating effect of the bromomethyl group compared
to the methyl alcohol. Addition of ONOO− results in
formation of 3-(bromomethyl)-7-hydroxy-2H-chromen-2-one;
this is confirmed by mass spectroscopic analysis; where
exact mass for C10H7BrO3 [M]− = 253.9597 finds [M]−

= 253.9569 (Supplementary Figure 5). There is no change
in the UV-Vis response with absorption maxima at 340 nm
(Supplementary Figure 6). Fluorescence studies carried out in
PBS buffer pH = 7.3 at ambient temperature shows that
6 has a fluorescence emission at 390 nm. On addition of
ONOO− (0–20µM) there is a decrease in emission at 390 nm
and increase in a new emission peak at 455 nm (Figure 4,
Supplementary Figure 7). The limit of detection for 6 was
calculated to be 54.6 nM (Supplementary Figure 8).

With probes CC-RNS and CI-RNS in hand, spectroscopic
evaluations were performed. All measurements were recorded
in PBS buffer solution (pH = 7.3) at ambient temperature.
The measurements were recorded instantly after ONOO−

addition. The UV-VIS spectrum of probe CC-RNS (20µM)
and CI-RNS (20µM) were recorded with and without ONOO−

(50 µM—Supplementary Figures 9, 10). From the UV-VIS

Frontiers in Chemistry | www.frontiersin.org 3 December 2019 | Volume 7 | Article 775

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Odyniec et al. Peroxynitrite Activated Drug Conjugate Systems

SCHEME 2 | Synthesis scheme of CI-RNS and CC-RNS.

FIGURE 3 | Fluorescence spectra of 5 (10µM) in the presence of ONOO− (0,

2, 4, 6, 8, 10, 12, 14, 16, 18, 20µM). The data was collected in PBS buffer,

pH = 7.3 at 25◦C where λex = 345 (16 bandwidth) nm. The dotted line

represents probe only.

FIGURE 4 | Fluorescence spectra of 6 (10µM) in the presence of ONOO− (0,

2, 4, 6, 8, 10, 12, 14, 16, 18, 20µM). The data was collected in PBS buffer,

pH = 7.3 at 25◦C where λex = 345 (16 bandwidth) nm. The dotted line

represents probe only.
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FIGURE 5 | Fluorescence spectra of CC-RNS (10µM) in the presence of

ONOO− (0–20µM) in PBS buffer pH = 7.3. The data was collected at 25◦C

instantly after addition of peroxynitrite, where λex = 345 (16 bandwidth) nm.

The dotted line represents probe only.

FIGURE 6 | Fluorescence spectra of CI-RNS (10µM) in the presence of

ONOO− (0, 10, 20, 25, 30, 35, 40, 45, 50µM). The data was collected in PBS

buffer, pH = 7.3 at 25◦C where λex = 345 (16 bandwidth) nm. The dotted line

represents probe only.

spectrum the probes have an initial absorption maximum at
315 nm. On addition of ONOO−, the absorption maximum
shifts to 360 nm. The redox regulated response was monitored
by subjecting 10µM of each probe, CC-RNS and CI-

RNS, to increasing concentrations of the biological oxidant
ONOO−. Figures 5, 6 shows that initially both probes are
non-fluorescent. There is a strong increase in emission at
460 nm for both probes; ca. 22- fold for CI-RNS and 33-

fold for CC-RNS with increasing concentrations of ONOO−

(0–50µM and 0–30µM, respectively). The limit of detection
(LOD) for CC-RNS is 0.29µM and 37.2µM for CI-RNS

(Supplementary Figures 11–14).
The process of RNS triggered release of coumarin from

CC-RNS and CI-RNS was supported by mass spectrometric

FIGURE 7 | Selectivity data of CC-RNS and CI-RNS (10µM) in the presence

of ONOO− (20µM), H2O2 (200µM), ClO− (200µM), ROO· (200µM), OH

(200µM), O·−

2 (200µM), and 1O2 (200µM) in PBS buffer pH = 7.3. The data

was collected at 25◦C after incubation for 15min, where λex = 345 (16

bandwidth) nm. Fluorescence intensity points were taken at λmax = 460 nm.

FIGURE 8 | Selectivity data of 5 (10µM) in the presence of ONOO− (20µM),

H2O2 (100µM), ClO− (100µM), ROO· (100µM), OH (100µM), O·−

2 (100µM),

and 1O2 (100µM) in PBS buffer pH = 7.3. The data was collected at 25◦C

after incubation for 15min, where λex = 345 (16 bandwidth) nm. Fluorescence

intensity points were taken at λmax = 460/390 nm.

evaluation. The experiments determined that [M]− =192.0438
and [M]+ = 192.0387 for CC-RNS and CI-RNS, respectively
(Supplementary Figures 15, 16). This mass corresponds to
formation of compound 4; the expected cleavage product of the
reaction. The formation of free coumarin demonstrates that these
systems do release the drug payload in situ.

The change in fluorescent properties of potential theranostics
CC-RNS, CI-RNS, probes 5 and 6 were investigated in the
presence of various biologically relevant ROS; hydrogen peroxide
(H2O2), hypochlorite (ClO

−), superoxide (O2
−•), singlet oxygen

(1O2), hydroxyl radical (HO•), and peroxyl radical (ROO•).
Pleasingly,CC-RNS,CI-RNS, 5 and 6 are highly selective toward
ONOO− (Figures 7–9, Supplementary Figures 17–20).
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After confirming the selectivity and sensitivity of CC-

RNS and CI-RNS for ONOO−, we evaluated the reaction
of CC-RNS and CI-RNS with ONOO− in cells. HeLa

FIGURE 9 | Selectivity data of 6 (10µM) in the presence of ONOO− (20µM),

H2O2 (100µM), ClO− (100µM), ROO· (100µM), ·OH (100µM), O·−

2 (100µM),

and 1O2 (100µM) in PBS buffer pH = 7.3. The data was collected at 25◦C

after incubation for 15min, where λex = 345 (16 bandwidth) nm. Fluorescence

intensity points were taken at λmax = 455/390 nm.

(cervical cancer) cells were pre-treated with CI-RNS or CC-

RNS. Subsequently, SIN-1 (an ONOO− donor) was added to
produce intracellular ONOO−. As shown in Figure 10, the
probe alone resulted in a weak fluorescence in cells. However,
treatment with SIN-1 led to a significant increase in the
fluorescence intensity enabling the visualization of ONOO−

in living cells. Cytotoxicity studies for both CC-RNS and
CI-RNS indicate that the probes are almost non-toxic to
Hela cells after incubation with SIN-1 and illumination (ESI-
Supplementary Figures 21, 22). Hence, no further imaging
studies were undertaken.

CONCLUSION

In this work, we have developed two novel drug conjugate
systems, CC-RNS and CI-RNS. The drug conjugate systems
were designed to integrate a Shabat-based “coumarin linker”
with an ONOO− trigger. The systems incorporated the
therapeutics drug payloads of chlorambucil and indomethacin
as esters for potential theranostic application. Pleasingly,
for each system in solution, the probes displayed a selective
turn-on response toward ONOO−. In addition, in vitro
evaluation with HeLa cells demonstrated that the probes
were able to successfully visualize endogenous ONOO−

production, providing a potential platform to be able to
monitor ONOO− mediated drug release in cancer cell lines.

FIGURE 10 | Fluorescence imaging and quantification of (A,B) CI-RNS (20µM) and (C,D) CC-RNS (20µM) in the presence of SIN-1 (500µM) of HeLa cells.

Excitation channel 360–400 nm, emission channel filtered = 410–480 nm. Scale bar = 100µm. **P < 0.01; ***P < 0.001.
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We are currently working on the development of longer
wavelength “fluorophore linkers” using ester attachments to
appropriate therapeutic units that will facilitate the use of
such probes in an animal model in order to evaluate their
therapeutic value.
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